|
Publications of M. Pierrot-Deseilligny
Result of the query in the list of publications :
4 Articles |
1 - Structural approach for building reconstruction from a single DSM. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(1): pages 135-147, January 2010.
@ARTICLE{lafarge_pami09,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Structural approach for building reconstruction from a single DSM}, |
year |
= |
{2010}, |
month |
= |
{January}, |
journal |
= |
{IEEE Trans. Pattern Analysis and Machine Intelligence}, |
volume |
= |
{32}, |
number |
= |
{1}, |
pages |
= |
{135-147}, |
url |
= |
{http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.281}, |
keyword |
= |
{} |
} |
Abstract :
We present a new approach for building reconstruction from a single Digital Surface Model (DSM). It treats buildings as an assemblage of simple urban structures extracted from a library of 3D parametric blocks (like a LEGO set). First, the 2D-supports of the urban structures are extracted either interactively or automatically. Then, 3D-blocks are placed on the 2D-supports using a Gibbs model which controls both the block assemblage and the fitting to data. A Bayesian decision finds the optimal configuration of 3D--blocks using a Markov Chain Monte Carlo sampler associated with original proposition kernels. This method has been validated on multiple data set in a wide-resolution interval such as 0.7 m satellite and 0.1 m aerial DSMs, and provides 3D representations on complex buildings and dense urban areas with various levels of detail. |
|
2 - Automatic Building Extraction from DEMs using an Object Approach and Application to the 3D-city Modeling. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Journal of Photogrammetry and Remote Sensing, 63(3): pages 365-381, May 2008. Keywords : Building extraction, 3D reconstruction, Digital Elevation Model, Stochastic geometry.
@ARTICLE{lafarge_jprs08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Automatic Building Extraction from DEMs using an Object Approach and Application to the 3D-city Modeling}, |
year |
= |
{2008}, |
month |
= |
{May}, |
journal |
= |
{Journal of Photogrammetry and Remote Sensing}, |
volume |
= |
{63}, |
number |
= |
{3}, |
pages |
= |
{365-381}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_lafarge_jprs08.pdf}, |
keyword |
= |
{Building extraction, 3D reconstruction, Digital Elevation Model, Stochastic geometry} |
} |
Abstract :
In this paper, we present an automatic building extraction method from Digital Elevation Models based on an object approach.
First, a rough approximation of the building footprints is realized by a method based on marked point processes: the building
footprints are modeled by rectangle layouts. Then, these rectangular footprints are regularized by improving the connection
between the neighboring rectangles and detecting the roof height discontinuities. The obtained building footprints are structured
footprints: each element represents a specific part of an urban structure. Results are finally applied to a 3D-city modeling process. |
|
3 - Automatic building 3D reconstruction from DEMs. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Revue Française de Photogrammétrie et de Télédétection (SFPT), 184: pages 48--53, 2006. Keywords : 3D-reconstruction, Digital Elevation Model, Building extraction, dense urban areas.
@ARTICLE{lafarge_sfpt06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Automatic building 3D reconstruction from DEMs}, |
year |
= |
{2006}, |
journal |
= |
{Revue Française de Photogrammétrie et de Télédétection (SFPT)}, |
volume |
= |
{184}, |
pages |
= |
{48--53}, |
url |
= |
{http://isprs.free.fr/documents/Papers/T07-32.pdf}, |
keyword |
= |
{3D-reconstruction, Digital Elevation Model, Building extraction, dense urban areas} |
} |
Abstract :
This paper is about an example of PLEIADES applications, the 3D building reconstruction. The future PLEIADES satellites are
especially well adapted to deal with 3D building reconstruction through the sub-metric resolution of images and its stereoscopic characteristics. We propose a fully automatic 3D-city model of dense urban areas using a parametric approach. First, a Digital Elevation
Model (DEM) is generated using an algorithm based on a maximum-flow formulation using three views. Then, building footprints are extracted from the DEM through an automatic method based on marked point processes : they are represented by an association of rectangles that we regularize by improving the connection of the neighboring rectangles and the facade discontinuity detection. Finally, a 3D-reconstruction method based on a skeleton process which allows to model the rooftops is proposed from the DEM and the building footprints. The different building heights constitute parameters which are estimated and then regularized by the ”K-means” algorithm including an entropy term. |
|
4 - Modèle Paramétrique pour la Reconstruction Automatique en 3D de Zones Urbaines Denses à partir d'Images Satellitaires Haute Résolution. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Revue Française de Photogrammétrie et de Télédétection (SFPT), 180: pages 4--12, 2005. Keywords : 3D reconstruction, Urban areas, Bayesian approach, MCMC, Satellite images. Copyright : SFPT
@ARTICLE{lafarge_sfpt05,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Modèle Paramétrique pour la Reconstruction Automatique en 3D de Zones Urbaines Denses à partir d'Images Satellitaires Haute Résolution}, |
year |
= |
{2005}, |
journal |
= |
{Revue Française de Photogrammétrie et de Télédétection (SFPT)}, |
volume |
= |
{180}, |
pages |
= |
{4--12}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2005_lafarge_sfpt05.pdf}, |
keyword |
= |
{3D reconstruction, Urban areas, Bayesian approach, MCMC, Satellite images} |
} |
|
top of the page
7 Conference articles |
1 - A new computationally efficient stochastic approach for building reconstruction from satellite data. F. Lafarge and M. Durupt and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In XXI ISPRS Congress, Part A, Beijing, China, July 2008. Note : Copyright ISPRS Keywords : 3D reconstruction, Building, satellite data, stochastic approach, jump process.
