|
Publications about Classification
Result of the query in the list of publications :
3 Articles |
1 - Unsupervised amplitude and texture classification of SAR images with multinomial latent model. K. Kayabol and J. Zerubia. IEEE Trans. on Image Processing, 22(2): pages 561-572, February 2013. Keywords : COSMOSkyMed, Classification EM, High resolution SAR, Jensen-Shannon criterion, Classification, Multinomial logistic.
@ARTICLE{KorayTIP2013,
|
author |
= |
{Kayabol, K. and Zerubia, J.}, |
title |
= |
{Unsupervised amplitude and texture classification of SAR images with multinomial latent model}, |
year |
= |
{2013}, |
month |
= |
{February}, |
journal |
= |
{IEEE Trans. on Image Processing}, |
volume |
= |
{22}, |
number |
= |
{2}, |
pages |
= |
{561-572}, |
url |
= |
{http://hal.inria.fr/hal-00745387}, |
keyword |
= |
{COSMOSkyMed, Classification EM, High resolution SAR, Jensen-Shannon criterion, Classification, Multinomial logistic} |
} |
|
2 - A study of Gaussian mixture models of colour and texture features for image classification and segmentation. H. Permuter and J.M. Francos and I. H. Jermyn. Pattern Recognition, 39(4): pages 695--706, April 2006. Keywords : Classification, Segmentation, Texture, Colour, Gaussian mixture, Decison fusion.
@ARTICLE{permuter_pr06,
|
author |
= |
{Permuter, H. and Francos, J.M. and Jermyn, I. H.}, |
title |
= |
{A study of Gaussian mixture models of colour and texture features for image classification and segmentation}, |
year |
= |
{2006}, |
month |
= |
{April}, |
journal |
= |
{Pattern Recognition}, |
volume |
= |
{39}, |
number |
= |
{4}, |
pages |
= |
{695--706}, |
url |
= |
{http://dx.doi.org/10.1016/j.patcog.2005.10.028}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_permuter_pr06.pdf}, |
keyword |
= |
{Classification, Segmentation, Texture, Colour, Gaussian mixture, Decison fusion} |
} |
Abstract :
The aims of this paper are two-fold: to define Gaussian mixture models of coloured texture on several feature paces and to compare the performance of these models
in various classification tasks, both with each other and with other models popular in the literature. We construct Gaussian mixtures models over a variety of different colour and texture feature spaces, with a view to the retrieval of textured colour images from databases. We compare supervised classification results for different choices of colour and texture features using the Vistex database, and explore the best set of features and the best GMM configuration for this task. In addition we introduce several methods for combining the 'colour' and 'structure' information in order to improve the classification performance. We then apply the resulting models to the classification of texture databases and to the classification of man-made and natural areas in aerial images. We compare the GMM model with other models in the literature, and show an overall improvement in performance. |
|
3 - Supervised Segmentation of Remote Sensing Images Based on a Tree-Structure MRF Model. G. Poggi and G. Scarpa and J. Zerubia. IEEE Trans. Geoscience and Remote Sensing, 43(8): pages 1901-1911, August 2005. Keywords : Classification, Segmentation, Markov Fields.
@ARTICLE{ieeetgrs_05,
|
author |
= |
{Poggi, G. and Scarpa, G. and Zerubia, J.}, |
title |
= |
{Supervised Segmentation of Remote Sensing Images Based on a Tree-Structure MRF Model}, |
year |
= |
{2005}, |
month |
= |
{August}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{43}, |
number |
= |
{8}, |
pages |
= |
{1901-1911}, |
pdf |
= |
{http://ieeexplore.ieee.org/iel5/36/32001/01487647.pdf?tp=&arnumber=1487647&isnumber=32001}, |
keyword |
= |
{Classification, Segmentation, Markov Fields} |
} |
|
top of the page
7 PhD Thesis and Habilitations |
1 - Shape recognition for image scene analysis. M. S. Kulikova. PhD Thesis, Universite de Nice - Sophia-Antipolis, December 2009. Keywords : tree crown , Classification, Shape, multiple object extraction, Marked point process, Shape prior.
