|
Publications about Marked point process
Result of the query in the list of publications :
15 Technical and Research Reports |
6 - A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models.. M. Ortner and X. Descombes and J. Zerubia. Research Report 5712, INRIA, France, October 2005. Keywords : Marked point process, Buildings, RJMCMC.
@TECHREPORT{ortner-RR05,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models.}, |
year |
= |
{2005}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5712}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070305}, |
keyword |
= |
{Marked point process, Buildings, RJMCMC} |
} |
Résumé :
Ce travail présente une approche par géométrie stochastique pour l'extraction de primitives dans les images. Ces structures sont modélisées sous forme de réalisations d'un processus ponctuel spatial marqué dont les points sont des formes géométriques. Cette approche permet d'incorporer un modèle a priori sur la répartition spatiale des structures d'intérêt. Plus spécifiquement, nous présentons un modèle fondé sur l'interaction d'un processus de rectangles avec un processus de segments. Le premier est dédié à la détection des zones homogènes dans l'image et le second à la détection des discontinuités significatives. Nous définissons l'énergie d'une configuration de façon à favoriser la connection entre les segments, l'alignement des rectangles et l'adéquation entre les deux types de primitives. L'estimation repose sur l'emploi d'une technique de recuit-simulé. Le modèle proposé est appliqué à l'analyse de Modèles Numériques d'Elevation. Nous présentons des résultats sur des données réelles fournies par l'Institut Géographique National (IGN). Nous montrons en particulier que l'approche est efficace sur des données de types très différents. |
Abstract :
A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models.
This work presents a framework for automatic feature extraction from images using stochastic geometry. Features in images are modeled as realizations of a spatial point process of geometrical shapes. This framework allows the incorporation of a prior knowledge on the spatial repartition of features. More specifically, we present a model based on the superposition of a process of segments and a process of rectangles. The former is dedicated to the detection of linear networks of discontinuities, while the latter aims at segmenting homogeneous areas. An energy is defined, favoring connections of segments, alignments of rectangles, as well as a relevant interaction between both types of objects. The estimation is performed by minimizing the energy using a simulated annealing algorithm. The proposed model is applied to the analysis of Digital Elevation Models (DEMs). These images are raster data representing the altimetry of a dense urban area. We present results on real data provided by the IGN (French National Geographic Institute) consisting in low quality DEMs of various types. |
|
7 - Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry. G. Perrin and X. Descombes and J. Zerubia. Research Report 5704, INRIA, France, September 2005. Keywords : Simulated Annealing, Marked point process, Stochastic geometry, Optimization.
@TECHREPORT{rr_perrin_optim_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry}, |
year |
= |
{2005}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070312}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70312/filename/RR-5704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/12/PS/RR-5704.ps}, |
keyword |
= |
{Simulated Annealing, Marked point process, Stochastic geometry, Optimization} |
} |
Résumé :
Dans ce rapport de recherche, nous utilisons les processus ponctuels marqués afin d'extraire un nombre inconnu d'objets dans des images aériennes. Ces processus sont définis par une énergie, qui contient un terme a priori formalisant les interactions entre objets ainsi qu'un terme d'attache aux données. Nous cherchons à minimiser cette énergie, afin d'obtenir la meilleure configuration d'objets, à l'aide d'un recuit simulé qui s'inscrit dans l'algorithme d'échantillonnage MCMC à sauts réversibles.
Nous comparons ici différents schémas de décroissance de température, et présentons certaines méthodes qui permettent d'améliorer la convergence de l'algorithme en un temps fini. |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This approach turns to be an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects onto the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare in this paper different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
8 - Point Processes in Forestry : an Application to Tree Crown Detection. G. Perrin and X. Descombes and J. Zerubia. Research Report 5544, INRIA, France, April 2005. Keywords : Marked point process, Object extraction, RJMCMC, Tree Crown Extraction, Stochastic geometry.
