|
Publications about Road network
Result of the query in the list of publications :
9 Conference articles |
5 - Urban road extraction from VHR images using a multiscale image model and a phase field model of network geometry. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. In Proc. Urban, Paris, France, April 2007. Keywords : Road network, Very high resolution, Multiscale, Higher-order, Active contour, Shape.
@INPROCEEDINGS{Peng07_urban,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Urban road extraction from VHR images using a multiscale image model and a phase field model of network geometry}, |
year |
= |
{2007}, |
month |
= |
{April}, |
booktitle |
= |
{Proc. Urban}, |
address |
= |
{Paris, France}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Peng07urban.pdf}, |
keyword |
= |
{Road network, Very high resolution, Multiscale, Higher-order, Active contour, Shape} |
} |
Abstract :
This paper addresses the problem of automatically
extracting the main road network in a dense urban area from
a very high resolution optical satellite image using a variational
approach. The model energy has two parts: a phase field higherorder
active contour energy that describes our prior knowledge
of road network geometry, i.e. that it is composed of elongated
structures with roughly parallel borders that meet at junctions;
and a multi-scale statistical image model describing the image
we expect to see given a road network. By minimizing the model
energy, an estimate of the road network is obtained. Promising
results on 0.6m QuickBird Panchromatic images are presented,
and future improvements to the models are outlined. |
|
6 - Computing statistics from a graph representation of road networks in satellite images for indexing and retrieval. A. Bhattacharya and I. H. Jermyn and X. Descombes and J. Zerubia. In Proc. compImage, Coimbra, Portugal, October 2006. Keywords : Road network, Indexation, Semantic, Retrieval, Feature statistics.
@INPROCEEDINGS{bhatta_compimage06,
|
author |
= |
{Bhattacharya, A. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Computing statistics from a graph representation of road networks in satellite images for indexing and retrieval}, |
year |
= |
{2006}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. compImage}, |
address |
= |
{Coimbra, Portugal}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_bhatta_compimage06.pdf}, |
keyword |
= |
{Road network, Indexation, Semantic, Retrieval, Feature statistics} |
} |
Abstract :
Retrieval from remote sensing image archives relies on the
extraction of pertinent information from the data about the entity of interest (e.g. land cover type), and on the robustness of this extraction to nuisance variables (e.g. illumination). Most image-based characterizations are not invariant to such variables. However, other semantic entities in the image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. Road networks are one example: their properties vary considerably, for example, from urban to rural areas. This paper takes the first steps towards classification (and hence retrieval) based on this idea. We study the dependence of a number of network features on the class of the image ('urban' or 'rural'). The chosen features include measures of the network density, connectedness, and `curviness'. The feature distributions of the two classes are well separated in feature space, thus providing a basis for retrieval. Classification using kernel k-means confirms this conclusion. |
|
7 - Phase field models and higher-order active contours. M. Rochery and I. H. Jermyn and J. Zerubia. In Proc. IEEE International Conference on Computer Vision (ICCV), Beijing, China, October 2005. Keywords : Active contour, Higher-order, Shape, Line networks, Road network, Phase Field.
@INPROCEEDINGS{rochery_iccv05,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Phase field models and higher-order active contours}, |
year |
= |
{2005}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE International Conference on Computer Vision (ICCV)}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_iccv05.pdf}, |
keyword |
= |
{Active contour, Higher-order, Shape, Line networks, Road network, Phase Field} |
} |
Abstract :
The representation and modelling of regions is an important topic in computer vision. In this paper, we represent a region via a level set of a `phase field' function. The function is not constrained, eg to be a distance function; nevertheless, phase field energies equivalent to classical active contour energies can be defined. They represent an advantageous alternative to other methods: a linear representation space; ease of implementation (a PDE with no reinitialization); neutral initialization; greater topological freedom. We extend the basic phase field model with terms that reproduce `higher-order active contour' energies, a powerful way of including prior geometric knowledge in the active contour framework via nonlocal interactions between contour points. In addition to the above advantages, the phase field greatly simplifies the analysis and implementation of the higher-order terms. We define a phase field model that favours regions composed of thin arms meeting at junctions, combine this with image terms, and apply the model to the extraction of line networks from remote sensing images. |
|
8 - Gap closure in (road) networks using higher-order active contours. M. Rochery and I. H. Jermyn and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Singapore, October 2004. Keywords : Active contour, Gap closure, Higher-order, Shape, Road network.
