|
Publications about Segmentation
Result of the query in the list of publications :
10 Conference articles |
3 - A markov random field model for extracting near-circular shapes. T. Blaskovics and Z. Kato and I. H. Jermyn. In Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, November 2009. Keywords : Segmentation, Markov Random Fields, Shape prior.
@INPROCEEDINGS{Blaskovics09,
|
author |
= |
{Blaskovics, T. and Kato, Z. and Jermyn, I. H.}, |
title |
= |
{A markov random field model for extracting near-circular shapes}, |
year |
= |
{2009}, |
month |
= |
{November}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
pdf |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5413472}, |
keyword |
= |
{Segmentation, Markov Random Fields, Shape prior} |
} |
|
4 - Unsupervised One-Class SVM Using a Watershed Algorithm and Hysteresis Thresholding to Detect Burnt Areas. O. Zammit and X. Descombes and J. Zerubia. In Proc. International Conference on Pattern Recognition and Image Analysis (PRIA), Nizhny Novgorod, Russia, September 2008. Keywords : Classification, Segmentation, Support Vector Machines, Burnt areas, Forest fires, Satellite images. Copyright :
@INPROCEEDINGS{zammit_pria_08,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Unsupervised One-Class SVM Using a Watershed Algorithm and Hysteresis Thresholding to Detect Burnt Areas}, |
year |
= |
{2008}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition and Image Analysis (PRIA)}, |
address |
= |
{Nizhny Novgorod, Russia}, |
pdf |
= |
{http://hal.inria.fr/inria-00316297/fr/}, |
keyword |
= |
{Classification, Segmentation, Support Vector Machines, Burnt areas, Forest fires, Satellite images} |
} |
|
5 - Unsupervised Hierarchical Image Segmentation based on the TS-MRF model and Fast Mean-Shift Clustering. R. Gaetano and G. Scarpa and G. Poggi and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 2008. Keywords : Segmentation, Markov Random Fields, Mean Shift, Land Classification.
@INPROCEEDINGS{Gaetano2008,
|
author |
= |
{Gaetano, R. and Scarpa, G. and Poggi, G. and Zerubia, J.}, |
title |
= |
{Unsupervised Hierarchical Image Segmentation based on the TS-MRF model and Fast Mean-Shift Clustering}, |
year |
= |
{2008}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Lausanne, Switzerland}, |
pdf |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7080521}, |
keyword |
= |
{Segmentation, Markov Random Fields, Mean Shift, Land Classification} |
} |
Abstract :
Tree-Structured Markov Random Field (TS-MRF) models have been recently proposed to provide a hierarchical multiscale description of images. Based on such a model, the unsupervised image segmentation is carried out by means of a sequence of nested class splits, where each class is modeled as a local binary MRF.
We propose here a new TS-MRF unsupervised segmentation technique which improves upon the original algorithm by selecting a better tree structure and eliminating spurious classes. Such results are obtained by using the Mean-Shift procedure to estimate the number of pdf modes at each node (thus allowing for a non-binary tree), and to obtain a more reliable initial clustering for subsequent MRF optimization. To this end, we devise a new reliable and fast clustering algorithm based on the Mean-Shift technique. Experimental results prove the potential of the proposed method. |
|
6 - Indexing of mid-resolution satellite images with structural attributes. A. Bhattacharya and M. Roux and H. Maitre and I. H. Jermyn and X. Descombes and J. Zerubia. In The International Society for Photogrammetry and Remote Sensing, Beijing, China, July 2008. Keywords : Landscape, Segmentation, Features, Extraction, Classification, Modelling.
@INPROCEEDINGS{Bhattacharya08,
|
author |
= |
{Bhattacharya, A. and Roux, M. and Maitre, H. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Indexing of mid-resolution satellite images with structural attributes}, |
year |
= |
{2008}, |
month |
= |
{July}, |
booktitle |
= |
{The International Society for Photogrammetry and Remote Sensing}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Bhattacharya08isprs.pdf}, |
keyword |
= |
{Landscape, Segmentation, Features, Extraction, Classification, Modelling} |
} |
Abstract :
Indexing and retrieval of satellite images relies on the extraction of appropriate information from the data about the entity of interest
(e.g. land cover type) and on the robustness of this extraction to nuisance variables. Entities in an image may be strongly correlated
with each other and can therefore be used to characterize geographical environments on the Earth’s surface.
