|
Publications about Variational methods
Result of the query in the list of publications :
2 Articles |
1 - Incorporating generic and specific prior knowledge in a multi-scale phase field model for road extraction from VHR images. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. IEEE Trans. Geoscience and Remote Sensing, 1(2): pages 139--146, June 2008. Keywords : Dense urban areas, Geographic Information System (GIS), Multiscale, Road network, Variational methods, Very high resolution. Copyright : ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
@ARTICLE{Peng08b,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Incorporating generic and specific prior knowledge in a multi-scale phase field model for road extraction from VHR images}, |
year |
= |
{2008}, |
month |
= |
{June}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{1}, |
number |
= |
{2}, |
pages |
= |
{139--146}, |
url |
= |
{http://dx.doi.org/10.1109/JSTARS.2008.922318}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/PengetalTGRS08.pdf}, |
keyword |
= |
{Dense urban areas, Geographic Information System (GIS), Multiscale, Road network, Variational methods, Very high resolution} |
} |
Abstract :
This paper addresses the problem of updating digital road maps in dense urban areas by extracting the main road network from very high resolution (VHR) satellite images. Building on the work of Rochery et al. (2005), we represent the road region as a 'phase field'. In order to overcome the difficulties due to the complexity of the information contained in VHR images, we propose a multi-scale statistical data model. It enables the integration of segmentation results from coarse resolution, which furnishes a simplified representation of the data, and fine resolution, which provides accurate details. Moreover, an outdated GIS digital map is introduced into the model, providing specific prior knowledge of the road network. This new term balances the effect of the generic prior knowledge describing the geometric shape of road networks (i.e. elongated and of low-curvature) carried by a 'phase field higher-order active contour' term. Promising results on QuickBird panchromatic images and comparisons with several other methods demonstrate the effectiveness of our approach. |
|
2 - Richardson-Lucy Algorithm with Total Variation Regularization for 3D Confocal Microscope Deconvolution. N. Dey and L. Blanc-Féraud and C. Zimmer and Z. Kam and P. Roux and J.C. Olivo-Marin and J. Zerubia. Microscopy Research Technique, 69: pages 260-266, April 2006. Keywords : Confocal microscopy, Variational methods, Total variation, Deconvolution.
@ARTICLE{dey_mrt_05,
|
author |
= |
{Dey, N. and Blanc-Féraud, L. and Zimmer, C. and Kam, Z. and Roux, P. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Richardson-Lucy Algorithm with Total Variation Regularization for 3D Confocal Microscope Deconvolution}, |
year |
= |
{2006}, |
month |
= |
{April}, |
journal |
= |
{Microscopy Research Technique}, |
volume |
= |
{69}, |
pages |
= |
{260-266}, |
url |
= |
{http://dx.doi.org/10.1002/jemt.20294}, |
keyword |
= |
{Confocal microscopy, Variational methods, Total variation, Deconvolution} |
} |
Abstract :
Confocal laser scanning microscopy is a powerful and popular technique for 3D imaging of biological specimens. Although confocal microscopy images are much sharper than standard epifluorescence ones, they are still degraded by residual out-of-focus light and by Poisson noise due to photon-limited
detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. As this algorithm tends to amplify noise, regularization constraints based on some prior knowledge on the data have to be applied to stabilize the solution. Here, we propose to combine the Richardson-Lucy algorithm with a regularization constraint based on Total Variation, which suppresses unstable oscillations while preserving object edges. We
show on simulated and real images that this constraint improves the deconvolution results as compared to the unregularized Richardson-Lucy algorithm, both visually and quantitatively. |
|
top of the page
2 PhD Thesis and Habilitations |
1 - Détection de Filaments dans des images 2D et 3D; modélisation, étude mathématique et algorithmes.. A. Baudour. PhD Thesis, Universite de Nice Sophia Antipolis, May 2009. Keywords : imagerie 3D, Segmentation, filaments, Deconvolution, Variational methods, mocroscopie confocale.