@INPROCEEDINGS{Rochery04,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Gap closure in (road) networks using higher-order active contours}, |
year |
= |
{2004}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Singapore}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_icip04.pdf}, |
keyword |
= |
{Active contour, Gap closure, Higher-order, Shape, Road network} |
} |
Abstract :
We present a new model for the extraction of networks from images in the presence of occlusions. Such occlusions cause gaps in the extracted network that need to be closed. Using higher-order active contours, which allow the incorporation of sophisticated geometric information, we introduce a new, non-local, `gap closure' force that causes pairs of network extremities that are close together to extend towards one another and join, thus closing the gap
between them. We demonstrate the benefits of the model using the problem of road network extraction, presenting results on aerial images. |
|
9 - Higher Order Active Contours and their Application to the Detection of Line Networks in Satellite Imagery. M. Rochery and I. H. Jermyn and J. Zerubia. In Proc. IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision, at ICCV, Nice, France, October 2003. Keywords : Higher-order, Active contour, Shape, Road network, Segmentation, Prior.
@INPROCEEDINGS{Rochery03a,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours and their Application to the Detection of Line Networks in Satellite Imagery}, |
year |
= |
{2003}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision}, |
address |
= |
{at ICCV, Nice, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_vlsm03.pdf}, |
keyword |
= |
{Higher-order, Active contour, Shape, Road network, Segmentation, Prior} |
} |
Abstract :
We present a novel method for the incorporation of shape information
into active contour models, and apply it to the extraction
of line networks (e.g. road, water) from satellite imagery.
The method is based on a new class of contour energies.
These energies are quadratic on the space of one-chains
in the image, as opposed to classical energies, which are linear.
They can be expressed as double integrals on the contour,
and thus incorporate non-trivial interactions between
different contour points. The new energies describe families
of contours that share complex geometric properties, without
making reference to any particular shape. Networks fall
into such a family, and to model them we make a particular
choice of quadratic energy whose minima are reticulated.
To optimize the energies, we use a level set approach. The
forces derived from the new energies are non-local however,
thus necessitating an extension of standard level set methods.
Promising experimental results are obtained using real
images. |
|
top of the page
6 Technical and Research Reports |
1 - Higher-Order Active Contour Energies for Gap Closure. M. Rochery and I. H. Jermyn and J. Zerubia. Research Report 5717, INRIA, France, October 2005. Keywords : Road network, Continuity, Gap closure, Higher-order, Active contour, Shape.
@TECHREPORT{RR_5717,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2005}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5717}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070300/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70300/filename/RR-5717.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/00/PS/RR-5717.ps}, |
keyword |
= |
{Road network, Continuity, Gap closure, Higher-order, Active contour, Shape} |
} |
Résumé :
L'un des principaux problèmes lors de l'extraction de réseaux
linéiques dans des images, et en particulier l'extraction de réseaux
routiers dans des images de télédétection, est l'existence d'interruptions
dans les données, causées, par exemple, par des occultations. Ces
interruptions peuvent mener à des trous dans le réseau extrait qui
n'existent pas dans le réseau réel. Dans ce rapport, nous décrivons une
énergie de contour actif d'ordre supérieur qui, en plus de favoriser les
régions composées de bras fins et connectés entre eux, inclut un terme d'a
priori qui pénalise les configurations du réseau où des extremités proches
et se faisant face apparaissent. L'apparition dans le réseau extrait de ces
configurations est donc moins probable. Si des extremités proches et se
faisant face apparaissent pendant l'évolution par descente de gradient
utilisée pour minimiser l'énergie, le nouveau terme dans l'énergie crée une
attraction entre ces extremités, qui se rapprochent donc l'une de l'autre
et se rejoignent, fermant ainsi le trou entre elles. Pour minimiser
l'énergie, nous développons des techniques spécifiques pour traiter les
derivées d'ordre élevé qui apparaissent dans l'équation de descente de
gradient. Nous présentons des résultats d'extraction automatique de réseaux
routiers à partir d'images de télédétection, montrant ainsi la capacité du
modèle à surmonter les interruptions. |
Abstract :
One of the main difficulties in extracting line networks from
images, and in particular road networks from remote sensing images, is the
existence of interruptions in the data caused, for example, by occlusions.