@INPROCEEDINGS{lafarge_isprs08,
|
author |
= |
{Lafarge, F. and Durupt, M. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A new computationally efficient stochastic approach for building reconstruction from satellite data}, |
year |
= |
{2008}, |
month |
= |
{July}, |
booktitle |
= |
{XXI ISPRS Congress, Part A}, |
address |
= |
{Beijing, China}, |
note |
= |
{Copyright ISPRS}, |
url |
= |
{http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/40.pdf}, |
keyword |
= |
{3D reconstruction, Building, satellite data, stochastic approach, jump process} |
} |
|
2 - Building reconstruction from a single DEM. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, U.S., June 2008.
@INPROCEEDINGS{lafarge_cvpr08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Building reconstruction from a single DEM}, |
year |
= |
{2008}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Anchorage, Alaska, U.S.}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_lafarge_cvpr08.pdf}, |
keyword |
= |
{} |
} |
|
3 - Automatic 3D modeling of urban scenes from satellite images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. SPACEAPPLI, Toulouse, France, April 2008.
@INPROCEEDINGS{lafarge_spaceappli08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Automatic 3D modeling of urban scenes from satellite images}, |
year |
= |
{2008}, |
month |
= |
{April}, |
booktitle |
= |
{Proc. SPACEAPPLI}, |
address |
= |
{Toulouse, France}, |
url |
= |
{http://www.toulousespaceshow.eu/tss08/spaceappli08/index.htm}, |
keyword |
= |
{} |
} |
|
4 - 3D city modeling based on Hidden Markov Model. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE International Conference on Image Processing (ICIP), San Antonio, U.S., September 2007. Note : Copyright IEEE Keywords : 3D reconstruction, Building, Hidden Markov Model.
@INPROCEEDINGS{lafarge_icip07,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{3D city modeling based on Hidden Markov Model}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{San Antonio, U.S.}, |
note |
= |
{Copyright IEEE}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4379207}, |
keyword |
= |
{3D reconstruction, Building, Hidden Markov Model} |
} |
|
5 - An Automatic Building Reconstruction Method : A Structural Approach Using High Resolution Images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE International Conference on Image Processing (ICIP), Atlanta, October 2006. Keywords : 3D reconstruction, Buildings, RJMCMC, Structural approach, Satellite images. Copyright : IEEE
@INPROCEEDINGS{lafarge_icip06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An Automatic Building Reconstruction Method : A Structural Approach Using High Resolution Images}, |
year |
= |
{2006}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Atlanta}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_icip06.pdf}, |
keyword |
= |
{3D reconstruction, Buildings, RJMCMC, Structural approach, Satellite images} |
} |
|
6 - Automatic 3D Building Reconstruction from DEMs: an Application to PLEIADES Simulations. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. International Society for Photogrammetry and Remote Sensing Commission I Symposium (ISPRS), Marne La Vallee, France, July 2006. Keywords : 3D reconstruction, Digital Elevation Model, Building extraction, Dense urban areas, PLEIADES simulations.
