|
Publications of Xavier Descombes
Result of the query in the list of publications :
36 Technical and Research Reports |
9 - An automatic building extraction method : Application to the 3D-city modeling. F. Lafarge and P. Trontin and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Research Report 5925, INRIA, France, May 2006. Keywords : Object extraction, Marked point process, 3D reconstruction, Urban areas, Satellite images, Digital Elevation Model (DEM).
@TECHREPORT{lafarge_rr_may06,
|
author |
= |
{Lafarge, F. and Trontin, P. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An automatic building extraction method : Application to the 3D-city modeling}, |
year |
= |
{2006}, |
month |
= |
{May}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5925}, |
address |
= |
{France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_rr_may06.pdf}, |
keyword |
= |
{Object extraction, Marked point process, 3D reconstruction, Urban areas, Satellite images, Digital Elevation Model (DEM)} |
} |
|
10 - A Non-Bayesian Model for Tree Crown Extraction using Marked Point Processes. G. Perrin and X. Descombes and J. Zerubia. Research Report 5846, INRIA, France, February 2006. Keywords : Data energy, Object extraction, Tree Crown Extraction, Marked point process, Stochastic geometry, 3D reconstruction.
@TECHREPORT{rr_perrin_nonbay_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Non-Bayesian Model for Tree Crown Extraction using Marked Point Processes}, |
year |
= |
{2006}, |
month |
= |
{February}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5846}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070180/fr/}, |
pdf |
= |
{http://hal.inria.fr/inria-00070180/fr/}, |
keyword |
= |
{Data energy, Object extraction, Tree Crown Extraction, Marked point process, Stochastic geometry, 3D reconstruction} |
} |
Résumé :
Dans ce rapport de recherche, notre but est d'extraire les houppiers à partir d'images aériennes de forêts à l'aide de processus ponctuels marqués d'ellipses ou d'ellipsoïdes. Notre approche consiste, en effet, à modéliser les données comme des réalisations de tels processus. Une fois l'objet géométrique de référence choisi, nous échantillonnons le processus objet défini par une densité grâce à un algorithme MCMC à sauts réversibles, optimisé par un recuit simulé afin d'extraire la meilleure configuration d'objets, qui nous donne l'extraction recherchée.
Nous obtenons ainsi le nombre des arbres, leur localisation et leur taille. Nous présentons, dans ce rapport, un modèle 2D et un modèle 3D pour extraire des statistiques forestières. Ceux-ci sont testés sur des images aériennes infrarouge couleur très haute résolution fournies par l'Inventaire Forestier National (IFN). |
Abstract :
High resolution aerial and satellite images of forests have a key role to play in natural resource management. As they enable forestry managers to study forests at the scale of trees, it is now possible to get a more accurate evaluation of the resources. Automatic algorithms are needed in that prospect to assist human operators in the exploitation of these data. In this paper, we present a stochastic geometry approach to extract 2D and 3D parameters of the trees, by modelling the stands as some realizations of a marked point process of ellipses or ellipsoids, whose points are the locations of the trees and marks their geometric features. As a result we obtain the number of stems, their position, and their size. This approach yields an energy minimization problem, where the energy embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted, in 2D and 3D. Results are shown on Colour Infrared aerial images provided by the French National Forest Inventory (IFN) |
|
11 - A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models.. M. Ortner and X. Descombes and J. Zerubia. Research Report 5712, INRIA, France, October 2005. Keywords : Marked point process, Buildings, RJMCMC.
@TECHREPORT{ortner-RR05,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models.}, |
year |
= |
{2005}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5712}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070305}, |
keyword |
= |
{Marked point process, Buildings, RJMCMC} |
} |
Résumé :
Ce travail présente une approche par géométrie stochastique pour l'extraction de primitives dans les images. Ces structures sont modélisées sous forme de réalisations d'un processus ponctuel spatial marqué dont les points sont des formes géométriques. Cette approche permet d'incorporer un modèle a priori sur la répartition spatiale des structures d'intérêt. Plus spécifiquement, nous présentons un modèle fondé sur l'interaction d'un processus de rectangles avec un processus de segments. Le premier est dédié à la détection des zones homogènes dans l'image et le second à la détection des discontinuités significatives. Nous définissons l'énergie d'une configuration de façon à favoriser la connection entre les segments, l'alignement des rectangles et l'adéquation entre les deux types de primitives. L'estimation repose sur l'emploi d'une technique de recuit-simulé. Le modèle proposé est appliqué à l'analyse de Modèles Numériques d'Elevation. Nous présentons des résultats sur des données réelles fournies par l'Institut Géographique National (IGN). Nous montrons en particulier que l'approche est efficace sur des données de types très différents. |
Abstract :
A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models.
This work presents a framework for automatic feature extraction from images using stochastic geometry. Features in images are modeled as realizations of a spatial point process of geometrical shapes. This framework allows the incorporation of a prior knowledge on the spatial repartition of features. More specifically, we present a model based on the superposition of a process of segments and a process of rectangles. The former is dedicated to the detection of linear networks of discontinuities, while the latter aims at segmenting homogeneous areas. An energy is defined, favoring connections of segments, alignments of rectangles, as well as a relevant interaction between both types of objects. The estimation is performed by minimizing the energy using a simulated annealing algorithm. The proposed model is applied to the analysis of Digital Elevation Models (DEMs). These images are raster data representing the altimetry of a dense urban area. We present results on real data provided by the IGN (French National Geographic Institute) consisting in low quality DEMs of various types. |
|
12 - A Parametric Model for Automatic 3D Building Reconstruction from High Resolution Satellite Images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Research Report 5687, INRIA, France, September 2005. Keywords : 3D reconstruction, Buildings, RJMCMC, Digital Elevation Model (DEM).
