|
Publications about Shape
Result of the query in the list of publications :
3 Technical and Research Reports |
1 - A higher-order active contour model of a `gas of circles' and its application to tree crown extraction. P. Horvath and I. H. Jermyn and Z. Kato and J. Zerubia. Research Report 6026, INRIA, France, November 2006. Keywords : Tree Crown Extraction, Aerial images, Higher-order, Active contour, Gas of circles, Shape.
@TECHREPORT{Horvath05,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A higher-order active contour model of a `gas of circles' and its application to tree crown extraction}, |
year |
= |
{2006}, |
month |
= |
{November}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6026}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00115631}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Horvath05.pdf}, |
keyword |
= |
{Tree Crown Extraction, Aerial images, Higher-order, Active contour, Gas of circles, Shape} |
} |
Abstract :
Many image processing problems involve identifying the region in the image domain occupied by a given entity in the scene. Automatic solution of these problems requires models that incorporate significant prior knowledge about the shape of the region. Many methods for including such knowledge run into difficulties when the topology of the region is unknown a priori, for example when the entity is composed of an unknown number of similar objects. Higher-order active contours (HOACs) represent one method for the modelling of non-trivial prior knowledge about shape without necessarily constraining region topology, via the inclusion of non-local interactions between region boundary points in the energy defining the model. The case of an unknown number of circular objects arises in a number of domains, \eg medical, biological, nanotechnological, and remote sensing imagery. Regions composed of an a priori unknown number of circles may be referred to as a `gas of circles'. In this report, we present a HOAC model of a `gas of circles'. In order to guarantee stable circles, we conduct a stability analysis via a functional Taylor expansion of the HOAC energy around a circular shape. This analysis fixes one of the model parameters in terms of the others and constrains the rest. In conjunction with a suitable likelihood energy, we apply the model to the extraction of tree crowns from aerial imagery, and show that the new model outperforms other techniques. |
|
2 - Higher-Order Active Contour Energies for Gap Closure. M. Rochery and I. H. Jermyn and J. Zerubia. Research Report 5717, INRIA, France, October 2005. Keywords : Road network, Continuity, Gap closure, Higher-order, Active contour, Shape.
@TECHREPORT{RR_5717,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2005}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5717}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070300/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70300/filename/RR-5717.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/00/PS/RR-5717.ps}, |
keyword |
= |
{Road network, Continuity, Gap closure, Higher-order, Active contour, Shape} |
} |
Résumé :
L'un des principaux problèmes lors de l'extraction de réseaux
linéiques dans des images, et en particulier l'extraction de réseaux
routiers dans des images de télédétection, est l'existence d'interruptions
dans les données, causées, par exemple, par des occultations. Ces
interruptions peuvent mener à des trous dans le réseau extrait qui
n'existent pas dans le réseau réel. Dans ce rapport, nous décrivons une
énergie de contour actif d'ordre supérieur qui, en plus de favoriser les
régions composées de bras fins et connectés entre eux, inclut un terme d'a
priori qui pénalise les configurations du réseau où des extremités proches
et se faisant face apparaissent. L'apparition dans le réseau extrait de ces
configurations est donc moins probable. Si des extremités proches et se
faisant face apparaissent pendant l'évolution par descente de gradient
utilisée pour minimiser l'énergie, le nouveau terme dans l'énergie crée une
attraction entre ces extremités, qui se rapprochent donc l'une de l'autre
et se rejoignent, fermant ainsi le trou entre elles. Pour minimiser
l'énergie, nous développons des techniques spécifiques pour traiter les
derivées d'ordre élevé qui apparaissent dans l'équation de descente de
gradient. Nous présentons des résultats d'extraction automatique de réseaux
routiers à partir d'images de télédétection, montrant ainsi la capacité du
modèle à surmonter les interruptions. |
Abstract :
One of the main difficulties in extracting line networks from
images, and in particular road networks from remote sensing images, is the
existence of interruptions in the data caused, for example, by occlusions.
