|
Publications of Josiane Zerubia
Result of the query in the list of publications :
64 Technical and Research Reports |
59 - Multiphase Evolution and Image Classification. C. Samson and L. Blanc-Féraud and G. Aubert and J. Zerubia. Research Report 3662, INRIA, April 1999.
@TECHREPORT{rr3662,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Multiphase Evolution and Image Classification}, |
year |
= |
{1999}, |
month |
= |
{April}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{3662}, |
url |
= |
{https://hal.inria.fr/inria-00073010}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73010/filename/RR-3662.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/30/10/PS/RR-3662.ps}, |
keyword |
= |
{} |
} |
Résumé :
Dans ce rapport, nous présentons un modèle de classification supervisée basé sur une approche variationnelle. Nous souhaitons obtenir une partition optimale de l'image constituée de classes homogènes séparées par des interface- s régulières. Pour cela, nous représentons les régions définies par les classes ainsi que leurs interfaces par des fonctions d'ensembles de niveaux. Nous définissons une fonctionnelle sur ces ensembles de niveaux dont le minimum est une partition optimale. Les Equations aux Dérivées Partielles (EDP) relatives à la minimisation de la fonctionnelle sont couplées et plongées dans une schéma dynamique. En fixant un ensemble de niveaux initial, les différents termes des EDP guident l'évolution des interfaces (ensembles de niveaux zéro) vers les frontières de la partition optimale, par le biais de forces internes (régularité de l'interface) et externes (attache aux données et pas de chevauchement des régions ni de vide dans la partition). Nous avons effectué de nombreux tests sur des images synthétiques ainsi que sur des images réelles. |
Abstract :
This report presents a supervised classification model based on a variational approach. This model is devoted to find an optimal partition compound of homogeneous classes with regular interfaces. We represent the regions of the image defined by the classes and their interfaces by level set functions, and we define a functional whose minimum is an optimal partition. The coupled Partial Differential Equations (PDE) related to the minimization of the functional are considered through a dynamical scheme. Given an initial interface set (zero level set), the different terms of the PDE's are governing the motion of interfaces such that, at convergence, we get an optimal partition as defined above. Each interface is guided by internal forces (regularity of the interface), and external ones (data term, no vacuum, no regions overlapping). We conducted several experiments on both synthetic an real images. |
|
60 - Indexing and retrieval in multimedia libraries through parametric texture modeling using the 2D Wold decomposition. R. Stoica and J. Zerubia and J.M. Francos. Research Report 3594, Inria, December 1998. Keywords : Markov Fields, Texture, Segmentation, Indexation.
@TECHREPORT{stoica98,
|
author |
= |
{Stoica, R. and Zerubia, J. and Francos, J.M.}, |
title |
= |
{Indexing and retrieval in multimedia libraries through parametric texture modeling using the 2D Wold decomposition}, |
year |
= |
{1998}, |
month |
= |
{December}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3594}, |
url |
= |
{https://hal.inria.fr/inria-00073085}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73085/filename/RR-3594.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/30/85/PS/RR-3594.ps}, |
keyword |
= |
{Markov Fields, Texture, Segmentation, Indexation} |
} |
Résumé :
Ce rapport présente une méthode paramétrique permettant de faire de l'indexati- on et de la recherche dans une base de données multimédia. L'indexation (étiquetage) et la recherche de données multimédia sont réalisées grâce à la modélisation paramétrique de textures qui se trouvent dans les images de la base de données. Les textures sont caracterisées par des paramètres qui servent d'indices pour la recherche dans la base de données. Afin de pouvoir identifier les différentes régions texturées d'une image et estimer les paramètres correspondants, un algorithme de segmentation-estimatio- n est proposé dans ce rapport, qui fait appel à une décomposition de Wold 2D pour le modèle de texture et à un modèle markovien pour l'étiquetage. L'indexation nécessite de définir une distance entre les images. Une nouvelle distance, inspirée de la distance de Kullback, est décrite dans ce rapport. Elle utilise les paramètres estimés correspondants au modèle 2D de chaque texture. Les résultats obtenus relativement à la segmentation et à l'indexatio- n sont proches de ceux obtenus par un opérateur humain. |