@TECHREPORT{5687,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A Parametric Model for Automatic 3D Building Reconstruction from High Resolution Satellite Images}, |
year |
= |
{2005}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5687}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070326/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70326/filename/RR-5687.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/26/PS/RR-5687.ps}, |
keyword |
= |
{3D reconstruction, Buildings, RJMCMC, Digital Elevation Model (DEM)} |
} |
Résumé :
Dans ce rapport, nous développons un modèle paramétrique pour la reconstruction automatique de bâtiments en 3D fondé sur une approche bayésienne à partir de simulations PLEIADES. Les images satellitaires haute résolution représentent un nouveau type de données permettant de traiter les problèmes de reconstruction 3D de bâtiments. Leur résolution ``relativement basse'' et leur faible rapport signal sur bruit pour ce type de problèmes ne permet pas l'utilisation des méthodes standard développées dans le cas des images aériennes. Nous proposons une approche paramétrique utilisant des Modèles Numériques d'Elévation (MNE) et les empreintes de bâtiments associées modélisées par rectangles. La méthode proposée est fondée sur une approche bayésienne. Une technique de type de Monte Carlo par Chaînes de Markov est utilisée afin d'optimiser le modèle énergétique. |
Abstract :
This report develops a parametric model for automatic 3D building reconstruction based on a Bayesian approach from PLEIADES simulations. High resolution satellite images are a new kind of data to deal with 3D building reconstruction problems. Their ``relatively low'' resolution and low signal noise ration do not allow to use standard methods developed for the aerial image case. We propose a parametric approach using Digital Elevation Models (DEM) and associated rectangular building footprints. The proposed method is based on a Bayesian approach. A Markov Chain Monte Carlo technique is used to optimize the energy model. |
|
13 - Hydrographic Network Extraction from Radar Satellite Imagesusing a Hierarchical Model within a Stochastic Geometry Framework. C. Lacoste and X. Descombes and J. Zerubia and N. Baghdadi. Research Report 5697, INRIA, France, September 2005.
@TECHREPORT{rrHimne,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J. and Baghdadi, N.}, |
title |
= |
{Hydrographic Network Extraction from Radar Satellite Imagesusing a Hierarchical Model within a Stochastic Geometry Framework}, |
year |
= |
{2005}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5697}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070318}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/03/18/PDF/RR-5697.pdf}, |
keyword |
= |
{} |
} |
Résumé :
Ce rapport présente un algorithme d'extraction non supervisée de réseaux hydrographiques à partir d'images satellitaires exploitant la structure arborescante de tels réseaux. L'extraction du surfacique (branches de largeur supérieure à trois pixels) est réalisée par un algorithme efficace fondé sur une modélisation par champ de Markov. Ensuite, l'extraction du linéique se fait par un algorithme récursif fondé sur un modèle hiérarchique dans lequel les affluents d'un fleuve donné sont modélisés par un processus ponctuel marqué défini dans le voisinage de ce fleuve. L'optimisation de chaque processus ponctuel est réalisée par un recuit simulé utilisant un algorithme de Monte Carlo par chaîne de Markov à sauts réversibles. Nous obtenons de bons résultats en terme d'omissions et de surdétections sur une image radar de type ERS. |
Abstract :
This report presents a two-step algorithm for unsupervised extraction of hydrographic networks from satellite images, that exploits the tree structures of such networks. First, the thick branches of the network are detected by an efficient algorithm based on a Markov random field. Second, the line branches are extracted using a recursive algorithm based on a hierarchical model of the hydrographic network, in which the tributaries of a given river are modeled by an object process (or a marked point process) defined within the neighborhood of this river. Optimization of each point process is done via simulated annealing using a reversible jump Markov chain Monte Carlo algorithm. We obtain encouraging results in terms of omissions and overdetections on a radar satellite image. |
|
14 - A Polyline Process for Unsupervised Line Network Extraction in Remote Sensing. C. Lacoste and X. Descombes and J. Zerubia. Research Report 5698, INRIA, France, September 2005.
@TECHREPORT{rrCaroline,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Polyline Process for Unsupervised Line Network Extraction in Remote Sensing}, |
year |
= |
{2005}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5698}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070317}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/03/17/PDF/RR-5698.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/17/PS/RR-5698.ps}, |
keyword |
= |
{} |
} |
Résumé :
Ce rapport présente un nouveau modèle issu de la géométrie stochastique pour l'extraction non supervisée de réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires ou aériennes. Le réseau linéique présent dans la scène observée est modélisé par un processus de lignes brisées, appelé CAROLINE. Le modèle a priori incorpore de fortes contraintes géométriques et topologiques au travers de potentiels sur la forme des lignes brisées et de potentiels d'interaction. Les propriétés radiométriques sont incorporées via la construction d'un terme d'attache aux données fondé sur des tests statistiques. Un recuit simulé sur un algorithme de type Monte Carlo par Chaîne de Markov (MCMC) à sauts réversibles permet une optimisation globale sur l'espace des configurations d'objets, indépendamment de l'initialisation. L'ajout de perturbations pertinentes permet une accélération de la convergence de l'algorithme. Des résultats expérimentaux obtenus sur des images satellitaires et aériennes sont présentés et comparés à ceux obtenus avec un précédent modèle fondé sur un processus de segments, appelé Quality Candy. |
Abstract :
This report presents a new stochastic geometry model for unsupervised extraction of line networks (roads, rivers, etc.) from remotely sensed images. The line network in the observed scene is modeled by a polyline process, named CAROLINE. The prior model incorporates strong geometrical and topological constraints through potentials on the polyline shape and interaction potentials. Data properties are taken into account through a data term based on statistical tests. Optimization is done via a simulated annealing scheme using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm, without any specific initialization. We accelerate the convergence of the algorithm by using appropriate proposal kernels. Experimental results are provided on aerial and satellite images and compared with the results obtained with a previous model, that is a segment process called Quality Candy. |
|
15 - Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry. G. Perrin and X. Descombes and J. Zerubia. Research Report 5704, INRIA, France, September 2005. Keywords : Simulated Annealing, Marked point process, Stochastic geometry, Optimization.
@TECHREPORT{rr_perrin_optim_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry}, |
year |
= |
{2005}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070312}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70312/filename/RR-5704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/12/PS/RR-5704.ps}, |
keyword |
= |
{Simulated Annealing, Marked point process, Stochastic geometry, Optimization} |
} |
Résumé :
Dans ce rapport de recherche, nous utilisons les processus ponctuels marqués afin d'extraire un nombre inconnu d'objets dans des images aériennes. Ces processus sont définis par une énergie, qui contient un terme a priori formalisant les interactions entre objets ainsi qu'un terme d'attache aux données. Nous cherchons à minimiser cette énergie, afin d'obtenir la meilleure configuration d'objets, à l'aide d'un recuit simulé qui s'inscrit dans l'algorithme d'échantillonnage MCMC à sauts réversibles.