These can lead to gaps in the extracted network that do not correspond to
gaps in the real network. In this report, we describe a higher-order active
contour energy that in addition to favouring network-like regions composed
of thin arms joining at junctions, also includes a prior term that
penalizes network configurations containing `nearby opposing extremities',
and thereby makes their appearance in the extracted network less likely. If
nearby opposing extremities form during the gradient descent evolution used
to minimize the energy, the new energy term causes the extremities to
attract one another, and hence to move towards one another and join, thus
closing the gap. To minimize the energy, we develop specific techniques to
handle the high-order derivatives that appear in the gradient descent
equation. We present the results of automatic extraction of networks from
real remote-sensing images, showing the ability of the model to overcome
interruptions. |
|
2 - Higher Order Active Contours. M. Rochery and I. H. Jermyn and J. Zerubia. Research Report 5656, INRIA, France, August 2005. Keywords : Active contour, Higher-order, Road network, Shape, Prior.
@TECHREPORT{RR_5656,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours}, |
year |
= |
{2005}, |
month |
= |
{August}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5656}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070352}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70352/filename/RR-5656.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/52/PS/RR-5656.ps}, |
keyword |
= |
{Active contour, Higher-order, Road network, Shape, Prior} |
} |
Résumé :
Nous introduisons une nouvelle classe de contours actifs qui offre des perspectives intéressantes pour la modélisation des régions et des formes, et nous appliquons un cas particulier de ces modèles à l'extraction de réseaux linéiques dans des images satellitaires et aériennes. Les nouveaux modèles sont des fonctionnelles polynômiales arbitraires sur l'espace des contours, et généralisent ainsi les fonctionnelles linéaires utilisées dans les modèles classiques de contours actifs. Alors que les fonctionnelles classiques s'écrivent avec de simples intégrales sur le contour, les nouvelles énergies sont définies comme des intégrales multiples, décrivant ainsi des interactions de longue portée entre les différents ensembles de points du contour. Utilisées comme des termes d'a priori, les fonctionnelles décrivent des familles de contours aux propriétés géométriques complexes, sans faire référence à une forme spécifique et sans nécessiter l'estimation de la position. Utilisées comme des termes d'attache aux données, elles permettent de décrire des interactions multi-points entre le contour et les données. Afin de minimiser ces énergies, nous adoptons la méthodologie des courbes de niveau. Les forces dérivées des énergies sont cependant non locales, et nécessitent une extension des méthodes de courbes de niveau standard. Les réseaux sont une famille de formes d'une grande importance dans de nombreuses applications et en particulier en télédétection. Pour les modéliser, nous faisons un choix particulier d'énergie quadratique qui décrit des structures branchées et nous ajoutons un terme d'attache aux données qui lie les données et la géométrie du contour au niveau des paires de points du contour. Des résultats d'extraction prometteurs sont montrés sur des images réelles. |
Abstract :
We introduce a new class of active contour models that hold great promise for region and shape modelling, and we apply a special case of these models to the extraction of road networks from satellite and aerial imagery. The new models are arbitrary polynomial functionals on the space of boundaries, and thus greatly generalize the linear functionals used in classical contour energies. While classical energies are expressed as single integrals over the contour, the new energies incorporate multiple integrals, and thus describe long-range interactions between different sets of contour points. As prior terms, they describe families of contours that share complex geometric properties, without making reference to any particular shape, and they require no pose estimation. As likelihood terms, they can describe multi-point interactions between the contour and the data. To optimize the energies, we use a level set approach. The forces derived from the new energies are non-local however, thus necessitating an extension of standard level set methods. Networks are a shape family of great importance in a number of applications, including remote sensing imagery. To model them, we make a particular choice of prior quadratic energy that describes reticulated structures, and augment it with a likelihood term that couples the data at pairs of contour points to their joint geometry. Promising experimental results are shown on real images. |
|
3 - A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing. C. Lacoste and X. Descombes and J. Zerubia. Research Report 4516, Inria, France, July 2002. Keywords : Stochastic geometry, Marked point process, Road network, Line networks, RJMCMC.