Abstract :
This paper presents a parametric method for indexing and retrieval of multimedia data in digital libraries. %Indexing (labeling) and retrieval %of multimedia data, based on the properties %of the imagery components of the stored data record, are derived. Indexing (labeling) and retrieval of the multimedia data are performed using parametric modeling of the textured segments found in the data imagery components. The estimated parametric models of the textured segments serve as their indices, and hence as indices of the entire image, as well as of the multimedia record which the image is part thereof. To achieve the ability to identify textured image regions and estimate their parameters, a joint segmentation-estimation algorithm that combines the 2-D Wold decomposition based texture model with a Markovian labeling process, is derived. Ordering and indexing of images require a definition of a distance measure between images. Using the framework of the Kullback distance between probability distributions, a new rigorous distance measure between textures is derived. The distance between any two textured image segments is evaluated using their estimated parametric models. The proposed segmentation, distance evaluation, and indexing methods are shown to produce comparable results to those obtained by a human viewer. |
|
61 - Image Classification Using a Variational Approach. C. Samson and L. Blanc-Féraud and G. Aubert and J. Zerubia. Research Report 3523, Inria, October 1998. Keywords : Classification, Variational methods.
@TECHREPORT{samsonRR98,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Image Classification Using a Variational Approach}, |
year |
= |
{1998}, |
month |
= |
{October}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3523}, |
url |
= |
{https://hal.inria.fr/inria-00073161}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73161/filename/RR-3523.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/31/61/PS/RR-3523.ps}, |
keyword |
= |
{Classification, Variational methods} |
} |
Résumé :
Dans ce rapport nous présentons un modèle variationnel destiné à la classification d'images avec processus de régularisation préservant les contours. La notion de classification étant par nature discrète (i.e. attribuer un label à chaque pixel de l'image), il existe de nombreux modèles de classification par approche probabiliste, mais les modèles variationnels abordant ce sujet sont rares. Ces dernières années, l'approche variationnelle a montré sont efficacité dans le cadre de la restauration d'images avec prise en compte des discontinuités. Dans ce travail, nous ajoutons un processus de classification permettant d'obtenir une solution formée de régions homogènes dont les frontières sont régulières (une région étant définie par l'ensemble des pixels appartenant à la même classe). La justification théorique de notre modèle repose sur les travaux effectués dans le cadre des problèmes de transitions de phases en mécanique. L'algorithme que nous proposons est relativement rapide et facile à mettre en oeuvre. Nous comparons les résultats obtenus sur des images synthétiques et satellitaires avec ceux produits par un modèle stochastique avec régularisation de Potts. |
Abstract :
Herein, we present a variational model devoted to image classification coupled with an edge-preserving regularization process. The discrete nature of classification (i.e. to attribute a label to each pixel) has ledto the development of many probabilistic image classification models, but rarely to variational ones. In the last decade, the variational approach has proven its efficiency in the field of edge-preserving restoration. In this paper we add a classification capability which contributes to provide images compound of homogeneous regions with regularized boundaries, a region being defined as a set of pixels belonging to the same class. The soundness of our model is based on the works developed on the phase transitions theory in mechanics. The proposed algorithm is fast, easy to implement, and efficient. We compare our results on both synthetic and satellite images with the ones obtained by a stochastic model using a Potts regularization. |
|
62 - Mise en correspondance et recalage de graphes : application aux réseaux routiers extraits d'un couple carte/image. C. Hivernat and X. Descombes and S. Randriamasy and J. Zerubia. Research Report 3529, Inria, October 1998. Keywords : Markov Fields, Road network, Graph matching.