Nous comparons ici différents schémas de décroissance de température, et présentons certaines méthodes qui permettent d'améliorer la convergence de l'algorithme en un temps fini. |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This approach turns to be an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects onto the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare in this paper different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
16 - Point Processes in Forestry : an Application to Tree Crown Detection. G. Perrin and X. Descombes and J. Zerubia. Research Report 5544, INRIA, France, April 2005. Keywords : Marked point process, Object extraction, RJMCMC, Tree Crown Extraction, Stochastic geometry.
@TECHREPORT{5544,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Point Processes in Forestry : an Application to Tree Crown Detection}, |
year |
= |
{2005}, |
month |
= |
{April}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5544}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070463}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70463/filename/RR-5544.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/04/63/PS/RR-5544.ps}, |
keyword |
= |
{Marked point process, Object extraction, RJMCMC, Tree Crown Extraction, Stochastic geometry} |
} |
Résumé :
Dans ce rapport de recherche, notre but est d'extraire des houppiers à partir d'images aériennes de forêts à l'aide de processus ponctuels marqués de disques et d'ellipses. Notre approche consiste, en effet, à modéliser les données comme des réalisations de tels processus. Une fois l'objet géométrique de référence choisi, nous échantillonnons le processus objet défini par une densité grâce à un algorithme MCMC à sauts réversibles, optimisé par un recuit simulé afin d'extraire le maximum a posteriori de cette densité. Cette configuration optimale nous donnera l'extraction recherchée.
Dans une première partie, nous proposons de revenir quelque peu sur les processus ponctuels marqués et leur application dans la foresterie. Puis, nous présentons deux nouveaux modèles d'extraction de houppiers à base de disques et d'ellipses, et discutons de quelques améliorations au niveau de la simulation et de l'optimisation de notre algorithme.
Nous présentons des résultats obtenus sur des images aériennes très haute résolution fournies par l'Inventaire Forestier National (IFN), ainsi que sur des images synthétiques simulées avec le logiciel AMAP (Bionatics, projet Digiplante). |
Abstract :
In this research report, we aim at extracting tree crowns from remotely sensed images using marked point processes of discs and ellipses. Our approach is indeed to consider that the data are some realizations of a marked point process. Once a geometrical object is defined, we sample a marked point process defined by a density with a Reversible Jump Markov Chain Monte Carlo dynamics and simulated annealing to get the maximum a posteriori estimator of the tree crown distribution on the image.
In a first part, we propose to review the basis of marked point processes and some of their examples used in forestry statistic inference. Then, we present two new models, with discs and ellipses, and discuss some improvements made in the optimization or in the simulation.
Results are shown on high resolution aerial images of poplars provided by the French Forest Inventory (IFN), and synthetic images simulated with AMAP software (Bionatics, Digiplante project). |
|
17 - Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires. F. Lafarge and X. Descombes and J. Zerubia. Research Report 5369, INRIA, France, December 2004. Keywords : Forest fires, Gaussian Field, Rare event.
@TECHREPORT{5369,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires}, |
year |
= |
{2004}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5369}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070634}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70634/filename/RR-5369.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/34/PS/RR-5369.ps}, |
keyword |
= |
{Forest fires, Gaussian Field, Rare event} |
} |
Résumé :
Nous proposons, dans ce rapport, une méthode de détection des feux de forêt par imagerie satellitaire fondée sur la théorie des champs aléatoires. L'idée consiste à modéliser l'image par une réalisation d'un champ gaussien afin d'en extraire, par une analyse statistique, les éléments étrangers pouvant correspondre aux feux.
Le canal IRT (InfraRouge Thermique) contient des longueurs d'onde particulièrement sensibles à l'émission de chaleur. L'intensité d'un pixel d'une image IRT est donc d'autant plus forte que la température de la zone associée à ce pixel est élevée. Les feux de forêt peuvent alors être caractérisés par des pics d'intensité sur ce type d'images. Nous proposons une méthode de classification non supervisée et automatique fondée sur la théorie des champs gaussiens. Pour ce faire, nous modélisons dans un premier temps l'image par une réalisation d'un champ gaussien. Les zones de feux, minoritaires et de fortes intensités sont considérées comme des éléments étrangers à ce champ : ce sont des évènements rares. Ensuite, par une analyse statistique, nous déterminons un jeu de probabilités définissant, pour une zone donnée de l'image, un degré d'appartenance au champ gaussien, et par complémentarité aux zones potentiellement en feux. |
Abstract :
We present in this report a method for forest fire detection in satellite images based on random field theory. The idea is to model the image as a realization of a gaussian field in order to extract the rare events, which are potential fires, by a statistical analysis.
The TIR (Thermical InfraRed) channel has a wavelength sensitive to the emission of heat : the higher the heat of a area, the higher the intensity of the corresponding pixel of the image. Then a forest fire can be characterized by peak intensity in TIR images. We present an fully automatic unsupervised classification method based on Gaussian field theory. First we model the image as a realization of a Gaussian field. The fire areas, which have high intensity and are supposed to be a minority, are considered as foreign elements of that field : they are rare events. Then we determine by a statistical analysis a set of probabilities which characterizes the degree of belonging to the Gaussian field of a small area of the image. So, we estimate the probability that the area is a potential fire. |
|
18 - Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection. F. Lafarge and X. Descombes and J. Zerubia. Research Report 5370, INRIA, France, December 2004. Keywords : Support Vector Machines, Classification, Forest fires, Urban areas, Learning base, Markov Fields.
@TECHREPORT{5370,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection}, |
year |
= |
{2004}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5370}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70633/filename/RR-5370.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/33/PS/RR-5370.ps}, |
keyword |
= |
{Support Vector Machines, Classification, Forest fires, Urban areas, Learning base, Markov Fields} |
} |
Résumé :
Nous détaillons dans ce rapport la construction de deux noyaux texturaux s'utilisant dans les problèmes de classification par «Support Vector Machines» en télédétection. Les SVM constituent une méthode de classification supervisée particulièrement bien adaptée pour traiter des données de grande dimension telles que les images satellitaires. Par cette méthode, nous souhaitons réaliser l'apprentissage de paramètres qui permettent la différenciation entre deux ensembles de pixels connexes non-identiques. Nous travaillons pour cela sur des fonctions noyaux, fonctions caractérisant une certaine similarité entre deux données. Dans notre cas, cette similarité sera fondée à la fois sur une notion radiométrique et sur une notion texturale. La principale difficulté rencontrée dans cette étude réside dans l'élaboration de paramètres texturaux pertinents qui modélisent au mieux l'homogénéité d'un ensemble de pixels connexes. Nous appliquons les noyaux proposés à deux problèmes de télédétection: la détection de feux de forêt et la détection de zones urbaines à partir d'images satellitaires haute résolusion. |
Abstract :
We present in this report two textural kernels for «Support Vector Machines» classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dimension, such as images. We would like to learn parameters which allow the differentiation between two sets of connected pixels. We also introduce kernel functions which characterize a notion of similarity between two pieces of data. In our case this similarity is based on a radiometric charateristic and a textural characteristic. The main difficulty is to elaborate textural parameters which are pertinent and characterize as well as possible the homogeneity of a set of connected pixels. We apply this method to remote sensing problems : the detection of forest fires and the extraction of urban areas in high resolution satellite images. |
|
19 - A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization. A. Crouzil and X. Descombes and J.D. Durou. Research Report 5006, INRIA, France, December 2003. Keywords : Shape from shading, Simulated Annealing, Optimization, Multiresolution.