@PHDTHESIS{mkulikova_phd09,
|
author |
= |
{Kulikova, M. S.}, |
title |
= |
{Shape recognition for image scene analysis}, |
year |
= |
{2009}, |
month |
= |
{December}, |
school |
= |
{Universite de Nice - Sophia-Antipolis}, |
url |
= |
{http://tel.archives-ouvertes.fr/docs/00/48/20/19/PDF/phd_mkulikova_2009.pdf}, |
keyword |
= |
{tree crown , Classification, Shape, multiple object extraction, Marked point process, Shape prior} |
} |
Résumé :
Cette thèse est composée de deux parties principales. La première partie est dédiée au problème de la classification d’espèces d’arbres en utilisant des descripteurs de forme, en combainison ou non, avec ceux de radiométrie ou de texture. Nous montrons notamment que l’information sur la forme améliore la performance d’un classifieur. Pour ce faire, dans un premier temps, une étude des formes de couronnes d’arbres extraites à partir d’images aériennes, en infrarouge couleur, est eectuée en utilisant une méthodologie d’analyse de
formes des courbes continues fermées dans un espace de formes, en utilisant la notion de chemin géodésique sous deux métriques dans des espaces appropriés : une métrique non-élastique en utilisant la reprèsentation par la fonction d’angle de la courbe, ainsi qu’une métrique élastique induite par une représentation par la racinecarée appelée q-fonction. Une étape préliminaire nécessaire à la classification est l’extraction des couronnes d’arbre. Dans une seconde partie, nous abordons donc le problème de l’extraction d’objets de forme complexe
arbitraire, à partir d’images de télédétection à très haute résolution. Nous construisons un modèle fondé sur les processus ponctuels marqués. Son originalité tient dans sa prise en compte d’objets de forme arbitraire par rapport aux objets de forme paramétrique, e.g. ellipses ou rectangles. Les formes sélectionnées sont obtenues par la minimisation locale d’une énergie de type contours actifs avec diérents a priori sur la forme incorporé. Les objets de la configuration finale (optimale) sont ensuite sélectionnés parmi les candidats par une dynamique
de naissances et morts multiples, couplée à un schéma de recuit simulé. L’approche est validée sur des images de zones forestières à très haute résolution fournies par l’Université d’Agriculture de Suède. |
Abstract :
This thesis includes two main parts. In the first part we address the problem of tree crown classification into species using shape features, without, or in combination with, those of radiometry and texture, to demonstrate that shape information improves classification performance. For this purpose, we first study the shapes of tree crowns extracted from very high resolution colour aerial infra-red images. For our study, we choose a methodology based on the shape analysis of closed continuous curves on shape spaces using geodesic paths under the bending metric with the angle-function curve representation, and the elastic metric with the square root
q-function representation. A necessary preliminary step to classification is extraction of the tree crowns. In the second part, we address thus the problem of extraction of multiple objects with complex, arbitrary shape from remote sensing images of very high resolution. We develop a model based on marked point processes. Its originality lies in its use of arbitrarily-shaped objects as opposed to parametric shape objects, e.g. ellipses or rectangles. The shapes considered are obtained by local minimisation of an active contour energy with weak and then strong shape prior knowledge included. The objects in the final (optimal) configuration are then selected from amongst these candidates by a multiple birth-and-death dynamics embedded in an annealing scheme. The approach is validated on very high resolution images of forest provided by the Swedish University of Agriculture. |
|
2 - Détection et classification de changements sur des scènes urbaines en télédétection. A. Fournier. PhD Thesis, Institut Supérieur de l'Aéronautique et de l'Espace, October 2008. Keywords : détection de changements, Satellite images, lignes de niveau, Classification, Urban areas, statistiques directionnelles.