@TECHREPORT{hiv98,
|
author |
= |
{Hivernat, C. and Descombes, X. and Randriamasy, S. and Zerubia, J.}, |
title |
= |
{Mise en correspondance et recalage de graphes : application aux réseaux routiers extraits d'un couple carte/image}, |
year |
= |
{1998}, |
month |
= |
{October}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3529}, |
url |
= |
{https://hal.inria.fr/inria-00073156}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73156/filename/RR-3529.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/31/56/PS/RR-3529.ps}, |
keyword |
= |
{Markov Fields, Road network, Graph matching} |
} |
Résumé :
Nous considérons le problème de la mise en correspondance du réseau routier extrait d'une image SPOT avec celui fourni par une base de données cartographi- que. Cette mise en correspondance comprend deux étapes principales fondées sur des modélisations markoviennes. Dans la première étape, les pixels de l'image sont appariés aux segments cartographiques. Le résultat de cette étape permet de découper le réseau obtenu sur l'image sous forme de chaînes. Ces chaînes sont ensuite mises en correspondance avec les segments cartographiques. Pour finir, une étape de qualification des résultats permet de fournir les primitives fiables afin d'affiner le recalage initial. En bouclant l'algorithme sur la mise en correspondance nous obtenons un processus itératif permettant d'améliorer à la fois le recalage et la mise en correspondance. La qualification automatique des résultats est également une aide à l'interprétation pour la mise à jour cartographique. |
Abstract :
We consider herein the matching problem between the road network extracted from a SPOT image and the roads contained in a cartographic database. This matching consists of two main steps based on a Markovian modelling. During the first step, the image road pixels are associated to the map segments. the derived result allows us to split the image network into chains. These chains are matched with the map segments. Finally, an automatic validation procedure provides matched chains/segments which are used to improve the initial registration. An iterative scheme is obtained by performin- g a new matching. The automatic result validation is also helpful for map updating. |
|
63 - Estimation d'hyperparamètres pour la restauration d'images satellitaires par une méthode MCMCML. A. Jalobeanu and L. Blanc-Féraud and J. Zerubia. Research Report 3469, Inria, August 1998. Keywords : Markov Fields, Regularization, Variational methods, Likelihood maximum.
@TECHREPORT{jaloRR98,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Estimation d'hyperparamètres pour la restauration d'images satellitaires par une méthode MCMCML}, |
year |
= |
{1998}, |
month |
= |
{August}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3469}, |
url |
= |
{https://hal.inria.fr/inria-00073221}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73221/filename/RR-3469.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/32/21/PS/RR-3469.ps}, |
keyword |
= |
{Markov Fields, Regularization, Variational methods, Likelihood maximum} |
} |
Résumé :
Le problème que nous abordons ici est la déconvolution d'images satellitaires, qui sont dégradées par l'optique et l'électronique utilisées pour leur acquisition. Les dégradations sont connues : les images sont convoluées par un opérateur H, et la variance du bruit N additif, blanc et gaussien, est connue. Nous utilisons un modèle de régularisation introduisant une fonction de potentiel phi, qui interdit l'amplification du bruit lors de la restauration tout en préservant les discontinuités. Ce modèle admet deux hyperparamètres lambda et delta. Nous nous intéressons ici à l'estimation des hyperparamètres optimaux afin d'effectuer la déconvolution de manière automatique. Nous proposons pour cela d'utiliser l'estimateur du maximum de vraisemblance appliqué à l'image observée. Cet estimateur constitue le critère que nous allons optimiser. Pour évaluer ses dérivées, nous devons estimer des espérances calculées sur des échantillon- s, tenant compte des données observées et de l'a priori imposé. Cette probabilité faisant intervenir l'opérateur de convolution, il est très difficile d'utiliser un échantillonneur classique. Nous avons développé un algorithme de type Geman-Yang modifié, utilisant une variable auxiliaire, ainsi qu'une transformée en cosinus. Nous présentons à cette occasion un nouvel algorithme de déconvolution, rapide, qui est dérivé de cette méthode d'échantillonnage. Nous proposons un algorithme "MCMCML" permettant d'effectuer simultanément l'estimation des hyperparamètres lambda et delta et la restauration de l'image dégradée. Une étude des échantillonneurs (y compris ceux de Gibbs et Metropolis), portant sur la vitesse de convergence et les difficultés de calcul liées à l'attache aux données, a également été réalisée. |