@TECHREPORT{Crouzil03,
|
author |
= |
{Crouzil, A. and Descombes, X. and Durou, J.D.}, |
title |
= |
{A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization}, |
year |
= |
{2003}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5006}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071578}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71578/filename/RR-5006.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/78/PS/RR-5006.ps}, |
keyword |
= |
{Shape from shading, Simulated Annealing, Optimization, Multiresolution} |
} |
Résumé :
Le Shape from shading est un problème inverse mal posé pour lequel aucune méthode de résolution complètement satisfaisante n'a encore été proposée. Dans ce rapport technique, nous ramenons le à un problème d'optimisation. Nous montrons d'abord que l'approche déterministe fournit des algorithmes efficaces en termes de temps de calcul, mais est d'un intérêt limité lorsque l'énergie comporte des minima locaux très profonds. Nous proposons comme alternative une approche stochastique utilisant le recuit simulé. Les résultats obtenus dépassent largement ceux de l'approche déterministe. La contrepartie est l'extrême lenteur du processus d'optimisation. Pour cette raison, nous proposons une approche hybride qui combine les approches déterministe et stochastique dans un cadre de multi-résolution. |
Abstract :
Shape from shading is an ill-posed inverse problem for which there is no completely satisfactory solution in the existing literature. In this technical report, we address shape from shading as an energy minimization problem. We first show that the deterministic approach provides efficient algorithms in terms of CPU time, but reaches its limits since the energy associated to shape from shading can contain multiple deep local minima. We derive an alternative stochastic approach using simulated annealing. The obtained results strongly outperform the results of the deterministic approach. The shortcoming is an extreme slowness of the optimization. Therefore, we propose an hybrid approach which combines the deterministic and stochastic approaches in a multiresolution framework. |
|
20 - Extraction de Houppiers par Processus Objet. G. Perrin and X. Descombes and J. Zerubia. Research Report 5037, INRIA, France, December 2003. Keywords : Object extraction, Tree Crown Extraction, Stochastic geometry, Marked point process, RJMCMC.
@TECHREPORT{Perrin03,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction de Houppiers par Processus Objet}, |
year |
= |
{2003}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5037}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071547}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71547/filename/RR-5037.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/47/PS/RR-5037.ps}, |
keyword |
= |
{Object extraction, Tree Crown Extraction, Stochastic geometry, Marked point process, RJMCMC} |
} |
Résumé :
Nous cherchons à extraire des houppiers à partir d'images de télédétection. Pour ce faire, nous construisons un processus objet et assimilons nos images d'arbres à des réalisations de ce processus. La première étape consiste à définir d'une part les objets géométriques modélisant les arbres, et d'autre part la densité du processus à simuler.La seconde étape consiste à construire un algorithme MCMC à sauts réversibles, et une estimée de la configuration d'objets. Les transitions aléatoires de la chaîne sont régies par des noyaux de propositions, chacun étant associé à une perturbation.Nous testons notre modèle sur des images aériennes de peupleraies fournies par l'IFN. |
Abstract :
In this paper we aim at extracting tree crowns from remotely sensed images. Our approach is to consider that these images are some realizations of a marked point process. The first step is to define the geometrical objects that design the trees, and the density of the process.Then, we use a reversible jump MCMC dynamics and a simulated annealing to get the maximum a posteriori estimator of the tree crowns distribution on the image. Transitions of the Markov chain are managed by some specific proposition kernels.Results are shown on aerial images of poplars given by IFN. |
|
21 - Automatic 3D Land Register Extraction from Altimetric Data in Dense Urban Areas. M. Ortner and X. Descombes and J. Zerubia. Research Report 4919, INRIA, France, September 2003. Keywords : Object extraction, Buildings, RJMCMC, Stochastic geometry, Digital Elevation Model (DEM), Marked point process.