@PHDTHESIS{baudour2009,
|
author |
= |
{Baudour, A.}, |
title |
= |
{Détection de Filaments dans des images 2D et 3D; modélisation, étude mathématique et algorithmes.}, |
year |
= |
{2009}, |
month |
= |
{May}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00507520/}, |
keyword |
= |
{imagerie 3D, Segmentation, filaments, Deconvolution, Variational methods, mocroscopie confocale} |
} |
Résumé :
Cette thèse aborde le problème de la modélisation et de la détection des laments
dans des images 3D.
Nous avons développé des méthodes variationnelles pour quatre applications
spéciques :
l'extraction de routes où nous avons introduit la notion de courbure totale
pour conserver les réseaux réguliers en tolérant les discontinuités de
direction.
la détection et la complétion de laments fortement bruités et présentant
des occultation. Nous avons utilisé la magnétostatique et la théorie
de Ginzburg-Landau pour représenter les laments comme ensemble de
singularités d'un champ vectoriel.
la détection de laments dans des images biologiques acquises en microscopie
confocale. On modélise les laments en tenant compte des spécicité
de cette dernière. Les laments sont alors obtenus par une méthode de
maximum à posteriori.
la détection de cible dans des séquences d'images infrarouges. Dans cette
application, on cherche des trajectoires optimisant la diérence de luminosit
é moyenne entre la trajectoire et son voisinage en tenant compte des
capteurs utilisés.
Par ailleurs, nous avons démontré des résultats théoriques portant sur la
courbure totale et la convergence de la méthode d'Alouges associée aux systèmes
de Ginzburg-Landau. Ce travail réunit à la fois modélisation, résulats théoriques
et recherche d'algorithmes numériques performants permettant de traiter de
réelles applications. |
|
2 - Sur quelques Problèmes Inverses en Traitement d'Image. L. Blanc-Féraud. Habilitation à diriger des Recherches, Universite de Nice Sophia Antipolis, July 2000. Keywords : Partial differential equation, Restoration, Regularization, Gamma Convergence, Variational methods.
@PHDTHESIS{lbf,
|
author |
= |
{Blanc-Féraud, L.}, |
title |
= |
{Sur quelques Problèmes Inverses en Traitement d'Image}, |
year |
= |
{2000}, |
month |
= |
{July}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
type |
= |
{Habilitation à diriger des Recherches}, |
pdf |
= |
{Theses/hdr-blancf-2000.pdf}, |
keyword |
= |
{Partial differential equation, Restoration, Regularization, Gamma Convergence, Variational methods} |
} |
Résumé :
Après une présentation générale des problèmes inverses mal posés en imagerie, les méthodes de régularisation linéaires puis non linéaires sont présentées. La préservation des discontinuités (contours d'une image) est abordée conjointement selon 3 approches: stochastique, variationnelle et EDP. Des résultats sont montrés sur plusieurs applications dont la restauration d'image optique satellitaire, la reconstruction SPECT 2D et 3D en imagerie médicale, la diffraction inverse en imagerie microonde. Nous faisons ensuite le lien entre régularisation et segmentation dans l'approche variationnelle initialement introduite par Munford et Shah. Deux modèles ont été proposé pour approcher numériquement les discontinuités dans le cadre de la régularisation : par suite de fonctionnelles "Gamma-convergentes" et par ensemble de niveaux. Après avoir considéré l'exemple de la restauration d'image, nous avons aussi développé ces deux approches pour le problème de la classification d'image satelllitaire. Enfin, le problème de l'estimation des paramètres des fonctionnnelles est abordée et une méthode d'estimation stochastique est proposée dans le cadre de la restauration d'image floue en optique satellitaire. mots cles : methodes variationelles, diffusion (EDP), problemes inverses, regularisation, discontinuites, segmentation d'image, fonctionnelle de Mumford et Shah, Gamma-convergence, ensembles de niveaux, contours actifs, estimation de parametres, methodes MCMC, restauration d'image, classification d'image, reconstruction SPECT, diffraction inverse en imagerie micro-onde. |
Abstract :
We first describe ill-posed inverse problems in image processing, linear and nonlinear regularisation methods. Discontinuity preservation (edges of the image) is jointly presented following three approaches : stochastic, variational and by diffusion process (solving PDE's). Results are shown on several applications such as optical satellite image restoration, 2D and 3D SPECT reconstruction in medical images, inverse diffraction in microwavimages. Then we rely regularisation and segmentation problem in the variational approach as introduced by Mumford and Shah. Tow models have been proposed in order to numerically compute discontinuities in such models : by minimizing sequence of functionals which "Gamma-converge", and by using level sets models. After considering the restoration case, we have developped such methods for the problem of supervised image classification. Finally we have considered the parameter estimation problem for such fonctionnals and we describe a stochastic estimation method for the problem of satellite image restoration. Key-words : variational methods, diffusion (PDE), inverse problems, regularisation, discontinuities, image segmentation, Mumford and Shah functional, Gamma-convergence, level set methods, active contours, parameter estimation, MCMC methods, image restoration, supervised image classification, SPECT reconstruction, inverse diffraction in microwave images. |
