|
Publications about Classification
Result of the query in the list of publications :
12 Technical and Research Reports |
9 - Analyse de Texture Hyperspectrale par Modélisation Markovienne. G. Rellier and X. Descombes and F. Falzon and J. Zerubia. Research Report 4479, INRIA, France, June 2002. Keywords : Classification, Markov Fields, Texture, Hyperspectral imaging.
@TECHREPORT{4479,
|
author |
= |
{Rellier, G. and Descombes, X. and Falzon, F. and Zerubia, J.}, |
title |
= |
{Analyse de Texture Hyperspectrale par Modélisation Markovienne}, |
year |
= |
{2002}, |
month |
= |
{June}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4479}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072109}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72109/filename/RR-4479.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/21/09/PS/RR-4479.ps}, |
keyword |
= |
{Classification, Markov Fields, Texture, Hyperspectral imaging} |
} |
Résumé :
L'analyse de texture est l'objet de nombreuses recherches dans le domaine de l'imagerie mono et multispectrale. En parallèle, sont apparus ces dernières années de nouveaux instruments spectro-imageurs ayant un grand nombre de canaux (supérieur à 10), fournissant des images appelées hyperspectrales qui sont une représentation du paysage échantillonnée à la fois spatialement et spectralement. Le but de ce travail est de réaliser une analyse de texture qui se déroule conjointement dans ces deux espaces discrets. Pour ce faire, on utilise une modélisation probabiliste vectorielle de la texture via un champ de Markov gaussien. Les paramètres de ce champ permettent la caractérisation de différentes textures présentes dans les images hyperspec- trales. L'application visée dans cette étude étant la classification du tissu urbain, qui est mal caractérisée par la seule radiométrie, on utilise ces paramètres comme de nouvelles bandes afin d'effectuer la classification par le critère du Maximum de Vraisemblance. Les résultats sur des images AVIRIS montrent une nette amélioration de la classification due à l'utilisatio- n de l'information de texture. |
Abstract :
Texture analysis has been widely investigated in monospectral and multispectr- al imagery domain. In the same time, new image sensors with a large number of bands (more than 10) have been designed. They are able to provide images with both fine spectral and spatial sampling, called hyperspectral images. The aim of this work is to perform a joint texture analysis in both discrete spaces. To achieve this goal, we have a probabilistic vectorial texture modeling, with Gauss-Markov Random Field. The MRF parameters allow for the characterisation of different hyperspectral textures. A likely application of this work being the classification of urban areas, which are not well characterized by radiometry alone, we use these parameters as new features is a Maximum Likelihood classification algorithm. The results obtain on AVIRIS hyperspectral images show better classifications when using texture information. |
|
10 - La poursuite de projection pour la classification d'image hyperspectrale texturée. G. Rellier and X. Descombes and F. Falzon and J. Zerubia. Research Report 4152, Inria, France, March 2001. Keywords : Classification, Texture, Hyperspectral imaging, Markov Fields.
@TECHREPORT{xd01,
|
author |
= |
{Rellier, G. and Descombes, X. and Falzon, F. and Zerubia, J.}, |
title |
= |
{La poursuite de projection pour la classification d'image hyperspectrale texturée}, |
year |
= |
{2001}, |
month |
= |
{March}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4152}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072472}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72472/filename/RR-4152.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/24/72/PS/RR-4152.ps}, |
keyword |
= |
{Classification, Texture, Hyperspectral imaging, Markov Fields} |
} |
Résumé :
Dans ce travail, nous considérons le problème de la classification supervisée de texture à partir d'images multi-composante de télédetection, dites hyperspectrales. Ces images, le plus souvent acquises par des instruments spectro-imageurs dont le nombre de canaux est en général supérieur à 10, fournissent ainsi une représentation du paysage échantillonnée à la fois spatialement et spectralement. Le but de ce travail est de réaliser une analyse de texture qui se déroule conjointement dans ces deux espaces discrets. On recherche ainsi à enrichir la représentation "habituelle" de texture fondée sur la prise en compte des variations locales de contraste, par l'adjonction d'une connaissance sur ses variations spectrales. L'applicati- on qui est susceptible de bénéficier directement des résultats de cette étude est la classification du tissu urbain. En effet, la réponse spectrale (radiométrique) des zones urbaines est en général ambiguë du fait de la similitude de réponse spectrale de certains matériaux constitutifs du paysage urbain avec certains éléments naturels tels que l'eau, le sol nu, la végétation. La multiplication des bandes spectrales a pour conséquence de rendre plus complexes les mesures et demande également la prise en considération d'un nombre d'échantillons d'apprentissage très important. Quand le nombre de ces échantillons n'est pas suffisant, il faut passer par une étape de réduction de la dimension de l'espace d'observation. Pour prendre en compte le problème de la dimension et celui de l'analyse de texture conjointement dans le domaine spatial et spectral, on se propose ici de faire coopérer un algorithme de poursuite de projection paramétrique, déjà utilisé pour la réduction d'espace dans un cadre non-contextuel, à un modèle de texture par champ markovien, dit modèle markovien gaussien. |
Abstract :
In this work we develop a supervised texture classification algorithm for application to the class of multi-component images called hyperspectral. These images, usually recorded by spectrometers with a number of bands greater than 10, give both a spatially and spectrally sampled representation of a remote scene. The aim of this work is to perform a joint texture analysis in both discrete spaces. The use of spectral variations in this joint texture analysis scheme enables us to improve on the standard representa- tion of textures which only takes into account the local contrast variations. A likely application of this work is urban area classification. Indeed, the spectral response of urban areas is in general ambiguous because some of its constitutive elements have the same reflectance as natural elements such as water, vegetation or bare soil. The greater number of spectral bands makes the measures more complex and so creates the need for a greater number of training samples. When the number of training samples is not sufficient, a necessary step in the analysis is to reduce the dimension of the observation space. To take into account both the problem of dimensional- ity and the jointly spectral and spatial texture analysis, we propose to use in cooperation a projection pursuit algorithm and a Gauss-Markov random field texture model. |
|
11 - Classification d'Images Multibandes par Modèles Variationnels. C. Samson and L. Blanc-Féraud and G. Aubert and J. Zerubia. Research Report 4010, Inria, September 2000. Keywords : Variational methods, Classification, Active contour, Level sets, Gamma Convergence.