@TECHREPORT{4919,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Automatic 3D Land Register Extraction from Altimetric Data in Dense Urban Areas}, |
year |
= |
{2003}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4919}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071660}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71660/filename/RR-4919.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/16/60/PS/RR-4919.ps}, |
keyword |
= |
{Object extraction, Buildings, RJMCMC, Stochastic geometry, Digital Elevation Model (DEM), Marked point process} |
} |
Résumé :
Ce travail présente un algorithme qui extrait automatiquement un plan cadastral de la description altimétrique (relief) d'une zone urbaine dense. L'altimétrie d'une ville est une donnée qui est maintenant facilement accessible. Dans ce rapport, nous présentons par exemple des résultats sur deux types de données altimétriques : le premier consiste en un Modèle Numérique d'Elévation (MNE) obtenu par corrélation d'images optiques, le second correspond à un MNE obtenu par mesure LASER.Notre objectif principal est de définir un algorithme entièrement automatique capable d'extraire un grand nombre de bâtiments dans des zones urbaines denses.Nous nous intéressons donc plus particulièrement à l'extraction de formes élémentaires et proposons un algorithme qui modélise les bâtiments par des formes rectangulaires. Le résultat obtenu consiste en une carte cadastrale qui peut être utilisée pour faire une estimation précise des formes de toits, par exemple.L'algorithme proposé ici repose sur nos travaux précédents. Nous modélisons des villes par des configurations de rectangles auxquelles nous associons une énergie définie de manière à tenir compte aussi bien d'une information de bas niveau provenant des données utilisées que d'une connaissance géometrique de l'agencement des bâtiments dans les zones urbaines.L'estimation est ensuite faite en minimisant l'énergie définie grace à un recuit-simulé.Nous utilisons un échantilloneur MCMC qui est une combinaison de techniques générales de type Metropolis Hastings Green et de l'algorithme de simulation de processus ponctuel proposé par Geyer et Møller. Nous utilisons en particulier des noyaux de proposition originaux comme la naissance ou mort dans un voisinage, et nous définissons l'énergie par rapport à un processus ponctuel de Poisson non-homogène, ce qui permet d'améliorer le comportement dynamique de l'algorithme.Les resultats que nous présentons sont obtenus sur des donnée réelles fournies par l'IGN. Nous extrayons automatiquement des configurations composées d'une centaine de bâtiments sur des zones dont la taille est en moyenne de 200m sur 200m. L'erreur commise est en moyenne de 15. |
Abstract :
This work present an automatic algorithm that extract 3D land register from altimetric data in dense urban areas. Altimetry of a town is a data which is easily available yet difficult to exploit. For instance, we present here results on two kind of measurements : the first one consists in a Digital Elevation Model (DEM) built using a correlation algorithm and some optical data, while the second one consists in a DEM obtained by Laser measurments.Our main objective is to design an entirely automatic method that is able to deal with this kind of data in very dense urban areas.We thus focus on elementary shape extraction and propose an algorithm that extracts rectangular buildings. The result provided consists in a kind of vectorial land register map that can be used, for instance, to perform precise roof shape estimation.The proposed algorithm uses our previous work. Using a point process framework, we model towns as configuration of rectangles. An energy is defined, that takes into account both a low level information provided by the altimetry of the scene, and some geometric knowledge of the disposition of buildings in towns.The estimation is done by minimizing the energy using a simulated annealing. We use a MCMC sampler that is a combination of general Metropolis Hastings Green techniques and Geyer and Møller algorithm of sampling of point processes. We use some original proposition kernels, such as birth or death in a neighborhood and define the energy with respect to an inhomogeneous Poisson point process.We present results on real data provided by IGN (French Mapping Institute). Results were automatically obtained, on areas that are 200m by 200m large. These results consist in configurations of around 100 rectangles describing considered areas with an error of 15 missclassification. |
|
22 - Improved RJMCMC Point Process Sampler for Object Detection by Simulated Annealing. M. Ortner and X. Descombes and J. Zerubia. Research Report 4900, INRIA, France, August 2003. Keywords : Buildings, Object extraction, RJMCMC, Marked point process.
@TECHREPORT{4900,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Improved RJMCMC Point Process Sampler for Object Detection by Simulated Annealing}, |
year |
= |
{2003}, |
month |
= |
{August}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4900}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071683}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71683/filename/RR-4900.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/16/83/PS/RR-4900.ps}, |
keyword |
= |
{Buildings, Object extraction, RJMCMC, Marked point process} |
} |
Résumé :
Nous commen ons par résumer l'algorithme de Geyer et Møller qui permet, en utilisant une chaîne de Markov, d'échantillonner des lois de processus ponctuels. Nous rappelons également le cadre théorique proposé par Green qui permet d'imposer la réversibilité d'une chaîne de Markov sous une loi désirée.Dans le cadre de nos applications en traitement d'image, nous sommes intéressés par la simulation de processus ponctuels dont la loi dépend fortement de la localisation géographique des points. Nous présentons donc ici des noyaux de proposition qui améliorent la capacité de l'algorithme de Geyer et Meyer à explorer les bons endroits de l'espace d'état. En particulier, nous proposons une transformation qui permet de faire apparaître ou disparaître des points dans un voisinage quelconque d'un autre point. Nous gardons également la possibilité de générer des points suivant une loi non uniforme.Nous construisons donc de tels noyaux de perturbations grâce au travail de Green de manière à garder la-(.) réversibilité de la chaîne de Markov construite. Nous démontrons ensuite les bonnes propriétés de stabilité qui assurent le bon comportement asymptotique de la chaîne. En particulier, grâce à une condition de «drift», nous montrons l'ergodicité géométrique et la récurrence de la chaîne au sens de Harris.Nous concluons en validant par l'expérience nos résultats théoriques, et en montrons leur utilité sur un exemple concret.Nous proposons d'ultimes améliorations pour conclure. |
Abstract :
We first recall Geyer and Møller algorithm that allows to sample point processes using a Markov chain. We also recall Green's framework that allows to build samplers on general state spaces by imposing reversibility of the designed Markov chain.Since in our image processing applications, we are interested by sampling highly spatially correlated and non-invariant point processes, we adapt these ideas to improve the exploration ability of the algorithm. In particular, we keep the ability of generating points with non-uniform distributions, and design an updating scheme that allows to generate points in some neighborhood of other points. We first design updating schemes under Green's framework to keep (.) reversibility of the Markov chain and then show that stability properties are not loosed. Using a drift condition we prove that the Markov chain is geometrically ergodic and Harris recurrent.We finally show on experimental results that these kinds of updates are usefull and propose other improvements. |
|
23 - Image Denoising using Stochastic Differential Equations. X. Descombes and E. Zhizhina. Research Report 4814, INRIA, France, May 2003. Keywords : Denoising.
@TECHREPORT{4814,
|
author |
= |
{Descombes, X. and Zhizhina, E.}, |
title |
= |
{Image Denoising using Stochastic Differential Equations}, |
year |
= |
{2003}, |
month |
= |
{May}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4814}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071772}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71772/filename/RR-4814.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/17/72/PS/RR-4814.ps}, |
keyword |
= |
{Denoising} |
} |
Résumé :
Ce rapport concerne le problème de la restauration d'image avec une approche par Équation Différentielle Stochastique. Nous considérons un processus de diffusion convergeant vers une mesure de Gibbs. L'hamiltonien de la mesure de Gibbs contient un terme d'interactions, apportant des contraintes de lissage sur la solution, et un terme d'attache aux données. Nous étudions deux schémas d'approximation discrète de la dynamique de Langevin associée à ce processus de diffusion : les approximation d'Euler et explicite forte de Taylor. La vitesse de convergence des algorithmes correspondants est comparée à celle de l'algorithme de Metropolis-Hasting. Des résultats sont montrés sur des images de synthèse et réelles. Il montrent la supériorité de l'approche proposée lorsque l'on considère un faible nombre d'itérations. |
Abstract :
We address the problem of image denoising using a Stochastic Differential Equation approach. We consider a diffusion process which converges to a Gibbs measure. The Hamiltonian of the Gibbs measure embeds an interaction term, providing smoothing properties, and a data term. We study two discrete approximations of the Langevin dynamics associated with this diffusion process: the Euler and the Explicit Strong Taylor approximations. We compare the convergence speed of the associated algorithms and the Metropolis-Hasting algorithm. Results are shown on synthetic and real data. They show that the proposed approach provides better results when considering a small number of iterations. |
|
24 - Analyse Intra-urbaine à partir d'Images Satellitaires par une Approche de Fusion de Données sur la Ville de Mexico. O. Viveros-Cancino and X. Descombes and J. Zerubia. Research Report 4578, Inria, France, October 2002. Keywords : Data fusion, Markov Fields, Texture, Urban areas, Confusion matrix.