These can lead to gaps in the extracted network that do not correspond to
gaps in the real network. In this report, we describe a higher-order active
contour energy that in addition to favouring network-like regions composed
of thin arms joining at junctions, also includes a prior term that
penalizes network configurations containing `nearby opposing extremities',
and thereby makes their appearance in the extracted network less likely. If
nearby opposing extremities form during the gradient descent evolution used
to minimize the energy, the new energy term causes the extremities to
attract one another, and hence to move towards one another and join, thus
closing the gap. To minimize the energy, we develop specific techniques to
handle the high-order derivatives that appear in the gradient descent
equation. We present the results of automatic extraction of networks from
real remote-sensing images, showing the ability of the model to overcome
interruptions. |
|
3 - Higher Order Active Contours. M. Rochery and I. H. Jermyn and J. Zerubia. Research Report 5656, INRIA, France, August 2005. Keywords : Active contour, Higher-order, Road network, Shape, Prior.
@TECHREPORT{RR_5656,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours}, |
year |
= |
{2005}, |
month |
= |
{August}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5656}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070352}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70352/filename/RR-5656.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/52/PS/RR-5656.ps}, |
keyword |
= |
{Active contour, Higher-order, Road network, Shape, Prior} |
} |
Résumé :
Nous introduisons une nouvelle classe de contours actifs qui offre des perspectives intéressantes pour la modélisation des régions et des formes, et nous appliquons un cas particulier de ces modèles à l'extraction de réseaux linéiques dans des images satellitaires et aériennes. Les nouveaux modèles sont des fonctionnelles polynômiales arbitraires sur l'espace des contours, et généralisent ainsi les fonctionnelles linéaires utilisées dans les modèles classiques de contours actifs. Alors que les fonctionnelles classiques s'écrivent avec de simples intégrales sur le contour, les nouvelles énergies sont définies comme des intégrales multiples, décrivant ainsi des interactions de longue portée entre les différents ensembles de points du contour. Utilisées comme des termes d'a priori, les fonctionnelles décrivent des familles de contours aux propriétés géométriques complexes, sans faire référence à une forme spécifique et sans nécessiter l'estimation de la position. Utilisées comme des termes d'attache aux données, elles permettent de décrire des interactions multi-points entre le contour et les données. Afin de minimiser ces énergies, nous adoptons la méthodologie des courbes de niveau. Les forces dérivées des énergies sont cependant non locales, et nécessitent une extension des méthodes de courbes de niveau standard. Les réseaux sont une famille de formes d'une grande importance dans de nombreuses applications et en particulier en télédétection. Pour les modéliser, nous faisons un choix particulier d'énergie quadratique qui décrit des structures branchées et nous ajoutons un terme d'attache aux données qui lie les données et la géométrie du contour au niveau des paires de points du contour. Des résultats d'extraction prometteurs sont montrés sur des images réelles. |
Abstract :
We introduce a new class of active contour models that hold great promise for region and shape modelling, and we apply a special case of these models to the extraction of road networks from satellite and aerial imagery. The new models are arbitrary polynomial functionals on the space of boundaries, and thus greatly generalize the linear functionals used in classical contour energies. While classical energies are expressed as single integrals over the contour, the new energies incorporate multiple integrals, and thus describe long-range interactions between different sets of contour points. As prior terms, they describe families of contours that share complex geometric properties, without making reference to any particular shape, and they require no pose estimation. As likelihood terms, they can describe multi-point interactions between the contour and the data. To optimize the energies, we use a level set approach. The forces derived from the new energies are non-local however, thus necessitating an extension of standard level set methods. Networks are a shape family of great importance in a number of applications, including remote sensing imagery. To model them, we make a particular choice of prior quadratic energy that describes reticulated structures, and augment it with a likelihood term that couples the data at pairs of contour points to their joint geometry. Promising experimental results are shown on real images. |
|
top of the page
These pages were generated by
|