@TECHREPORT{cs99e,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Classification d'Images Multibandes par Modèles Variationnels}, |
year |
= |
{2000}, |
month |
= |
{September}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4010}, |
url |
= |
{https://hal.inria.fr/inria-00072633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72633/filename/RR-4010.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/26/33/PS/RR-4010.ps}, |
keyword |
= |
{Variational methods, Classification, Active contour, Level sets, Gamma Convergence} |
} |
Résumé :
Dans ce rapport, nous proposons deux modèles variationnels pour la classificat- ion d'images multibandes.
Le premier modèle présenté repose sur la minimisation d'une famille de critères dont la suite de solutions converge vers une partition des données composée de classes homogènes séparées par des contours réguliers.
Parallèlement à cette approche, nous avons développé un second modèle de classification mettant en jeu un ensemble de régions et contours actifs. Nous utilisons une approche par ensembles de niveaux pour définir le critère à minimiser. Le critère proposé contient des termes reliés à l'information sur les régions ainsi qu'à l'information sur les contours.
L'imagerie multispectrale permet de prendre en compte, et de combiner, l'information des différentes bandes spectrales renvoyée par un capteur satellitaire ou aérien. L'extension au cas multispectral intervient à des niveaux différents pour les deux modèles proposés dans ce rapport. Nous traitons une application réelle sur une scène SPOT en mode XS pour laquelle nous disposons d'une vérité terrain. Nous comparons les deux modèles variationnels que nous proposons à d'autres approches dont un modèle stochastique hiérarchique, récemment développé à l'IRISA au sein du projet VISTA. |
Abstract :
Herein, we propose two variational models for multiband image classification.
\The first model we propose herein is based on the minimization of a criterion family whose set of solutions is converging to a partition of the data set composed of homogeneous regions with regularized boundaries. The second model we propose is based on a set of active regions and contours. We use a level set formulation to define the criterion we want to minimize. Each class and its associated set of regions and boundaries is defined thanks to a level set function.
The extension of these two models to the multispectral case is presented in this report. The extension of the dynamic model is quite straightforward whereas the one of the first model is more tricky.
We have conducted experiments on SPOT XS data whose ground truth is given. We compare the results we obtain with other approaches, in particular we compare the proposed models to a stochastic hierarchical model recently developed within the VISTA group from IRISA. |
|
12 - Image Classification Using a Variational Approach. C. Samson and L. Blanc-Féraud and G. Aubert and J. Zerubia. Research Report 3523, Inria, October 1998. Keywords : Classification, Variational methods.
@TECHREPORT{samsonRR98,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Image Classification Using a Variational Approach}, |
year |
= |
{1998}, |
month |
= |
{October}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3523}, |
url |
= |
{https://hal.inria.fr/inria-00073161}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73161/filename/RR-3523.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/31/61/PS/RR-3523.ps}, |
keyword |
= |
{Classification, Variational methods} |
} |
Résumé :
Dans ce rapport nous présentons un modèle variationnel destiné à la classification d'images avec processus de régularisation préservant les contours. La notion de classification étant par nature discrète (i.e. attribuer un label à chaque pixel de l'image), il existe de nombreux modèles de classification par approche probabiliste, mais les modèles variationnels abordant ce sujet sont rares. Ces dernières années, l'approche variationnelle a montré sont efficacité dans le cadre de la restauration d'images avec prise en compte des discontinuités. Dans ce travail, nous ajoutons un processus de classification permettant d'obtenir une solution formée de régions homogènes dont les frontières sont régulières (une région étant définie par l'ensemble des pixels appartenant à la même classe). La justification théorique de notre modèle repose sur les travaux effectués dans le cadre des problèmes de transitions de phases en mécanique. L'algorithme que nous proposons est relativement rapide et facile à mettre en oeuvre. Nous comparons les résultats obtenus sur des images synthétiques et satellitaires avec ceux produits par un modèle stochastique avec régularisation de Potts. |
Abstract :
Herein, we present a variational model devoted to image classification coupled with an edge-preserving regularization process. The discrete nature of classification (i.e. to attribute a label to each pixel) has ledto the development of many probabilistic image classification models, but rarely to variational ones. In the last decade, the variational approach has proven its efficiency in the field of edge-preserving restoration. In this paper we add a classification capability which contributes to provide images compound of homogeneous regions with regularized boundaries, a region being defined as a set of pixels belonging to the same class. The soundness of our model is based on the works developed on the phase transitions theory in mechanics. The proposed algorithm is fast, easy to implement, and efficient. We compare our results on both synthetic and satellite images with the ones obtained by a stochastic model using a Potts regularization. |
|
top of the page
These pages were generated by
|