@TECHREPORT{4516,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing}, |
year |
= |
{2002}, |
month |
= |
{July}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4516}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00072072}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/20/72/PDF/RR-4516.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/20/72/PS/RR-4516.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Road network, Line networks, RJMCMC} |
} |
Résumé :
Nous présentons, dans ce rapport, une étude comparative entre plusieurs modèles d'extraction de réseaux linéiques, issus de la géométrie stochastique. Nous nous pla ons dans le cadre des processus ponctuels marqués spécifiés par une densité par rapport au processus de Poisson homogène. L'objectif de cette étude est de déterminer quelle type de densité a priori est la plus adaptée à cette probématique de détection de réseaux linéiques, et plus particulièrement de réseaux routiers. Nous reprenons le Candy modèle, introduit dans [21] pour l'extraction de réseaux routiers, et nous l'utilisons comme modèle de référence. Ce modèle est basé sur l'idée qu'un réseau routier peut être assimilé à une réalisation d'un processus Markov objet, où les objets correspondent à des segments en interaction. Nous proposons deux variantes de ce modèle qui font intervenir des coefficients mesurant la qualité des interactions entre objets. La première est une généralisation du Candy modèle et la seconde correspond à une adaptation du modèle IDQ, proposé dans [13] pour l'extraction de bâtiments dans les modèles numériques d'élévation. Nous réalisons l'optimisation de chaque modèle par un recuit simulé sur un algorithme MCMC à sauts réversibles. Les résultats expérimentaux obtenus pour les trois modèles, sur des images satellitaires ou aériennes, permettent de vérifier l'intérêt de l'intégration de la qualité des interactions dans la densité a priori. |
Abstract :
We present in this report a comparative study between models of line network extraction, within a stochastic geometry framework. We rely on the theory of marked point processes specified by a density with respect to the uniform Poisson process. We aim to determine which prior density is the most relevant for road network detection. The Candy model, introduced in [21] for the extraction of road networks, is used as a reference model. This model is based on the idea that a road network can be thought of as a realization of a Markov object process, where the objects correspond to interacting line segments. We have developed two variants of this model which use quality coefficients for interactions. The first of these two variants is a generalization of the Candy model and the second one is an adaptation of the IDQ model proposed in [13] for the problem of building extraction from digital elevation models. The optimization is achieved by a simulated annealing with a RJMCMC algorithm. The experimental results, obtained for each model on aerial or satellite images, show the interest of adding quality coefficients for interactions in the prior density. |
|
4 - Local registration and deformation of a road cartographic database on a SPOT satellite image. G. Rellier and X. Descombes and J. Zerubia. Research Report 3939, Inria, May 2000. Keywords : Markov Fields, Road network.