@TECHREPORT{4578,
|
author |
= |
{Viveros-Cancino, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Analyse Intra-urbaine à partir d'Images Satellitaires par une Approche de Fusion de Données sur la Ville de Mexico}, |
year |
= |
{2002}, |
month |
= |
{October}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4578}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072010}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72010/filename/RR-4578.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/20/10/PS/RR-4578.ps}, |
keyword |
= |
{Data fusion, Markov Fields, Texture, Urban areas, Confusion matrix} |
} |
Résumé :
Ce document présente une analyse intra-urbaine afin d'améliorer la détection des différents tissus urbains avec une application sur la ville de Mexico. La méthode de fission-fusion est proposée ainsi qu'une méthode pour fusionner les classes existantes. Les deux méthodes se composent des étapes suivantes : premièrement, une analyse de texture, nommée étape de fission, est faite pour mieux décrire l'image, ensuite, une classification supervisée, nommée étape de fusion, est faite sur les paramètres issus de l'analyse de texture à partir des valeurs de qualité, notamment la valeur Kappa calculée sur la matrice de confusion. Ces étapes sont réalisées sur des images optiques (SPOT) et radar (ERS) de la ville de Mexico et sont suivies d'un régularisation. |
Abstract :
In this research report we present an intra-urban analysis to improve urban texture extraction. Two methods are proposed : a fission-fusion method and another method which fuses already existing classes. Both methods consist of two steps. The first step, called fission, performs a texture analysis which looks for structures with different parameters. The second step, called fusion, involves a supervised classification using quality parameters, in particular the kappa value which is computed from the confusion matrix. These two steps are carried out on SPOT and radar images of Mexico city. A regularization step is then performed which completes our analysis. |
|
25 - Building Extraction from Digital Elevation Model. M. Ortner and X. Descombes and J. Zerubia. Research Report 4517, Inria, France, July 2002. Keywords : Buildings, Digital Elevation Model (DEM), RJMCMC.
@TECHREPORT{4517,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Extraction from Digital Elevation Model}, |
year |
= |
{2002}, |
month |
= |
{July}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4517}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072071}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72071/filename/RR-4517.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/20/71/PS/RR-4517.ps}, |
keyword |
= |
{Buildings, Digital Elevation Model (DEM), RJMCMC} |
} |
Résumé :
L'objectif de ce travail est de d'extraire des bâtiments sur des Modèles Numériques d'Elévation (MNE).Pour ce faire, nous introduisons un processus ponctuel dont les points représentent les bâtiments. La densité de ce processus ponctuel se divise en deux parties : la première est un modèle a priori utilisant des interactions entre les points pour introduire la connaissance que l'on a de la structure des bâtiments en zone urbaine, la seconde est un terme d'attache aux données pour assurer la cohérence entre les réalisations du processus ponctuel et le Modèle Numérique d'Elévation. Nous calculons ensuite une estimée de la zone urbaine à partir de cette densité en utilisant une simulation de Monte Carlo par Chaine de Markov et, en particulier, un algorithme de Metropolis Hastings Green, qui est une extension de l'algorithme de simulation de processus ponctuels proposé par Geyer et Møller.Nous proposons des résultats sur des données réelles fournies par l'IGN. |
Abstract :
We aim to extract buildings from Digital Elevation Models. To achieve this goal, we define a point process whose points represent buildings. We then define a density for this point process which is split into two parts. When written as an energy this density consists of two fields : an internal field that allows us to model the prior knowledge we have on patterns of buildings in urban areas, and an external field that makes the point process fit the data, ie. the Digital Elevation Model. Once we have defined this artificial likehood, we use a Metropolis Hastings Green sampler, which is an extension of Geyer and Møller algorithm to sample point processes. This gives an estimate of the observed urban area.We present results on real data provided by the French Mapping Institute (IGN). |
|
26 - A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing. C. Lacoste and X. Descombes and J. Zerubia. Research Report 4516, Inria, France, July 2002. Keywords : Stochastic geometry, Marked point process, Road network, Line networks, RJMCMC.
@TECHREPORT{4516,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing}, |
year |
= |
{2002}, |
month |
= |
{July}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4516}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00072072}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/20/72/PDF/RR-4516.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/20/72/PS/RR-4516.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Road network, Line networks, RJMCMC} |
} |
Résumé :
Nous présentons, dans ce rapport, une étude comparative entre plusieurs modèles d'extraction de réseaux linéiques, issus de la géométrie stochastique. Nous nous pla ons dans le cadre des processus ponctuels marqués spécifiés par une densité par rapport au processus de Poisson homogène. L'objectif de cette étude est de déterminer quelle type de densité a priori est la plus adaptée à cette probématique de détection de réseaux linéiques, et plus particulièrement de réseaux routiers. Nous reprenons le Candy modèle, introduit dans [21] pour l'extraction de réseaux routiers, et nous l'utilisons comme modèle de référence. Ce modèle est basé sur l'idée qu'un réseau routier peut être assimilé à une réalisation d'un processus Markov objet, où les objets correspondent à des segments en interaction. Nous proposons deux variantes de ce modèle qui font intervenir des coefficients mesurant la qualité des interactions entre objets. La première est une généralisation du Candy modèle et la seconde correspond à une adaptation du modèle IDQ, proposé dans [13] pour l'extraction de bâtiments dans les modèles numériques d'élévation. Nous réalisons l'optimisation de chaque modèle par un recuit simulé sur un algorithme MCMC à sauts réversibles. Les résultats expérimentaux obtenus pour les trois modèles, sur des images satellitaires ou aériennes, permettent de vérifier l'intérêt de l'intégration de la qualité des interactions dans la densité a priori. |
Abstract :
We present in this report a comparative study between models of line network extraction, within a stochastic geometry framework. We rely on the theory of marked point processes specified by a density with respect to the uniform Poisson process. We aim to determine which prior density is the most relevant for road network detection. The Candy model, introduced in [21] for the extraction of road networks, is used as a reference model. This model is based on the idea that a road network can be thought of as a realization of a Markov object process, where the objects correspond to interacting line segments. We have developed two variants of this model which use quality coefficients for interactions. The first of these two variants is a generalization of the Candy model and the second one is an adaptation of the IDQ model proposed in [13] for the problem of building extraction from digital elevation models. The optimization is achieved by a simulated annealing with a RJMCMC algorithm. The experimental results, obtained for each model on aerial or satellite images, show the interest of adding quality coefficients for interactions in the prior density. |
|
27 - Analyse de Texture Hyperspectrale par Modélisation Markovienne. G. Rellier and X. Descombes and F. Falzon and J. Zerubia. Research Report 4479, INRIA, France, June 2002. Keywords : Classification, Markov Fields, Texture, Hyperspectral imaging.