|
top of the page
2 Conference articles |
1 - An extended phase field higher-order active contour model for networks and its application to road network extraction from VHR satellite images. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. In Proc. European Conference on Computer Vision (ECCV), Marseille, France, October 2008. Keywords : Dense urban area, Phase Field, Road network, Variational methods, Very high resolution. Copyright :
@INPROCEEDINGS{Peng08c,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{An extended phase field higher-order active contour model for networks and its application to road network extraction from VHR satellite images}, |
year |
= |
{2008}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. European Conference on Computer Vision (ECCV)}, |
address |
= |
{Marseille, France}, |
pdf |
= |
{http://link.springer.com/chapter/10.1007%2F978-3-540-88690-7_38}, |
keyword |
= |
{Dense urban area, Phase Field, Road network, Variational methods, Very high resolution} |
} |
Abstract :
This paper addresses the segmentation from an image of entities that have the form of a 'network', i.e. the region in the image corresponding to the entity is composed of branches joining together at junctions, e.g. road or vascular networks. We present a new phase field higher-order active contour (HOAC) prior model for network regions, and apply it to the segmentation of road networks from very high resolution satellite images. This is a hard problem for two reasons. First, the images are complex, with much 'noise' in the road region due to cars, road markings, etc., while the background is very varied, containing many features that are locally similar to roads. Second, network regions are complex to model, because they may have arbitrary topology. In particular, we address a severe limitation of a previous model in which network branch width was constrained to be similar to maximum network branch radius of curvature, thereby providing a poor model of networks with straight narrow branches or highly curved, wide branches. To solve this problem, we propose a new HOAC prior energy term, and reformulate it as a nonlocal phase field energy. We analyse the stability of the new model, and find that in addition to solving the above problem by separating the interactions between points on the same and opposite sides of a network branch, the new model permits the modelling of two widths
simultaneously. The analysis also fixes some of the model parameters in terms of network width(s). After adding a likelihood energy, we use the model to extract the road network quasi-automatically from pieces of a QuickBird image, and compare the results to other models in the literature. The results demonstrate the superiority of the new model, the importance of strong prior knowledge in general, and of the new term in particular. |
|
2 - Extraction of main and secondary roads in VHR images using a higher-order phase field model. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. In Proc. XXI ISPRS Congress, Part A, pages 215-22, Beijing, China, July 2008. Keywords : Road network, Urban areas, Satellite images, Segmentation, Modelling, Variational methods. Copyright : ISPRS
@INPROCEEDINGS{Peng08a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Extraction of main and secondary roads in VHR images using a higher-order phase field model}, |
year |
= |
{2008}, |
month |
= |
{July}, |
booktitle |
= |
{Proc. XXI ISPRS Congress, Part A}, |
pages |
= |
{215-22}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/33.pdf}, |
keyword |
= |
{Road network, Urban areas, Satellite images, Segmentation, Modelling, Variational methods} |
} |
Abstract :
This paper addresses the issue of extracting main and secondary road networks in dense urban areas from very high resolution (VHR, ~0.61m) satellite images. The difficulty with secondary roads lies in the low discriminative power of the grey-level distributions of road regions and the background, and the greater effect of occlusions and other noise on narrower roads. To tackle this problem, we use a previously developed higher-order active contour (HOAC) phase field model and augment it with an additional non-linear nonlocal term. The additional term allows separate control of road width and road curvature; thus more precise prior knowledge can be incorporated, and better road prolongation can be achieved for the same width. Promising results on QuickBird panchromatic images at reduced resolutions and comparisons with other models demonstrate the role and the efficiency of our new model. |
|
top of the page
4 Technical and Research Reports |
1 - Classification d'Images Multibandes par Modèles Variationnels. C. Samson and L. Blanc-Féraud and G. Aubert and J. Zerubia. Research Report 4010, Inria, September 2000. Keywords : Variational methods, Classification, Active contour, Level sets, Gamma Convergence.