@TECHREPORT{5544,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Point Processes in Forestry : an Application to Tree Crown Detection}, |
year |
= |
{2005}, |
month |
= |
{April}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5544}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070463}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70463/filename/RR-5544.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/04/63/PS/RR-5544.ps}, |
keyword |
= |
{Marked point process, Object extraction, RJMCMC, Tree Crown Extraction, Stochastic geometry} |
} |
Résumé :
Dans ce rapport de recherche, notre but est d'extraire des houppiers à partir d'images aériennes de forêts à l'aide de processus ponctuels marqués de disques et d'ellipses. Notre approche consiste, en effet, à modéliser les données comme des réalisations de tels processus. Une fois l'objet géométrique de référence choisi, nous échantillonnons le processus objet défini par une densité grâce à un algorithme MCMC à sauts réversibles, optimisé par un recuit simulé afin d'extraire le maximum a posteriori de cette densité. Cette configuration optimale nous donnera l'extraction recherchée.
Dans une première partie, nous proposons de revenir quelque peu sur les processus ponctuels marqués et leur application dans la foresterie. Puis, nous présentons deux nouveaux modèles d'extraction de houppiers à base de disques et d'ellipses, et discutons de quelques améliorations au niveau de la simulation et de l'optimisation de notre algorithme.
Nous présentons des résultats obtenus sur des images aériennes très haute résolution fournies par l'Inventaire Forestier National (IFN), ainsi que sur des images synthétiques simulées avec le logiciel AMAP (Bionatics, projet Digiplante). |
Abstract :
In this research report, we aim at extracting tree crowns from remotely sensed images using marked point processes of discs and ellipses. Our approach is indeed to consider that the data are some realizations of a marked point process. Once a geometrical object is defined, we sample a marked point process defined by a density with a Reversible Jump Markov Chain Monte Carlo dynamics and simulated annealing to get the maximum a posteriori estimator of the tree crown distribution on the image.
In a first part, we propose to review the basis of marked point processes and some of their examples used in forestry statistic inference. Then, we present two new models, with discs and ellipses, and discuss some improvements made in the optimization or in the simulation.
Results are shown on high resolution aerial images of poplars provided by the French Forest Inventory (IFN), and synthetic images simulated with AMAP software (Bionatics, Digiplante project). |
|
9 - Extraction de Houppiers par Processus Objet. G. Perrin and X. Descombes and J. Zerubia. Research Report 5037, INRIA, France, December 2003. Keywords : Object extraction, Tree Crown Extraction, Stochastic geometry, Marked point process, RJMCMC.
@TECHREPORT{Perrin03,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction de Houppiers par Processus Objet}, |
year |
= |
{2003}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5037}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071547}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71547/filename/RR-5037.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/47/PS/RR-5037.ps}, |
keyword |
= |
{Object extraction, Tree Crown Extraction, Stochastic geometry, Marked point process, RJMCMC} |
} |
Résumé :
Nous cherchons à extraire des houppiers à partir d'images de télédétection. Pour ce faire, nous construisons un processus objet et assimilons nos images d'arbres à des réalisations de ce processus. La première étape consiste à définir d'une part les objets géométriques modélisant les arbres, et d'autre part la densité du processus à simuler.La seconde étape consiste à construire un algorithme MCMC à sauts réversibles, et une estimée de la configuration d'objets. Les transitions aléatoires de la chaîne sont régies par des noyaux de propositions, chacun étant associé à une perturbation.Nous testons notre modèle sur des images aériennes de peupleraies fournies par l'IFN. |
Abstract :
In this paper we aim at extracting tree crowns from remotely sensed images. Our approach is to consider that these images are some realizations of a marked point process. The first step is to define the geometrical objects that design the trees, and the density of the process.Then, we use a reversible jump MCMC dynamics and a simulated annealing to get the maximum a posteriori estimator of the tree crowns distribution on the image. Transitions of the Markov chain are managed by some specific proposition kernels.Results are shown on aerial images of poplars given by IFN. |
|
10 - Automatic 3D Land Register Extraction from Altimetric Data in Dense Urban Areas. M. Ortner and X. Descombes and J. Zerubia. Research Report 4919, INRIA, France, September 2003. Keywords : Object extraction, Buildings, RJMCMC, Stochastic geometry, Digital Elevation Model (DEM), Marked point process.