@TECHREPORT{4479,
|
author |
= |
{Rellier, G. and Descombes, X. and Falzon, F. and Zerubia, J.}, |
title |
= |
{Analyse de Texture Hyperspectrale par Modélisation Markovienne}, |
year |
= |
{2002}, |
month |
= |
{June}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4479}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072109}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72109/filename/RR-4479.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/21/09/PS/RR-4479.ps}, |
keyword |
= |
{Classification, Markov Fields, Texture, Hyperspectral imaging} |
} |
Résumé :
L'analyse de texture est l'objet de nombreuses recherches dans le domaine de l'imagerie mono et multispectrale. En parallèle, sont apparus ces dernières années de nouveaux instruments spectro-imageurs ayant un grand nombre de canaux (supérieur à 10), fournissant des images appelées hyperspectrales qui sont une représentation du paysage échantillonnée à la fois spatialement et spectralement. Le but de ce travail est de réaliser une analyse de texture qui se déroule conjointement dans ces deux espaces discrets. Pour ce faire, on utilise une modélisation probabiliste vectorielle de la texture via un champ de Markov gaussien. Les paramètres de ce champ permettent la caractérisation de différentes textures présentes dans les images hyperspec- trales. L'application visée dans cette étude étant la classification du tissu urbain, qui est mal caractérisée par la seule radiométrie, on utilise ces paramètres comme de nouvelles bandes afin d'effectuer la classification par le critère du Maximum de Vraisemblance. Les résultats sur des images AVIRIS montrent une nette amélioration de la classification due à l'utilisatio- n de l'information de texture. |
Abstract :
Texture analysis has been widely investigated in monospectral and multispectr- al imagery domain. In the same time, new image sensors with a large number of bands (more than 10) have been designed. They are able to provide images with both fine spectral and spatial sampling, called hyperspectral images. The aim of this work is to perform a joint texture analysis in both discrete spaces. To achieve this goal, we have a probabilistic vectorial texture modeling, with Gauss-Markov Random Field. The MRF parameters allow for the characterisation of different hyperspectral textures. A likely application of this work being the classification of urban areas, which are not well characterized by radiometry alone, we use these parameters as new features is a Maximum Likelihood classification algorithm. The results obtain on AVIRIS hyperspectral images show better classifications when using texture information. |
|
28 - Building detection by markov object processes and a MCMC algorithm. L. Garcin and X. Descombes and J. Zerubia and H. Le Men. Research Report 4206, Inria, France, June 2001. Keywords : Stochastic geometry, Marked point process, Buildings, RJMCMC.
@TECHREPORT{xd01a,
|
author |
= |
{Garcin, L. and Descombes, X. and Zerubia, J. and Le Men, H.}, |
title |
= |
{Building detection by markov object processes and a MCMC algorithm}, |
year |
= |
{2001}, |
month |
= |
{June}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4206}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072416}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72416/filename/RR-4206.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/24/16/PS/RR-4206.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Buildings, RJMCMC} |
} |
Résumé :
Le but de ce travail est de détecter les bâtiments à partir de photographies aeriennes numériques. Nous modélisons un ensemble de bâtiments par une configuration d'objets. Nous définissons un processus ponctuel sur l'ensemble des configurations qui se décompose en deux parties :
* La première est un modèle a priori sur les configurations qui considère des interactions entre les objets,
* la seconde est un modèle d'attache aux données qui induit la cohérence du résultat avec l'image traitée.
Nous avons ainsi une distribution a posteriori dont nous recherchons la configuration maximale. Pour obtenir ce maximum, nous utilisons une simulatio- n de type MCMC - un algorithme de Metropolis-Hasting-Green- couplée avec un schéma de recuit simulé. Nous testons la méthode décrite à la fois sur des données synthétiques et des images stéréoscopiques réelles. |
Abstract :
This work aims at detecting buildings in digital aerial photographs. Here we model a set of buildings by a configuration of objects. We define a point process on the set of configurations, which splits into two parts :
* the first one is a prior model on the configurations which use interactions between objects,
* the second one is a data model which enforces the coherence with the image.
Thus we have a posterior distribution whose maximum has to be found. In order to achieve this maximum, we use a MCMC simulation - a Metropolis-Hasting- s-Green algorithm - mixed with a simulated annealing. Then we test this method on both synthetic and real stereo-images. |
|
29 - La poursuite de projection pour la classification d'image hyperspectrale texturée. G. Rellier and X. Descombes and F. Falzon and J. Zerubia. Research Report 4152, Inria, France, March 2001. Keywords : Classification, Texture, Hyperspectral imaging, Markov Fields.