@TECHREPORT{rel00,
|
author |
= |
{Rellier, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Local registration and deformation of a road cartographic database on a SPOT satellite image}, |
year |
= |
{2000}, |
month |
= |
{May}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3939}, |
url |
= |
{https://hal.inria.fr/inria-00072711}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72711/filename/RR-3939.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/11/PS/RR-3939.ps}, |
keyword |
= |
{Markov Fields, Road network} |
} |
Résumé :
Dans ce rapport, nous présentons une méthode pour le recalage local d'un réseau cartographique routier sur une image SPOT, reposant sur l'utilisation des champs de Markov sur graphe. Les données image et cartographique étant obtenues par des sources exogènes, elles sont dégradées par du bruit de nature différente. Ce phénomène peut être à l'origine de différences important- es entre les données. De plus, les cartographes peuvent parfois introduire des distortions dans les cartes afin de souligner certains détails que presente la route (lacets d'une route de montagne) : c'est la généralisation. L'algorithme proposé vise à corriger les erreurs dues au bruit et à la généralisation, et à améliorer la précision du tracé des routes. La méthode proposée consiste à transformer la donnée cartographique en un graphe, et ensuite à définir un champ de Markov afin de faire correspondre le graphe et l'image. |
Abstract :
Herein, we propose a local registration method for cartographic road networks on SPOT satellite images based on Markov Random Fields (MRF) on graphs. Since the cartographic and image data are obtained from exogeneous sources, the noises degrading these data are of different nature. This phenomenon can create important differences between the data. In addition, cartographers sometimes introduce distortions, in the so-called generalization process, in the road map in order to emphasize some details of the road (like the bends of a mountain road). The proposed algorithm aims at correcting the error due to noise and generalization, hence increasing the accuracy of the road map. The proposed method consists in translating the cartographic data into a graph model, and then defining a MRF to fit the graph on the image. |
|
5 - A Markov point process for road extraction in remote sensed images. R. Stoica and X. Descombes and J. Zerubia. Research Report 3923, Inria, 2000. Keywords : Stochastic geometry, Marked point process, Candy model, Road network, RJMCMC.
@TECHREPORT{rs00,
|
author |
= |
{Stoica, R. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Markov point process for road extraction in remote sensed images}, |
year |
= |
{2000}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3923}, |
url |
= |
{https://hal.inria.fr/inria-00072729}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72729/filename/RR-3923.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/29/PS/RR-3923.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Candy model, Road network, RJMCMC} |
} |
Résumé :
Nous proposons une nouvelle méthode pour extraire les routes dans les images satellitales et aériennes. Notre approche est basée sur la géométrie stochastique et les dynamiques MCMC à saut réversible. Nous considérons que le réseau routier est un réseau fin, et que ce réseau peut être approximé par des segments connectés. Nous construisons un processus ponctuel marqué qui peut simuler et détecter des réseaux fins. La densité de probabilité de ce processus comporte deux termes : le terme d'attache aux données et le terme a priori. Pour former un réseau, les segments doivent être connectés. Nous souhaitons que les segments soient bien alignés et qu'ils ne se superposent pas. Toutes ces contraintes sont prises en compte par le modèle a priori (Candy modèle). L'emplacement du réseau est donné par le terme d'attache aux données. Ce terme est construit à partir des tests d'hypothèses. Notre modèle probabiliste permet de construire le MAP de l'estimateur du réseau linéique. Pour éviter les minima locaux, nous utilisons un algorithme de type recuit simulé, construit sur une dynamique MCMC à sauts réversibles. Nous montrons des résultats sur des images SPOT, ERS et aériennes. |
Abstract :
In this paper we propose a new method to extract roads in remote sensed images. Our approach is based on stochastic geometry theory and reversible jump Monte Carlo Markov Chains dynamic. We consider that roads consist of a thin network in the image. We make the hypothesis that such a network can be approximated by a network composed of connected line segments. We build a marked point process, which is able to simulate and detect thin networks. The segments have to be connected, in order to form a line-netw- ork. Aligned segments are favored whereas superposition is penalized. Those constraints are taken in account by the prior model (Candy model), which is an area-interaction point process.The location of the network and the specifities of a road network in the image are given by the likelihood term. This term is based on statistical hypothesis tests. The proposed probabilistic model yelds a MAP estimator of the road network. In order to avoid local minima, a simulated annealing algorithm, using a reversible jump MCMC dynamic is designed. Results are shown on SPOT, ERS and aerial images. |
|
top of the page
These pages were generated by
|