@PHDTHESIS{Fournier08,
|
author |
= |
{Fournier, A.}, |
title |
= |
{Détection et classification de changements sur des scènes urbaines en télédétection}, |
year |
= |
{2008}, |
month |
= |
{October}, |
school |
= |
{Institut Supérieur de l'Aéronautique et de l'Espace}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00463593/fr/}, |
keyword |
= |
{détection de changements, Satellite images, lignes de niveau, Classification, Urban areas, statistiques directionnelles} |
} |
Résumé :
Cette thèse aborde le problème de la détection de changements sur des images de scènes urbaines en télédétection. Les expériences ont été menées sur des couples d'images satellitaires panchromatiques haute résolution (< 1 m). À travers ce thème général, plusieurs problématiques, correspondant aux divers niveaux d'une chaîne de traitement, sont abordés, depuis la création d'un masque de changements jusqu'au raisonnement à un niveau objet. Dans ce manuscrit, nous abordons premièrement le problème de la détermination d'un masque de changements. Après avoir étudié les limites d'un algorithme de détection de changements, fondé sur l'analyse en composantes principales, nous proposons un algorithme tirant parti de l'invariance des lignes de niveau, fondé sur un modèle d'illumination et des hypothèses sur la régularité de la scène. Par la suite, nous abordons la classification des zones détectées comme changées au cours de l'étape précédente. D'abord, nous nous fondons uniquement sur les radiométries des couples de pixels. Enfin, nous étudions l'intérêt d'une composante géométrique dans la classification. Plus précisément, nous appliquons un algorithme d'approximation polygonale sur les zones connexes issues de la classification précédentes, puis nous classifions les formes obtenues compte tenu des orientations des côtés des polygones obtenus. |
Abstract :
This thesis addresses the problem of change detection on remotely sensed urban scenes. experiences were run on couples of high resolution (<1m) panchromatic satellite images. Through this general theme, different problems, corresponding to different levels of a processing chain were addressed, from the determination of a change mask to an object level reasoning. In this work, we first address the problem of determining a change mask. We study the assets and limits of a change detection algorithm based on a Principal Component Analysis. We then propose a new algorithm that relies on the invariance of the level lines. It is based on a simple illumination model and some hypotheses on the scene regularity. Then we address the classification of the zones detected as changed during our first step. This is done by only considering the radiometries of each pixel couple. Finally, we study the interest of a geometric component in our classification. More precisely, we apply a polygonal approximation algorithm on the connected zones generated by the first classification, then we classify the obtained shapes according to the orientations of the polygon edges. |
|
3 - Détection de zones brûlées après un feu de forêt à partir d'une seule image satellitaire SPOT 5 par techniques SVM. O. Zammit. PhD Thesis, Universite de Nice Sophia Antipolis, September 2008. Keywords : Classification, Satellite images, Burnt areas, Forest fires, Support Vector Machines, Region Growing. Copyright :
@PHDTHESIS{zammit_these_08,
|
author |
= |
{Zammit, O.}, |
title |
= |
{Détection de zones brûlées après un feu de forêt à partir d'une seule image satellitaire SPOT 5 par techniques SVM}, |
year |
= |
{2008}, |
month |
= |
{September}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00345683/fr/}, |
keyword |
= |
{Classification, Satellite images, Burnt areas, Forest fires, Support Vector Machines, Region Growing} |
} |
Résumé :
Cette thèse aborde le problème de cartographie de zones brûlées à partir d'images satellitaires haute résolution. Nos modèles reposent sur le traitement d'une seule image SPOT 5, acquise après le feu afin de détecter automatiquement les zones brûlées.
Le modèle est fondé sur les Séparateurs à Vaste Marge (SVM), une technique de classification supervisée qui a démontré une meilleure précision et une meilleure capacité de généralisation que les algorithmes de classification plus traditionnels. Concernant notre problème de détection, les différentes zones brûlées possèdent des caractéristiques spectrales assez similaires, au contraire des zones non brûlées (végétation, routes, eau, zones urbaines, nuage, ombre...) dont les caractéristiques spectrales varient énormément. Nous proposons donc d'utiliser les One-Class SVM, une technique qui dérive des SVM mais qui n'utilise que des exemples de pixels brûlés pour les phases d'apprentissage et de classification.