@TECHREPORT{cs99e,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Classification d'Images Multibandes par Modèles Variationnels}, |
year |
= |
{2000}, |
month |
= |
{September}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4010}, |
url |
= |
{https://hal.inria.fr/inria-00072633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72633/filename/RR-4010.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/26/33/PS/RR-4010.ps}, |
keyword |
= |
{Variational methods, Classification, Active contour, Level sets, Gamma Convergence} |
} |
Résumé :
Dans ce rapport, nous proposons deux modèles variationnels pour la classificat- ion d'images multibandes.
Le premier modèle présenté repose sur la minimisation d'une famille de critères dont la suite de solutions converge vers une partition des données composée de classes homogènes séparées par des contours réguliers.
Parallèlement à cette approche, nous avons développé un second modèle de classification mettant en jeu un ensemble de régions et contours actifs. Nous utilisons une approche par ensembles de niveaux pour définir le critère à minimiser. Le critère proposé contient des termes reliés à l'information sur les régions ainsi qu'à l'information sur les contours.
L'imagerie multispectrale permet de prendre en compte, et de combiner, l'information des différentes bandes spectrales renvoyée par un capteur satellitaire ou aérien. L'extension au cas multispectral intervient à des niveaux différents pour les deux modèles proposés dans ce rapport. Nous traitons une application réelle sur une scène SPOT en mode XS pour laquelle nous disposons d'une vérité terrain. Nous comparons les deux modèles variationnels que nous proposons à d'autres approches dont un modèle stochastique hiérarchique, récemment développé à l'IRISA au sein du projet VISTA. |
Abstract :
Herein, we propose two variational models for multiband image classification.
\The first model we propose herein is based on the minimization of a criterion family whose set of solutions is converging to a partition of the data set composed of homogeneous regions with regularized boundaries. The second model we propose is based on a set of active regions and contours. We use a level set formulation to define the criterion we want to minimize. Each class and its associated set of regions and boundaries is defined thanks to a level set function.
The extension of these two models to the multispectral case is presented in this report. The extension of the dynamic model is quite straightforward whereas the one of the first model is more tricky.
We have conducted experiments on SPOT XS data whose ground truth is given. We compare the results we obtain with other approaches, in particular we compare the proposed models to a stochastic hierarchical model recently developed within the VISTA group from IRISA. |
|
2 - Étude de la restitution des paramètres instrumentaux en imagerie satellitaire. A. Jalobeanu and L. Blanc-Féraud and J. Zerubia. Research Report 3957, Inria, June 2000. Keywords : Deconvolution, Markov Fields, Likelihood maximum, Variational methods.