@INPROCEEDINGS{lafarge_isprs06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Automatic 3D Building Reconstruction from DEMs: an Application to PLEIADES Simulations}, |
year |
= |
{2006}, |
month |
= |
{July}, |
booktitle |
= |
{Proc. International Society for Photogrammetry and Remote Sensing Commission I Symposium (ISPRS)}, |
address |
= |
{Marne La Vallee, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_isprs06.pdf}, |
keyword |
= |
{3D reconstruction, Digital Elevation Model, Building extraction, Dense urban areas, PLEIADES simulations} |
} |
|
7 - An Automatic 3D City Model : a Bayesian Approach using Satellite Images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toulouse, France, May 2006. Note : Copyright IEEE Keywords : 3D reconstruction, Buildings, MCMC, Digital Elevation Model (DEM).
@INPROCEEDINGS{florenticassp06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An Automatic 3D City Model : a Bayesian Approach using Satellite Images}, |
year |
= |
{2006}, |
month |
= |
{May}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Toulouse, France}, |
note |
= |
{Copyright IEEE}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_florenticassp06.pdf}, |
keyword |
= |
{3D reconstruction, Buildings, MCMC, Digital Elevation Model (DEM)} |
} |
|
top of the page
3 Technical and Research Reports |
1 - A structural approach for 3D building reconstruction. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Research Report 6048, INRIA, November 2006. Keywords : 3D reconstruction, Structural approach, Building, RJMCMC, Viterbi.
@TECHREPORT{Lafarge_rr_6048,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A structural approach for 3D building reconstruction}, |
year |
= |
{2006}, |
month |
= |
{November}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6048}, |
url |
= |
{https://hal.inria.fr/inria-00114338}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Lafarge_rr_6048.pdf}, |
keyword |
= |
{3D reconstruction, Structural approach, Building, RJMCMC, Viterbi} |
} |
|
2 - An automatic building extraction method : Application to the 3D-city modeling. F. Lafarge and P. Trontin and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Research Report 5925, INRIA, France, May 2006. Keywords : Object extraction, Marked point process, 3D reconstruction, Urban areas, Satellite images, Digital Elevation Model (DEM).
@TECHREPORT{lafarge_rr_may06,
|
author |
= |
{Lafarge, F. and Trontin, P. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An automatic building extraction method : Application to the 3D-city modeling}, |
year |
= |
{2006}, |
month |
= |
{May}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5925}, |
address |
= |
{France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_rr_may06.pdf}, |
keyword |
= |
{Object extraction, Marked point process, 3D reconstruction, Urban areas, Satellite images, Digital Elevation Model (DEM)} |
} |
|
3 - A Parametric Model for Automatic 3D Building Reconstruction from High Resolution Satellite Images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Research Report 5687, INRIA, France, September 2005. Keywords : 3D reconstruction, Buildings, RJMCMC, Digital Elevation Model (DEM).
@TECHREPORT{5687,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A Parametric Model for Automatic 3D Building Reconstruction from High Resolution Satellite Images}, |
year |
= |
{2005}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5687}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070326/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70326/filename/RR-5687.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/26/PS/RR-5687.ps}, |
keyword |
= |
{3D reconstruction, Buildings, RJMCMC, Digital Elevation Model (DEM)} |
} |
Résumé :
Dans ce rapport, nous développons un modèle paramétrique pour la reconstruction automatique de bâtiments en 3D fondé sur une approche bayésienne à partir de simulations PLEIADES. Les images satellitaires haute résolution représentent un nouveau type de données permettant de traiter les problèmes de reconstruction 3D de bâtiments. Leur résolution ``relativement basse'' et leur faible rapport signal sur bruit pour ce type de problèmes ne permet pas l'utilisation des méthodes standard développées dans le cas des images aériennes. Nous proposons une approche paramétrique utilisant des Modèles Numériques d'Elévation (MNE) et les empreintes de bâtiments associées modélisées par rectangles. La méthode proposée est fondée sur une approche bayésienne. Une technique de type de Monte Carlo par Chaînes de Markov est utilisée afin d'optimiser le modèle énergétique. |
Abstract :
This report develops a parametric model for automatic 3D building reconstruction based on a Bayesian approach from PLEIADES simulations. High resolution satellite images are a new kind of data to deal with 3D building reconstruction problems. Their ``relatively low'' resolution and low signal noise ration do not allow to use standard methods developed for the aerial image case. We propose a parametric approach using Digital Elevation Models (DEM) and associated rectangular building footprints. The proposed method is based on a Bayesian approach. A Markov Chain Monte Carlo technique is used to optimize the energy model. |
|
top of the page
These pages were generated by
|