Afin de prendre en compte l'information spatiale de l'image, l'algorithme OC-SVM est utilisé comme une technique de croissance de régions, ce qui permet de diminuer les fausses alarmes et d'améliorer les contours des zones brûlées.
De plus, la base d'exemple de pixels brûlés nécessaire à l'apprentissage des techniques SVM est déterminée automatiquement à partir de l'histogramme de l'image.
Finalement, la méthode de classification proposée est testée sur plusieurs images satellitaires afin de valider son efficacité selon le type de végétation et la surface des zones brûlées. Les zones brûlées obtenues sont comparées aux vérités de terrain fournies par le CNES, Infoterra France, le SERTIT, les Services Départementaux d'Incendies et de Secours ou l'Office National des Forêts. |
|
4 - Indexing of satellite images using structural information. A. Bhattacharya. PhD Thesis, Ecole Nationale Supérieure des Télécommunications, 2007. Keywords : Landscape, Segmentation, Features, Extraction, Classification, Data mining.
@PHDTHESIS{bhattacharya_these,
|
author |
= |
{Bhattacharya, A.}, |
title |
= |
{Indexing of satellite images using structural information}, |
year |
= |
{2007}, |
school |
= |
{Ecole Nationale Supérieure des Télécommunications}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_bhattacharya_these.pdf}, |
keyword |
= |
{Landscape, Segmentation, Features, Extraction, Classification, Data mining} |
} |
|
5 - Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Equations aux Dérivées Partielles. J.F. Aujol. PhD Thesis, Universite de Nice Sophia Antipolis, June 2004. Keywords : Image decomposition, Classification, Restoration, Fonctional analysis, Bounded Variation Space, Sobolev space.
@PHDTHESIS{JFAujol,
|
author |
= |
{Aujol, J.F.}, |
title |
= |
{Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Equations aux Dérivées Partielles}, |
year |
= |
{2004}, |
month |
= |
{June}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00006303}, |
pdf |
= |
{http://hal.inria.fr/docs/00/04/68/89/PDF/tel-00006303.pdf}, |
keyword |
= |
{Image decomposition, Classification, Restoration, Fonctional analysis, Bounded Variation Space, Sobolev space} |
} |
Résumé :
Cette thèse est un travail en mathématiques appliquées. Elle aborde quelques problèmes en analyse d'images et utilise des outils mathématiques spécifiques.
L'objectif des deux premières parties de cette thèse est de proposer un modèle pour décomposer une image f'en trois composantes : f=u+v+w. Notre approche repose sur l'utilisation d'espaces mathématiques adaptés à chaque composante: l'espace BV des fonctions à variations bornées pour u, un espace G'proche du dual de BV pour les textures, et un espace de Besov d'exposant négatif E'pour le bruit. Nous effectuons l'étude mathématique complète des différents modèles que nous proposons. Nous illustrons notre approche par de nombreux exemples.Dans la troisième et dernière partie de cette thèse, nous nous intéressons spécifiquement à la composante texturée. Nous proposons un algorithme de classification supervisée pour les images texturées. |
Abstract :
This Ph.D. thesis is a work in applied mathematics. It deals with image processing problems, and uses specific mathematical tools.
The aim of the two first parts is to propose a model for decomposing an image f'into three components : f=u+v+w. Our approach relies on the use of mathematical spaces adapted to each component : the space BV of functions with bounded variations for u, a space G'close to the dual space of BV for v, and a negative Besov space E'for w. We carry out the complete mathematical analysis of the different models we propose. We illustrate our approach with many numerical examples. In the third and last part, we only deal with the texture component of an image. We propose a supervised classification algorithm for textured images. |
|
6 - Analyse de texture dans l'espace hyperspectral par des méthodes probabilistes. G. Rellier. PhD Thesis, Universite de Nice Sophia Antipolis, November 2002. Keywords : Hyperspectral imaging, Texture, Classification, Markov Fields.