The properties of road networks vary considerably from one geographical environment to another. The networks pertaining in a
satellite image can therefore be used to classify and retrieve such environments. In the work presented in this paper we have defined
7 such classes. These classes can be categorized as follows: 2 urban classes consisting of “Urban USA” and “Urban Europe”; 3
rural classes consisting of “Villages”, “Mountains” and “Fields”; an “Airports” class and a “Common” class (this can be considered
as a rejection class). These classes were then classified with the aid of geometrical and topological features computed from the road
networks occurring in them. In our work we have used two extraction methods simultaneously on an image to extract the road networks
pertaining in it. A set of 16 network features were computed from one extraction method and were categorized into 6 groups as follows:
6 measures of ‘density’, 4 measures of ‘curviness’, 2 measures of ‘homogeneity’, 1 measure of ‘length’, 2 measures of ‘distribution’
and 1 measure of ‘entropy’.
Due to certain limitations of these extraction methods there was a relative failure of network extraction in certain urban regions con-
taining narrow and dense road structures. This loss of information was circumvented by segmenting the urban regions and computing
a second set of geometrical and topological features from them. A set of 4 urban region features were computed and were categorized
into 3 groups as follows: 2 measures of ‘density’, 1 measure of ‘labels’ and 1 measure of ‘compactness’.
The 500 images (each of size 512x512 pixels) forming our database were selected from SPOT5 scenes with 5m resolution. From each
image a set of geometrical and topological features were computed from the road networks and urban regions. These features were
then used to classify the pre-defined geographical classes. Feature selection was done to avoid the burden of feature dimensionality
and increase the classification performance. A set of 20 features was selected from 36 features by Fisher Linear Discriminant (FLD)
analysis which gave the least classification error with an one-vs-rest linear Support Vector Machine (SVM).
The impact of spatial resolution and size of images on the feature set have been explored in this work. We took a closer look at the effect
of spatial resolution and size of images on the discriminative power of the feature set to classify the images belonging to the pre-defined
geographical classes. Tests were performed with feature selection by FLD and one-vs-rest linear SVM classification on a database with
images of 10m resolution. Another test was performed with feature selection by FLD and one-vs-rest linear SVM classification on a
database with 5m resolution images (each of size 256x256 pixels).
With the above mentioned approaches, we developed a novel method to classify large satellite images acquired by SPOT5 satellite (5m
resolution) with patches of images each of size 512x512 pixels extracted from them. There has been a large amount of work dedicated
to the classification of large satellite images at pixel level rather than considering image patches of different sizes. Classification of
image patches of different sizes from a large satellite image is a novel idea in the sense that the patches considered contain significant
coverage of a particular type of geographical environment.
Road networks and urban region features were computed from these image patches extracted from the large image. A one-vs-rest
Gaussian kernel SVM classification method was used to classify this large image. The classification results show that the image
patches were labeled with the class having the maximum geographical coverage of the area associated in the large image. The large
image was mapped into a “region matrix”, where each element of the matrix corresponds to a geographical class. This is a ‘hard’
classification and no inference can be drawn about the classification confidence.
In certain cases, this produces some anomalies, as a single patch may contain two or more different geographical coverages. In order
to have an estimate of these partial coverages, the output of the SVM was mapped into probabilities. These probability measures were
then studied to have a closer look at the classification accuracies. The results confirm that our method is able to classify a large image
into various geographical classes with a mean error of less than 10%.