@TECHREPORT{4919,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Automatic 3D Land Register Extraction from Altimetric Data in Dense Urban Areas}, |
year |
= |
{2003}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4919}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071660}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71660/filename/RR-4919.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/16/60/PS/RR-4919.ps}, |
keyword |
= |
{Object extraction, Buildings, RJMCMC, Stochastic geometry, Digital Elevation Model (DEM), Marked point process} |
} |
Résumé :
Ce travail présente un algorithme qui extrait automatiquement un plan cadastral de la description altimétrique (relief) d'une zone urbaine dense. L'altimétrie d'une ville est une donnée qui est maintenant facilement accessible. Dans ce rapport, nous présentons par exemple des résultats sur deux types de données altimétriques : le premier consiste en un Modèle Numérique d'Elévation (MNE) obtenu par corrélation d'images optiques, le second correspond à un MNE obtenu par mesure LASER.Notre objectif principal est de définir un algorithme entièrement automatique capable d'extraire un grand nombre de bâtiments dans des zones urbaines denses.Nous nous intéressons donc plus particulièrement à l'extraction de formes élémentaires et proposons un algorithme qui modélise les bâtiments par des formes rectangulaires. Le résultat obtenu consiste en une carte cadastrale qui peut être utilisée pour faire une estimation précise des formes de toits, par exemple.L'algorithme proposé ici repose sur nos travaux précédents. Nous modélisons des villes par des configurations de rectangles auxquelles nous associons une énergie définie de manière à tenir compte aussi bien d'une information de bas niveau provenant des données utilisées que d'une connaissance géometrique de l'agencement des bâtiments dans les zones urbaines.L'estimation est ensuite faite en minimisant l'énergie définie grace à un recuit-simulé.Nous utilisons un échantilloneur MCMC qui est une combinaison de techniques générales de type Metropolis Hastings Green et de l'algorithme de simulation de processus ponctuel proposé par Geyer et Møller. Nous utilisons en particulier des noyaux de proposition originaux comme la naissance ou mort dans un voisinage, et nous définissons l'énergie par rapport à un processus ponctuel de Poisson non-homogène, ce qui permet d'améliorer le comportement dynamique de l'algorithme.Les resultats que nous présentons sont obtenus sur des donnée réelles fournies par l'IGN. Nous extrayons automatiquement des configurations composées d'une centaine de bâtiments sur des zones dont la taille est en moyenne de 200m sur 200m. L'erreur commise est en moyenne de 15. |
Abstract :
This work present an automatic algorithm that extract 3D land register from altimetric data in dense urban areas. Altimetry of a town is a data which is easily available yet difficult to exploit. For instance, we present here results on two kind of measurements : the first one consists in a Digital Elevation Model (DEM) built using a correlation algorithm and some optical data, while the second one consists in a DEM obtained by Laser measurments.Our main objective is to design an entirely automatic method that is able to deal with this kind of data in very dense urban areas.We thus focus on elementary shape extraction and propose an algorithm that extracts rectangular buildings. The result provided consists in a kind of vectorial land register map that can be used, for instance, to perform precise roof shape estimation.The proposed algorithm uses our previous work. Using a point process framework, we model towns as configuration of rectangles. An energy is defined, that takes into account both a low level information provided by the altimetry of the scene, and some geometric knowledge of the disposition of buildings in towns.The estimation is done by minimizing the energy using a simulated annealing. We use a MCMC sampler that is a combination of general Metropolis Hastings Green techniques and Geyer and Møller algorithm of sampling of point processes. We use some original proposition kernels, such as birth or death in a neighborhood and define the energy with respect to an inhomogeneous Poisson point process.We present results on real data provided by IGN (French Mapping Institute). Results were automatically obtained, on areas that are 200m by 200m large. These results consist in configurations of around 100 rectangles describing considered areas with an error of 15 missclassification. |
|
11 - Improved RJMCMC Point Process Sampler for Object Detection by Simulated Annealing. M. Ortner and X. Descombes and J. Zerubia. Research Report 4900, INRIA, France, August 2003. Keywords : Buildings, Object extraction, RJMCMC, Marked point process.