@PHDTHESIS{rellier,
|
author |
= |
{Rellier, G.}, |
title |
= |
{Analyse de texture dans l'espace hyperspectral par des méthodes probabilistes}, |
year |
= |
{2002}, |
month |
= |
{November}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00505898}, |
keyword |
= |
{Hyperspectral imaging, Texture, Classification, Markov Fields} |
} |
Résumé :
Dans cette thèse, on aborde le problème de l'analyse de texture pour l'étude des zones urbaines. La texture est une notion spatiale désignant ce qui, en dehors de la couleur ou du niveau de gris, caractérise l'homogénéité visuelle d'une zone donnée d'une image. Le but de cette étude est d'établir un modèle qui permette une analyse de texture prenant en compte conjointement l'aspect spatial et l'aspect spectral, à partir d'images hyperspectrales. Ces images sont caractérisées par un nombre de canaux largement supérieur à celui des images multispectrales classiques. On désire tirer parti de l'information spectrale pour améliorer l'analyse spatiale. Les textures sont modélisées par un champ de Markov gaussien vectoriel, qui permet de prendre en compte les relations spatiales entre pixels, mais aussi les relations inter-bandes à l'intérieur d'un même pixel. Ce champ est adapté aux images hyperspectrales par une simplification évitant l'apparition de problèmes d'estimation statistique dans des espaces de grande dimension. Dans le but d'éviter ces problèmes, on effectue également une réduction de dimension des données grâce à un algorithme de poursuite de projection. Cet algorithme permet de déterminer un sous-espace de projection dans lequel une grandeur appelée indice de projection est optimisée. L'indice de projection est défini par rapport à la modélisation de texture proposée, de manière à ce que le sous-espace optimal maximise la distance entre les classes prédéfinies, dans le cadre de la classification. La méthode d'analyse de texture est testée dans le cadre d'une classification supervisée. Pour ce faire, on met au point deux algorithmes que l'on compare avec des algorithmes classiques utilisant ou non l'information de texture. Des tests sont réalisés sur des images hyperspectrales AVIRIS. |
Abstract :
In this work, we investigate the problem of texture analysis of urban areas. Texture is a spatial concept that refers to the visual homogeneity characteristics of an image, not taking into account color or grey level. The aim of this research is to define a model which allows a joint spectral and spatial analysis of texture, and then to apply this model to hyperspectral images. These images many more bands than classical multispectral images. We intend to make use of spectral information and improve simple spatial analysis. Textures are modeled by a vectorial Gauss-Markov random field, which allows us to take into account the spatial interactions between pixels as well as inter-band relationships for a single pixel. This field has been adapted to hyperspectral images by a simplification which avoids statistical estimation problems common to high dimensional spaces. In order to avoid these problems, we also reduce the dimensionality of the data, using a projection pursuit algorithm. This algorithm determines a projection subspace in which an index, called projection index, is optimized. This index is defined in relation to the proposed texture model so that, when a classification is being carried out, the optimal subspace maximizes the distance between predefined training samples. This texture analysis method is tested within a supervised classification framework. For this purpose, we propose two classification algorithms that we compare to two classical algorithms, one which uses texture information and one which does not. Tests are carried out on AVIRIS hyperspectral images. |
|
7 - Contribution à la classification d'images satellitaires par approche variationnelle et équations aux dérivées partielles. C. Samson. PhD Thesis, Universite de Nice Sophia Antipolis, September 2000. Keywords : Classification, Restoration, Level sets, Active contour.