@TECHREPORT{jalo00b,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Étude de la restitution des paramètres instrumentaux en imagerie satellitaire}, |
year |
= |
{2000}, |
month |
= |
{June}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3957}, |
url |
= |
{https://hal.inria.fr/inria-00072691}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72691/filename/RR-3957.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/26/91/PS/RR-3957.ps}, |
keyword |
= |
{Deconvolution, Markov Fields, Likelihood maximum, Variational methods} |
} |
Résumé :
Le but de cette étude est l'estimation des paramètres du bruit et de la fonction de flou en imagerie satellitaire. En effet, ces images sont dégradées par le système optique, et par un bruit additif lié au capteur. Les paramètres instrumentaux, connus lors du lancement du satellite, peuvent évoluer au cours du temps. Il est alors nécessaire de pouvoir les estimer à partir des images observées, afin de pouvoir corriger ces images, par déconvolution, dans les meilleures conditions. Le noyau de convolution est paramétré par une fonction traduisant la physique du système imageur étudié. Il s'agit d'estimer les paramètres du noyau, ainsi que la variance du bruit, qui est supposé blanc et gaussien. Pour la déconvolution à paramètre- s fixés, nous utilisons une approche variationnelle, qui consiste à minimiser une fonctionnelle traduisant l'attache aux données et la régularisation de l'image cherchée, interdisant l'amplification du bruit tout en préservant les contours. La méthode proposée repose essentiellement sur deux étapes. Le bruit est estimé en utilisant un filtre passe-bande au moyen d'une transformée en cosinus. Ensuite, l'estimation conjointe du paramètre de régularisation et des paramètres du noyau est effectuée par Maximum de Vraisemblance (MV), en utilisant une méthode de Monte Carlo par Chaînes de Markov (MCMC). Nous présentons également dans ce rapport un état de l'art des méthodes de déconvolution aveugle, ainsi qu'une étude sur l'estimati- on du noyau de convolution lorsqu'il n'est pas paramétré. |
Abstract :
The purpose of this study is the estimation of the parameters of the noise and the blur function in remote sensing. Indeed, satellite images are corrupted by the optical system and by an additive noise due to the sensor. The instrumental parameters, known at the lauch of the satellite, can evolve with time. Therefore, it is necessary to estimate them from the observed images, to enable the deconvolution of these images in the best conditions. The convolution kernel is parametrized by a function which describes the physics of the imaging system. We have to estimate the parameters of the kernel as well as the variance of the noise supposed to be white and Gaussian. For the deconvolution with fixed parameters, we use a variational approach which consists of minimizing a functional involving the data and the regularization of the solution, avoiding the amplification of the noise while preserving edges. The proposed method essentially consists of two steps. The noise is estimated using a bandpass filter using a Cosine transform. Then, the joint estimation of the regularizin- g parameter and the kernel parameters is achieved by computing the Maximum Likelihood (ML), using a Markov Chain Monte Carlo (MCMC) method. We also present in this report the state of the art of blind deconvolution methods and a study of the estimation of the convolution kernel when it is not parametrized. |
|
3 - Image Classification Using a Variational Approach. C. Samson and L. Blanc-Féraud and G. Aubert and J. Zerubia. Research Report 3523, Inria, October 1998. Keywords : Classification, Variational methods.
@TECHREPORT{samsonRR98,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Image Classification Using a Variational Approach}, |
year |
= |
{1998}, |
month |
= |
{October}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3523}, |
url |
= |
{https://hal.inria.fr/inria-00073161}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73161/filename/RR-3523.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/31/61/PS/RR-3523.ps}, |
keyword |
= |
{Classification, Variational methods} |
} |
Résumé :
Dans ce rapport nous présentons un modèle variationnel destiné à la classification d'images avec processus de régularisation préservant les contours. La notion de classification étant par nature discrète (i.e. attribuer un label à chaque pixel de l'image), il existe de nombreux modèles de classification par approche probabiliste, mais les modèles variationnels abordant ce sujet sont rares. Ces dernières années, l'approche variationnelle a montré sont efficacité dans le cadre de la restauration d'images avec prise en compte des discontinuités. Dans ce travail, nous ajoutons un processus de classification permettant d'obtenir une solution formée de régions homogènes dont les frontières sont régulières (une région étant définie par l'ensemble des pixels appartenant à la même classe). La justification théorique de notre modèle repose sur les travaux effectués dans le cadre des problèmes de transitions de phases en mécanique. L'algorithme que nous proposons est relativement rapide et facile à mettre en oeuvre. Nous comparons les résultats obtenus sur des images synthétiques et satellitaires avec ceux produits par un modèle stochastique avec régularisation de Potts. |
Abstract :
Herein, we present a variational model devoted to image classification coupled with an edge-preserving regularization process. The discrete nature of classification (i.e. to attribute a label to each pixel) has ledto the development of many probabilistic image classification models, but rarely to variational ones. In the last decade, the variational approach has proven its efficiency in the field of edge-preserving restoration. In this paper we add a classification capability which contributes to provide images compound of homogeneous regions with regularized boundaries, a region being defined as a set of pixels belonging to the same class. The soundness of our model is based on the works developed on the phase transitions theory in mechanics. The proposed algorithm is fast, easy to implement, and efficient. We compare our results on both synthetic and satellite images with the ones obtained by a stochastic model using a Potts regularization. |
|
4 - Estimation d'hyperparamètres pour la restauration d'images satellitaires par une méthode MCMCML. A. Jalobeanu and L. Blanc-Féraud and J. Zerubia. Research Report 3469, Inria, August 1998. Keywords : Markov Fields, Regularization, Variational methods, Likelihood maximum.