Abstract :
This report deals with satellite image restoration. These images are corrupted by an optical blur and electronic noise, due to the physics of the sensors. The degradation model is known : blurring is modeled by convolution, with a linear operator H, and the noise is supposed to be additive, white and Gaussian, with a known variance. The recovery problem is ill-posed and therefore must be regularized. We use a regularization model which introduces a phi function, which avoids noise amplification while preserving image discontinuities (ie. edges) of the restored image. This model exhibits two hyperparameters (lambda and delta). Our goal is to estimate the optimal parameters in order to reconstruct images automatically. Herein, we propose to use the Maximum Likelihood estimator, applied to the observed image. To optimize this criterion, we must estimate expectations by sampling (samples are extracted from a Markov chain) to evaluate its derivatives. These samples are images whose probability takes into account the convolution operator. Thus, it is very difficult to obtain them directly by using a standard sampler. We have developped a modified Geman-Yang algorithm, using an auxiliary variable and a cosine transform. We also present a new reconstruc- tion method based on this sampling algorithm. We detail the MCMCML algorithm which ables to simultaneously estimate lambda and delta parameters, and to reconstruct the corrupted image. An experimental study of samplers (including Gibbs and Metropolis algorithms), with respect to the rate of convergence and the difficulties of dependent data sampling, is also presented in this report. |
|
64 - Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne. A. Lorette and X. Descombes and J. Zerubia. Research Report 3423, Inria, May 1998. Keywords : Texture, Markov Fields, Urban areas, Entropy.
@TECHREPORT{loretteRR98,
|
author |
= |
{Lorette, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne}, |
year |
= |
{1998}, |
month |
= |
{May}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3423}, |
url |
= |
{http://hal.inria.fr/inria-00073267}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/32/67/PDF/RR-3423.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/32/67/PS/RR-3423.ps}, |
keyword |
= |
{Texture, Markov Fields, Urban areas, Entropy} |
} |
Résumé :
Pour délimiter un masque urbain précis à partir d'une image satellitaire la seule information du niveau de gris est insuffisante. Laplupart des méthodes font donc appel à une analyse de la texture de l'image. Nous nous sommes placés dans ce cadre. Dans une première étape, nous avons défini un nouveau paramètre de texture à partir d'un modèle markovien gaussien. Nous obtenons ce nouveau paramètre en calculant la variance conditionnelle de l'image dans huit directions. Ainsi, nous éliminons la mauvaise classification d'objets ayant une orientation privilégiée tels que les vignes et les serres par exemple. Dans une seconde étape, nous proposons un algorithme de emphfuzzy Cmeans modifié incluant un terme d'entropie et pour lequel le nombre de classes n'est pas fixé a priori. Cet algorithme nous permet d'obtenir une première classification de l'image. Enfin, nous régularisons l'image ainsi obtenue grâce à une modélisation par champs de Markov. Des résultats obtenus sur des simulations d'images SPOT5 fournies par le CNES sont présentés. |
Abstract :
Urban areas cannot be extracted from satellite images through only grey level information. Hence most methods analyze the texture of the image to discriminate between urban areas and non urban areas. We define a new texture parameter derived from a Markovian Gaussian model. This new parameter takes into account the variance of the image in eight directions- . Consequently it copes with the misclassification of objects with a privileged orientation like vineyards or greenhouses for instance. Afterwards we develop a modified fuzzy Cmeans algorithm including an entropy term. The advantage of such an algorithm is that the number of classes does not need to be known a priori. By applying this modified fuzzy Cmeans algorithm on the parameter image we obtain a first classification. Finally we regularize the segmented image by using a Markov random field modelling. Some results on SPOT5 simulated images are presented. These images are provided by the CNES (French Space Agency). |
|
top of the page
7 Collection articles or Books chapters |
1 - Probability Density Function Estimation for Classification of High Resolution SAR Images. V. Krylov and G. Moser and S. Serduc and J. Zerubia. In Signal Processing for Remote Sensing, Second Edition, pages 339-363, Ed. C. Chen., Publ. Taylor & Francis, February 2012.