@TECHREPORT{4900,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Improved RJMCMC Point Process Sampler for Object Detection by Simulated Annealing}, |
year |
= |
{2003}, |
month |
= |
{August}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4900}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071683}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71683/filename/RR-4900.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/16/83/PS/RR-4900.ps}, |
keyword |
= |
{Buildings, Object extraction, RJMCMC, Marked point process} |
} |
Résumé :
Nous commen ons par résumer l'algorithme de Geyer et Møller qui permet, en utilisant une chaîne de Markov, d'échantillonner des lois de processus ponctuels. Nous rappelons également le cadre théorique proposé par Green qui permet d'imposer la réversibilité d'une chaîne de Markov sous une loi désirée.Dans le cadre de nos applications en traitement d'image, nous sommes intéressés par la simulation de processus ponctuels dont la loi dépend fortement de la localisation géographique des points. Nous présentons donc ici des noyaux de proposition qui améliorent la capacité de l'algorithme de Geyer et Meyer à explorer les bons endroits de l'espace d'état. En particulier, nous proposons une transformation qui permet de faire apparaître ou disparaître des points dans un voisinage quelconque d'un autre point. Nous gardons également la possibilité de générer des points suivant une loi non uniforme.Nous construisons donc de tels noyaux de perturbations grâce au travail de Green de manière à garder la-(.) réversibilité de la chaîne de Markov construite. Nous démontrons ensuite les bonnes propriétés de stabilité qui assurent le bon comportement asymptotique de la chaîne. En particulier, grâce à une condition de «drift», nous montrons l'ergodicité géométrique et la récurrence de la chaîne au sens de Harris.Nous concluons en validant par l'expérience nos résultats théoriques, et en montrons leur utilité sur un exemple concret.Nous proposons d'ultimes améliorations pour conclure. |
Abstract :
We first recall Geyer and Møller algorithm that allows to sample point processes using a Markov chain. We also recall Green's framework that allows to build samplers on general state spaces by imposing reversibility of the designed Markov chain.Since in our image processing applications, we are interested by sampling highly spatially correlated and non-invariant point processes, we adapt these ideas to improve the exploration ability of the algorithm. In particular, we keep the ability of generating points with non-uniform distributions, and design an updating scheme that allows to generate points in some neighborhood of other points. We first design updating schemes under Green's framework to keep (.) reversibility of the Markov chain and then show that stability properties are not loosed. Using a drift condition we prove that the Markov chain is geometrically ergodic and Harris recurrent.We finally show on experimental results that these kinds of updates are usefull and propose other improvements. |
|
12 - A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing. C. Lacoste and X. Descombes and J. Zerubia. Research Report 4516, Inria, France, July 2002. Keywords : Stochastic geometry, Marked point process, Road network, Line networks, RJMCMC.