@TECHREPORT{jaloRR98,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Estimation d'hyperparamètres pour la restauration d'images satellitaires par une méthode MCMCML}, |
year |
= |
{1998}, |
month |
= |
{August}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3469}, |
url |
= |
{https://hal.inria.fr/inria-00073221}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73221/filename/RR-3469.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/32/21/PS/RR-3469.ps}, |
keyword |
= |
{Markov Fields, Regularization, Variational methods, Likelihood maximum} |
} |
Résumé :
Le problème que nous abordons ici est la déconvolution d'images satellitaires, qui sont dégradées par l'optique et l'électronique utilisées pour leur acquisition. Les dégradations sont connues : les images sont convoluées par un opérateur H, et la variance du bruit N additif, blanc et gaussien, est connue. Nous utilisons un modèle de régularisation introduisant une fonction de potentiel phi, qui interdit l'amplification du bruit lors de la restauration tout en préservant les discontinuités. Ce modèle admet deux hyperparamètres lambda et delta. Nous nous intéressons ici à l'estimation des hyperparamètres optimaux afin d'effectuer la déconvolution de manière automatique. Nous proposons pour cela d'utiliser l'estimateur du maximum de vraisemblance appliqué à l'image observée. Cet estimateur constitue le critère que nous allons optimiser. Pour évaluer ses dérivées, nous devons estimer des espérances calculées sur des échantillon- s, tenant compte des données observées et de l'a priori imposé. Cette probabilité faisant intervenir l'opérateur de convolution, il est très difficile d'utiliser un échantillonneur classique. Nous avons développé un algorithme de type Geman-Yang modifié, utilisant une variable auxiliaire, ainsi qu'une transformée en cosinus. Nous présentons à cette occasion un nouvel algorithme de déconvolution, rapide, qui est dérivé de cette méthode d'échantillonnage. Nous proposons un algorithme "MCMCML" permettant d'effectuer simultanément l'estimation des hyperparamètres lambda et delta et la restauration de l'image dégradée. Une étude des échantillonneurs (y compris ceux de Gibbs et Metropolis), portant sur la vitesse de convergence et les difficultés de calcul liées à l'attache aux données, a également été réalisée. |
Abstract :
This report deals with satellite image restoration. These images are corrupted by an optical blur and electronic noise, due to the physics of the sensors. The degradation model is known : blurring is modeled by convolution, with a linear operator H, and the noise is supposed to be additive, white and Gaussian, with a known variance. The recovery problem is ill-posed and therefore must be regularized. We use a regularization model which introduces a phi function, which avoids noise amplification while preserving image discontinuities (ie. edges) of the restored image. This model exhibits two hyperparameters (lambda and delta). Our goal is to estimate the optimal parameters in order to reconstruct images automatically. Herein, we propose to use the Maximum Likelihood estimator, applied to the observed image. To optimize this criterion, we must estimate expectations by sampling (samples are extracted from a Markov chain) to evaluate its derivatives. These samples are images whose probability takes into account the convolution operator. Thus, it is very difficult to obtain them directly by using a standard sampler. We have developped a modified Geman-Yang algorithm, using an auxiliary variable and a cosine transform. We also present a new reconstruc- tion method based on this sampling algorithm. We detail the MCMCML algorithm which ables to simultaneously estimate lambda and delta parameters, and to reconstruct the corrupted image. An experimental study of samplers (including Gibbs and Metropolis algorithms), with respect to the rate of convergence and the difficulties of dependent data sampling, is also presented in this report. |
|
top of the page
These pages were generated by
|