@INCOLLECTION{Taylor12,
|
author |
= |
{Krylov, V. and Moser, G. and Serduc, S. and Zerubia, J.}, |
title |
= |
{Probability Density Function Estimation for Classification of High Resolution SAR Images}, |
year |
= |
{2012}, |
month |
= |
{February}, |
booktitle |
= |
{Signal Processing for Remote Sensing, Second Edition}, |
pages |
= |
{339-363}, |
editor |
= |
{C. Chen.}, |
publisher |
= |
{Taylor & Francis}, |
url |
= |
{https://www.crcpress.com/Signal-and-Image-Processing-for-Remote-Sensing-Second-Edition/Chen/9781439855966}, |
pdf |
= |
{https://hal.inria.fr/hal-00729044/document}, |
keyword |
= |
{} |
} |
|
2 - Detection and Recognition of a Collection of Objects in a Scene. X. Descombes and I. H. Jermyn and J. Zerubia. In Inverse Problems in Vision and 3D Tomography, pages 155--189, series DSIP, Ed. ISTE, London ; John Wiley and Sons, New York, 2010.
@INCOLLECTION{Wiley10,
|
author |
= |
{Descombes, X. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Detection and Recognition of a Collection of Objects in a Scene}, |
year |
= |
{2010}, |
booktitle |
= |
{Inverse Problems in Vision and 3D Tomography}, |
pages |
= |
{155--189}, |
series |
= |
{DSIP}, |
editor |
= |
{ISTE, London ; John Wiley and Sons, New York}, |
url |
= |
{http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848211724.html}, |
pdf |
= |
{http://onlinelibrary.wiley.com/doi/10.1002/9781118603864.ch5/summary}, |
keyword |
= |
{} |
} |
|
3 - Detection d’objets dans une scene. X. Descombes and I. H. Jermyn and J. Zerubia. In Problemes inverses en imagerie et en vision, pages 167--204, series Tr. IC2, Ed. Ali Mohammad-Djafari, Publ. Ed. Hermes, 2009. Copyright : Ed. Hermes
@INCOLLECTION{DESCOMBES_DETECTION,
|
author |
= |
{Descombes, X. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Detection d’objets dans une scene}, |
year |
= |
{2009}, |
booktitle |
= |
{Problemes inverses en imagerie et en vision}, |
pages |
= |
{167--204}, |
series |
= |
{Tr. IC2}, |
editor |
= |
{Ali Mohammad-Djafari}, |
publisher |
= |
{Ed. Hermes}, |
url |
= |
{http://www.lavoisier.fr/livre/electricite-electronique/problemes-inverses-en-imagerie-et-en-vision-en-2-volumes-inseparables/mohammad-djafari/descriptif-9782746219977}, |
keyword |
= |
{} |
} |
|
4 - Bayesian estimation of blur and noise in remote sensing imaging. A. Jalobeanu and J. Zerubia and L. Blanc-Féraud. In Blind image deconvolution: theory and applications, Ed. P. Campisi and K. Egiazarian, Publ. CRC Press, 2007.
@INCOLLECTION{jalo2006,
|
author |
= |
{Jalobeanu, A. and Zerubia, J. and Blanc-Féraud, L.}, |
title |
= |
{Bayesian estimation of blur and noise in remote sensing imaging}, |
year |
= |
{2007}, |
booktitle |
= |
{Blind image deconvolution: theory and applications}, |
editor |
= |
{P. Campisi and K. Egiazarian}, |
publisher |
= |
{CRC Press}, |
url |
= |
{https://www.crcpress.com/Blind-Image-Deconvolution-Theory-and-Applications/Campisi-Egiazarian/9780849373671}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_jalo2006.pdf}, |
keyword |
= |
{} |
} |
|
top of the page
These pages were generated by
|