Future studies can use operators to detect not only man-made structures like roads and urban areas, but also natural entities like rivers,
forests, etc. In this work we have restricted ourselves to a single resolution, but our methodology can be adapted to consider images
of higher resolutions from QuickBird and the future Pleiade satellite. At a better resolution it may be possible to extract different
structures like buildings, gardens, cross-roads, etc. This in turn will allow us to incorporate more classes to appropriately classify any
geographical environment. At an image resolution of 1m, we may imagine to have sub-classes of an existing class, e.g., classes like
urban Europe and urban USA can de divided into downtown, residential and industrial classes. |
|
7 - Extraction of main and secondary roads in VHR images using a higher-order phase field model. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. In Proc. XXI ISPRS Congress, Part A, pages 215-22, Beijing, China, July 2008. Keywords : Road network, Urban areas, Satellite images, Segmentation, Modelling, Variational methods. Copyright : ISPRS
@INPROCEEDINGS{Peng08a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Extraction of main and secondary roads in VHR images using a higher-order phase field model}, |
year |
= |
{2008}, |
month |
= |
{July}, |
booktitle |
= |
{Proc. XXI ISPRS Congress, Part A}, |
pages |
= |
{215-22}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/33.pdf}, |
keyword |
= |
{Road network, Urban areas, Satellite images, Segmentation, Modelling, Variational methods} |
} |
Abstract :
This paper addresses the issue of extracting main and secondary road networks in dense urban areas from very high resolution (VHR, ~0.61m) satellite images. The difficulty with secondary roads lies in the low discriminative power of the grey-level distributions of road regions and the background, and the greater effect of occlusions and other noise on narrower roads. To tackle this problem, we use a previously developed higher-order active contour (HOAC) phase field model and augment it with an additional non-linear nonlocal term. The additional term allows separate control of road width and road curvature; thus more precise prior knowledge can be incorporated, and better road prolongation can be achieved for the same width. Promising results on QuickBird panchromatic images at reduced resolutions and comparisons with other models demonstrate the role and the efficiency of our new model. |
|
8 - Higher Order Active Contours and their Application to the Detection of Line Networks in Satellite Imagery. M. Rochery and I. H. Jermyn and J. Zerubia. In Proc. IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision, at ICCV, Nice, France, October 2003. Keywords : Higher-order, Active contour, Shape, Road network, Segmentation, Prior.
@INPROCEEDINGS{Rochery03a,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours and their Application to the Detection of Line Networks in Satellite Imagery}, |
year |
= |
{2003}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision}, |
address |
= |
{at ICCV, Nice, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_vlsm03.pdf}, |
keyword |
= |
{Higher-order, Active contour, Shape, Road network, Segmentation, Prior} |
} |
Abstract :
We present a novel method for the incorporation of shape information
into active contour models, and apply it to the extraction
of line networks (e.g. road, water) from satellite imagery.
The method is based on a new class of contour energies.
These energies are quadratic on the space of one-chains
in the image, as opposed to classical energies, which are linear.
They can be expressed as double integrals on the contour,
and thus incorporate non-trivial interactions between
different contour points. The new energies describe families
of contours that share complex geometric properties, without
making reference to any particular shape. Networks fall
into such a family, and to model them we make a particular
choice of quadratic energy whose minima are reticulated.
To optimize the energies, we use a level set approach. The
forces derived from the new energies are non-local however,
thus necessitating an extension of standard level set methods.
Promising experimental results are obtained using real
images. |
|
9 - Unsupervised Image Segmentation via Markov Trees and Complex Wavelets. C. Shaffrey and N. Kingsbury and I. H. Jermyn. In Proc. IEEE International Conference on Image Processing (ICIP), Rochester, USA, September 2002. Keywords : Segmentation, Hidden Markov Model, Texture, Colour.
@INPROCEEDINGS{ijking,
|
author |
= |
{Shaffrey, C. and Kingsbury, N. and Jermyn, I. H.}, |
title |
= |
{Unsupervised Image Segmentation via Markov Trees and Complex Wavelets}, |
year |
= |
{2002}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Rochester, USA}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Shaffrey02icip.pdf}, |
keyword |
= |
{Segmentation, Hidden Markov Model, Texture, Colour} |
} |
Abstract :
The goal in image segmentation is to label pixels in an image based
on the properties of each pixel and its surrounding region. Recently
Content-Based Image Retrieval (CBIR) has emerged as an
application area in which retrieval is attempted by trying to gain
unsupervised access to the image semantics directly rather than
via manual annotation. To this end, we present an unsupervised
segmentation technique in which colour and texture models are