@PHDTHESIS{cs,
|
author |
= |
{Samson, C.}, |
title |
= |
{Contribution à la classification d'images satellitaires par approche variationnelle et équations aux dérivées partielles}, |
year |
= |
{2000}, |
month |
= |
{September}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://tel.archives-ouvertes.fr/tel-00319709}, |
pdf |
= |
{http://tel.archives-ouvertes.fr/docs/00/31/97/09/PDF/SAMSONthesis.pdf}, |
keyword |
= |
{Classification, Restoration, Level sets, Active contour} |
} |
Résumé :
Ce travail est consacré au développement ainsi qu'à l'implantation de deux modèles variationnels pour la classification d'images. La classification d'images, consistant à attribuer une étiquette à chaque pixel d'une image, concerne de nombreuses applications à partir du moment où cette opération intervient très souvent à la base des chaînes de traitement et d'interprétation d'images. De nombreux modèles de classification ont déjà été développés dans un cadre stochastique ou à travers des approches structurales, mais rarement dans un contexte variationnel qui a déjà montré son efficacité dans divers domaines tels que la reconstruction ou la restauration d'images. Le premier modèle que nous proposons repose sur la minimisation d'une famille de critères dont la suite de solutions converge vers une partition des données composée de classes homogènes séparées par des contours réguliers. Cette approche entre dans le cadre des problèmes à discontinuité libre (it free discontinuity problems) et fait appel à des notions de convergence variationnelle telle que la théorie de la Gamma-convergence. La famille de fonctionnelles que nous proposons de minimiser contient un terme de régularisation, ainsi qu'un terme de classification. Lors de la convergence de cette suite de critères, le modèle change progressivement de comportement en commençant par restaurer l'image avant d'entamer le processus d'étiquetage des pixels. Parallèlement à cette approche, nous avons développé un second modèle de classification mettant en jeu un ensemble de régions et contours actifs. Nous utilisons une approche par ensembles de niveaux pour définir le critère à minimiser, cette approche ayant déjà suscité de nombreux travaux dans le cadre de la segmentation d'images. Chaque classe, et son ensemble de régions et contours associé, est défini à travers une fonction d'ensemble de niveaux. Le critère contient des termes reliés à l'information sur les régions ainsi qu'à l'information sur les contours. Nous aboutissons à la résolution d'un système d'équations aux dérivées partielles couplées et plongées dans un schéma dynamique. L'évolution de chaque région est guidée par un jeu de forces permettant d'obtenir une partition de l'image composée de classes homogènes et dont les frontières sont lisses. Nous avons mené des expériences sur de nombreuses données synthétiques ainsi que sur des images satellitaires SPOT. Nous avons également étendu ces deux modèles au cas de données multispectrales et obtenu des résultats sur des données SPOT XS que nous avons comparé à ceux obtenus par différents modèles. |
Abstract :
This work is devoted to the development and the implementation of variational models for image classification.\ Image classification, which consists in assiging a label to each pixel of a given image, concerns many applications since it is often the basic processing for many image interpretation systems. Many models have been developed within a stochastic framework or using structural approaches, but rarely within a variational framework whose efficiency has largely been proved for a wide variety of problems such as image reconstruction or restoration. The first model we propose herein is based on the minimization of a criterion family whose set of solutions in converging to a partition of the data set composed of homogeneous regions with regularized boundaries. This approach takes place within the context of free boundary problems and we use the Gamma-convergence theory for the theoretical study. The set of functionals we minimize contains a regularization term and a classification one. As the set of functionals is converging, the behavior of the model is progressively changing: the restoration process is vanishing while the labeling one is rising. The second model we propose is based on a set of active regions and contours. We use a level set formulation to define the criterion we want to minimize, this formulation allows a change of topology of the evolving sets. Each class and its associated set of regions and boundaries is defined thanks to a level set function. From the Euler equations, we solve a system of coupled partial differential equations through a dynamical scheme. The evolution of each region is governed by forces constraining the partition to be composed of homogeneous classes with smooth boundaries.\ We have conducted many experiments on both synthetic and real images. We have extended these models to the multispectral case for which the data are a set of images, and we show some results and comparisons on SPOT XS images. |
|
top of the page
These pages were generated by
|