@TECHREPORT{4516,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing}, |
year |
= |
{2002}, |
month |
= |
{July}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4516}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00072072}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/20/72/PDF/RR-4516.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/20/72/PS/RR-4516.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Road network, Line networks, RJMCMC} |
} |
Résumé :
Nous présentons, dans ce rapport, une étude comparative entre plusieurs modèles d'extraction de réseaux linéiques, issus de la géométrie stochastique. Nous nous pla ons dans le cadre des processus ponctuels marqués spécifiés par une densité par rapport au processus de Poisson homogène. L'objectif de cette étude est de déterminer quelle type de densité a priori est la plus adaptée à cette probématique de détection de réseaux linéiques, et plus particulièrement de réseaux routiers. Nous reprenons le Candy modèle, introduit dans [21] pour l'extraction de réseaux routiers, et nous l'utilisons comme modèle de référence. Ce modèle est basé sur l'idée qu'un réseau routier peut être assimilé à une réalisation d'un processus Markov objet, où les objets correspondent à des segments en interaction. Nous proposons deux variantes de ce modèle qui font intervenir des coefficients mesurant la qualité des interactions entre objets. La première est une généralisation du Candy modèle et la seconde correspond à une adaptation du modèle IDQ, proposé dans [13] pour l'extraction de bâtiments dans les modèles numériques d'élévation. Nous réalisons l'optimisation de chaque modèle par un recuit simulé sur un algorithme MCMC à sauts réversibles. Les résultats expérimentaux obtenus pour les trois modèles, sur des images satellitaires ou aériennes, permettent de vérifier l'intérêt de l'intégration de la qualité des interactions dans la densité a priori. |
Abstract :
We present in this report a comparative study between models of line network extraction, within a stochastic geometry framework. We rely on the theory of marked point processes specified by a density with respect to the uniform Poisson process. We aim to determine which prior density is the most relevant for road network detection. The Candy model, introduced in [21] for the extraction of road networks, is used as a reference model. This model is based on the idea that a road network can be thought of as a realization of a Markov object process, where the objects correspond to interacting line segments. We have developed two variants of this model which use quality coefficients for interactions. The first of these two variants is a generalization of the Candy model and the second one is an adaptation of the IDQ model proposed in [13] for the problem of building extraction from digital elevation models. The optimization is achieved by a simulated annealing with a RJMCMC algorithm. The experimental results, obtained for each model on aerial or satellite images, show the interest of adding quality coefficients for interactions in the prior density. |
|
13 - Building detection by markov object processes and a MCMC algorithm. L. Garcin and X. Descombes and J. Zerubia and H. Le Men. Research Report 4206, Inria, France, June 2001. Keywords : Stochastic geometry, Marked point process, Buildings, RJMCMC.
@TECHREPORT{xd01a,
|
author |
= |
{Garcin, L. and Descombes, X. and Zerubia, J. and Le Men, H.}, |
title |
= |
{Building detection by markov object processes and a MCMC algorithm}, |
year |
= |
{2001}, |
month |
= |
{June}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4206}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072416}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72416/filename/RR-4206.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/24/16/PS/RR-4206.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Buildings, RJMCMC} |
} |
Résumé :
Le but de ce travail est de détecter les bâtiments à partir de photographies aeriennes numériques. Nous modélisons un ensemble de bâtiments par une configuration d'objets. Nous définissons un processus ponctuel sur l'ensemble des configurations qui se décompose en deux parties :
* La première est un modèle a priori sur les configurations qui considère des interactions entre les objets,
* la seconde est un modèle d'attache aux données qui induit la cohérence du résultat avec l'image traitée.
Nous avons ainsi une distribution a posteriori dont nous recherchons la configuration maximale. Pour obtenir ce maximum, nous utilisons une simulatio- n de type MCMC - un algorithme de Metropolis-Hasting-Green- couplée avec un schéma de recuit simulé. Nous testons la méthode décrite à la fois sur des données synthétiques et des images stéréoscopiques réelles. |
Abstract :
This work aims at detecting buildings in digital aerial photographs. Here we model a set of buildings by a configuration of objects. We define a point process on the set of configurations, which splits into two parts :
* the first one is a prior model on the configurations which use interactions between objects,
* the second one is a data model which enforces the coherence with the image.
Thus we have a posterior distribution whose maximum has to be found. In order to achieve this maximum, we use a MCMC simulation - a Metropolis-Hasting- s-Green algorithm - mixed with a simulated annealing. Then we test this method on both synthetic and real stereo-images. |
|
14 - Simulation de processus objets : Etude de faisabilité pour une application à la segmentation d'image. M. Imberty and X. Descombes. Research Report 3881, Inria, February 2000. Keywords : Marked point process, Stochastic geometry, Segmentation.