learned from the image prior to segmentation, and whose output
(including the models) may subsequently be used as a content
descriptor in a CBIR system. These models are obtained in a
multiresolution setting in which Hidden Markov Trees (HMT) are
used to model the key statistical properties exhibited by complex
wavelet and scaling function coefficients. The unsupervised Mean
Shift Iteration (MSI) procedure is used to determine a number of
image regions which are then used to train the models for each
segmentation class. |
|
10 - Globally optimal regions and boundaries. I. H. Jermyn and H. Ishikawa. In Proc. IEEE International Conference on Computer Vision (ICCV), 1999. Keywords : global, optimum, Graph, Cycle, Ratio, Segmentation. Copyright :
@INPROCEEDINGS{Jermyn99iccv,
|
author |
= |
{Jermyn, I. H. and Ishikawa, H.}, |
title |
= |
{Globally optimal regions and boundaries}, |
year |
= |
{1999}, |
booktitle |
= |
{Proc. IEEE International Conference on Computer Vision (ICCV)}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Jermyn99iccv.pdf}, |
keyword |
= |
{global, optimum, Graph, Cycle, Ratio, Segmentation} |
} |
Abstract :
We propose a new form of energy functional for the segmentation
of regions in images, and an efficient method for
finding its global optima. The energy can have contributions
from both the region and its boundary, thus combining
the best features of region- and boundary-based approaches
to segmentation. By transforming the region energy
into a boundary energy, we can treat both contributions
on an equal footing, and solve the global optimization
problem as a minimum mean weight cycle problem on
a directed graph. The simple, polynomial-time algorithm
requires no initialization and is highly parallelizable. |
|
top of the page
7 Technical and Research Reports |
1 - Hierarchical finite-state modeling for texture segmentation with application to forest classification. G. Scarpa and M. Haindl and J. Zerubia. Research Report 6066, INRIA, INRIA, France, December 2006. Keywords : Texture, Segmentation, Co-occurrence matrix, Structural approach, MCMC, Synthesis.
@TECHREPORT{scarparr06,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{Hierarchical finite-state modeling for texture segmentation with application to forest classification}, |
year |
= |
{2006}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6066}, |
address |
= |
{INRIA, France}, |
url |
= |
{https://hal.inria.fr/inria-00118420}, |
keyword |
= |
{Texture, Segmentation, Co-occurrence matrix, Structural approach, MCMC, Synthesis} |
} |
Abstract :
In this research report we present a new model for texture representation which is particularly well suited for image analysis and segmentation. Any image is first discretized and then a hierarchical finite-state region-based model is automatically coupled with the data by means of a sequential optimization scheme, namely the Texture Fragmentation and Reconstruction (TFR) algorithm. The TFR algorithm allows to model both intra- and inter-texture interactions, and eventually addresses the segmentation task in a completely unsupervised manner. Moreover, it provides a hierarchical output, as the user may decide the scale at which the segmentation has to be given. Tests were carried out on both natural texture mosaics provided by the Prague Texture Segmentation Datagenerator Benchmark and remote-sensing data of forest areas provided by the French National Forest Inventory (IFN). |
|
2 - Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models. G. Aubert and J.F. Aujol and L. Blanc-Féraud. Research Report 5254, INRIA, France, July 2004. Keywords : Ginzburg-Landau model, Biological images, Segmentation, Partial differential equation.
@TECHREPORT{5254,
|
author |
= |
{Aubert, G. and Aujol, J.F. and Blanc-Féraud, L.}, |
title |
= |
{Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models}, |
year |
= |
{2004}, |
month |
= |
{July}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5254}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070744}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70744/filename/RR-5254.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/07/44/PS/RR-5254.ps}, |
keyword |
= |
{Ginzburg-Landau model, Biological images, Segmentation, Partial differential equation} |
} |
Résumé :
Dans cet article, nous proposons a nouveau modèle mathématique pour détecter dans une image les singularités de codimension supérieure ou égale à deux. Cela signifie que nous voulons détecter des points dans des images 2-D, ou des points et des courbes dans des images 3-D. Nous nous inspirons des modèles de Ginzburg-Landau (GL). Ces derniers se sont révélés efficace pour modéliser de nombreux phénomènes physiques. Nous introduisons le modèle, nous énonçons ses propriétés mathématiques, et nous donnons des résultats expérimentaux illustrant les performances du modèle. |
Abstract :
In this paper, we propose a new mathematical model for detecting in an image singularities of codimension greater than or equal to two. This means we want to detect points in a 2-D image or points and curves in a 3-D image. We drew one's inspiration from Ginzburg-Landau (G-L) models which have proved their efficiency for modeling many phenomena in physics. We introduce the model, state its mathematical properties and give some experimental results demonstrating its capability. |
|
top of the page
These pages were generated by
|