@TECHREPORT{xd00im,
|
author |
= |
{Imberty, M. and Descombes, X.}, |
title |
= |
{Simulation de processus objets : Etude de faisabilité pour une application à la segmentation d'image}, |
year |
= |
{2000}, |
month |
= |
{February}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3881}, |
url |
= |
{https://hal.inria.fr/inria-00072772}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72772/filename/RR-3881.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/72/PS/RR-3881.ps}, |
keyword |
= |
{Marked point process, Stochastic geometry, Segmentation} |
} |
Résumé :
Dans cette étude, nous comparons l'efficacité de deux techniques de simulation par chaînes de Markov (MCMC) de processus aléatoires sur des ensembles d'objets géométriques : l'algorithme de naissance-mort et celui de Metropolis-- Hastings-Green. Les comparaisons sont effectuées sur différents modèles de processus objets de type attractif présentant un intérêt en traitement d'image. Nous appliquons ensuite ces méthodes de simulation à la segmentation d'image. Pour cela, nous nous plaçons dans le cadre bayésien : nous définisson- s donc un modèle a priori attractif simple sur des objets rectangulaires, ainsi qu'un terme d'attache aux données garantissant l'adéquation des objets à l'image. Nous utilisons ensuite un recuit simulé pour extraire les différentes zones de l'image. Des tests sont effectués sur des images synthétiques. |
Abstract :
In this study, we compare the efficiency of two algorithms using Monte Carlo Markov chains methods in order to simulate random processes of geometric- al objects sets : the algorithm of birth and death and the dynamics of Metropolis-Hastings-Green. The comparisons are carried out on various object models for clustered patterns, which could be of interest in image processing. Then we apply these methods of simulation to image segmentation, using the bayesian approach : thus we define a simple prior model on rectangul- ar objects, as well as a posterior probability guaranteeing the adequacy of the objects to the data. We finally use a stochastic annealing to extract the various zones of the image. Some tests are performed on synthetic data. |
|
15 - A Markov point process for road extraction in remote sensed images. R. Stoica and X. Descombes and J. Zerubia. Research Report 3923, Inria, 2000. Keywords : Stochastic geometry, Marked point process, Candy model, Road network, RJMCMC.
@TECHREPORT{rs00,
|
author |
= |
{Stoica, R. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Markov point process for road extraction in remote sensed images}, |
year |
= |
{2000}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3923}, |
url |
= |
{https://hal.inria.fr/inria-00072729}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72729/filename/RR-3923.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/29/PS/RR-3923.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Candy model, Road network, RJMCMC} |
} |
Résumé :
Nous proposons une nouvelle méthode pour extraire les routes dans les images satellitales et aériennes. Notre approche est basée sur la géométrie stochastique et les dynamiques MCMC à saut réversible. Nous considérons que le réseau routier est un réseau fin, et que ce réseau peut être approximé par des segments connectés. Nous construisons un processus ponctuel marqué qui peut simuler et détecter des réseaux fins. La densité de probabilité de ce processus comporte deux termes : le terme d'attache aux données et le terme a priori. Pour former un réseau, les segments doivent être connectés. Nous souhaitons que les segments soient bien alignés et qu'ils ne se superposent pas. Toutes ces contraintes sont prises en compte par le modèle a priori (Candy modèle). L'emplacement du réseau est donné par le terme d'attache aux données. Ce terme est construit à partir des tests d'hypothèses. Notre modèle probabiliste permet de construire le MAP de l'estimateur du réseau linéique. Pour éviter les minima locaux, nous utilisons un algorithme de type recuit simulé, construit sur une dynamique MCMC à sauts réversibles. Nous montrons des résultats sur des images SPOT, ERS et aériennes. |
Abstract :
In this paper we propose a new method to extract roads in remote sensed images. Our approach is based on stochastic geometry theory and reversible jump Monte Carlo Markov Chains dynamic. We consider that roads consist of a thin network in the image. We make the hypothesis that such a network can be approximated by a network composed of connected line segments. We build a marked point process, which is able to simulate and detect thin networks. The segments have to be connected, in order to form a line-netw- ork. Aligned segments are favored whereas superposition is penalized. Those constraints are taken in account by the prior model (Candy model), which is an area-interaction point process.The location of the network and the specifities of a road network in the image are given by the likelihood term. This term is based on statistical hypothesis tests. The proposed probabilistic model yelds a MAP estimator of the road network. In order to avoid local minima, a simulated annealing algorithm, using a reversible jump MCMC dynamic is designed. Results are shown on SPOT, ERS and aerial images. |
|
top of the page
These pages were generated by
|