@TECHREPORT{xd01,
|
author |
= |
{Rellier, G. and Descombes, X. and Falzon, F. and Zerubia, J.}, |
title |
= |
{La poursuite de projection pour la classification d'image hyperspectrale texturée}, |
year |
= |
{2001}, |
month |
= |
{March}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4152}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072472}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72472/filename/RR-4152.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/24/72/PS/RR-4152.ps}, |
keyword |
= |
{Classification, Texture, Hyperspectral imaging, Markov Fields} |
} |
Résumé :
Dans ce travail, nous considérons le problème de la classification supervisée de texture à partir d'images multi-composante de télédetection, dites hyperspectrales. Ces images, le plus souvent acquises par des instruments spectro-imageurs dont le nombre de canaux est en général supérieur à 10, fournissent ainsi une représentation du paysage échantillonnée à la fois spatialement et spectralement. Le but de ce travail est de réaliser une analyse de texture qui se déroule conjointement dans ces deux espaces discrets. On recherche ainsi à enrichir la représentation "habituelle" de texture fondée sur la prise en compte des variations locales de contraste, par l'adjonction d'une connaissance sur ses variations spectrales. L'applicati- on qui est susceptible de bénéficier directement des résultats de cette étude est la classification du tissu urbain. En effet, la réponse spectrale (radiométrique) des zones urbaines est en général ambiguë du fait de la similitude de réponse spectrale de certains matériaux constitutifs du paysage urbain avec certains éléments naturels tels que l'eau, le sol nu, la végétation. La multiplication des bandes spectrales a pour conséquence de rendre plus complexes les mesures et demande également la prise en considération d'un nombre d'échantillons d'apprentissage très important. Quand le nombre de ces échantillons n'est pas suffisant, il faut passer par une étape de réduction de la dimension de l'espace d'observation. Pour prendre en compte le problème de la dimension et celui de l'analyse de texture conjointement dans le domaine spatial et spectral, on se propose ici de faire coopérer un algorithme de poursuite de projection paramétrique, déjà utilisé pour la réduction d'espace dans un cadre non-contextuel, à un modèle de texture par champ markovien, dit modèle markovien gaussien. |
Abstract :
In this work we develop a supervised texture classification algorithm for application to the class of multi-component images called hyperspectral. These images, usually recorded by spectrometers with a number of bands greater than 10, give both a spatially and spectrally sampled representation of a remote scene. The aim of this work is to perform a joint texture analysis in both discrete spaces. The use of spectral variations in this joint texture analysis scheme enables us to improve on the standard representa- tion of textures which only takes into account the local contrast variations. A likely application of this work is urban area classification. Indeed, the spectral response of urban areas is in general ambiguous because some of its constitutive elements have the same reflectance as natural elements such as water, vegetation or bare soil. The greater number of spectral bands makes the measures more complex and so creates the need for a greater number of training samples. When the number of training samples is not sufficient, a necessary step in the analysis is to reduce the dimension of the observation space. To take into account both the problem of dimensional- ity and the jointly spectral and spatial texture analysis, we propose to use in cooperation a projection pursuit algorithm and a Gauss-Markov random field texture model. |
|
30 - Classification d'images satellitaires hyperspectrales en zone rurale et périurbaine. O. Pony and X. Descombes and J. Zerubia. Research Report 4008, Inria, September 2000. Keywords : Hyperspectral imaging, Markov Fields, Simulated Annealing, Gibbs Random Fields, Potts model, Texture.
@TECHREPORT{pony00,
|
author |
= |
{Pony, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Classification d'images satellitaires hyperspectrales en zone rurale et périurbaine}, |
year |
= |
{2000}, |
month |
= |
{September}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4008}, |
url |
= |
{https://hal.inria.fr/inria-00072636}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72636/filename/RR-4008.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/26/36/PS/RR-4008.ps}, |
keyword |
= |
{Hyperspectral imaging, Markov Fields, Simulated Annealing, Gibbs Random Fields, Potts model, Texture} |
} |
Résumé :
L'observation satellitaire en zone rurale et périurbaine fournit des images hyperspectrales exploitables en vue de réaliser une cartographie ou une analyse du paysage. Nous avons appliqué une classification par maximum de vraisemblance sur des images de zone agricole. Afin de régulariser la classification, nous considérons la modélisation d'image par champs de Markov, dont l'équivalence avec les champs de Gibbs nous permet d'utiliser plusieurs algorithmes itératifs d'optimisation : l'ICM et le recuit simulé, qui convergent respectivement vers une classification sous-optimale ou optimale pour une certaine énergie. Un modèle d'énergie est proposé : le modèle de Potts, que nous améliorons pour le rendre adaptatif aux classes présentes dans l'image. L'étude de la texture dans l'image initiale permet d'introduire des critères artificiels qui s'ajoutent à la radiométrie de l'image en vue d'améliorer la classification. Ceci permet de bien segmenter les zones périurbaines, la forêt, la campagne, dans le cadre d'un plan d'occupation des sols. Trois images hyperspectrales et une vérité terrain ont été utilisées pour réaliser des tests, afin de mettre en évidence les méthodes et le paramétrage adéquats pour obtenir les résultats les plus satisfaisants. |
Abstract :
Satellite observation in rural and semiurban areas provides hyperspectral images which enable us to make a map or an analysis of the landscape. Herein, we applied a maximum likelihood classification on agricultural images. In order to improve this procedure, it is possible in each pixel to use contextual information. Thus, we consider Markov random fields image modeling. The equivalence between Markov and Gibbs fields allows us to use some iterative algorithms of optimisation : ICM and simulated annealing, which converge respectively towards a suboptimal or an optimal classification for a given energy. An energy model is proposed : the Potts model, which can be improved to be adaptive to the classes defined in the image. Texture analysis on the initial image is used to introduce artificial criteria, added to the original image, in order to improve classification. This proves to be useful for segmenting semiurban regions, forests, and the countryside, within the framework of a land-use plan. We use three hyperspectral images and a ground truth to carry out tests, in order to highlight the best methods and parameter setting to obtain the most satisfactory results. |
|
31 - Local registration and deformation of a road cartographic database on a SPOT satellite image. G. Rellier and X. Descombes and J. Zerubia. Research Report 3939, Inria, May 2000. Keywords : Markov Fields, Road network.
@TECHREPORT{rel00,
|
author |
= |
{Rellier, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Local registration and deformation of a road cartographic database on a SPOT satellite image}, |
year |
= |
{2000}, |
month |
= |
{May}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3939}, |
url |
= |
{https://hal.inria.fr/inria-00072711}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72711/filename/RR-3939.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/11/PS/RR-3939.ps}, |
keyword |
= |
{Markov Fields, Road network} |
} |
Résumé :
Dans ce rapport, nous présentons une méthode pour le recalage local d'un réseau cartographique routier sur une image SPOT, reposant sur l'utilisation des champs de Markov sur graphe. Les données image et cartographique étant obtenues par des sources exogènes, elles sont dégradées par du bruit de nature différente. Ce phénomène peut être à l'origine de différences important- es entre les données. De plus, les cartographes peuvent parfois introduire des distortions dans les cartes afin de souligner certains détails que presente la route (lacets d'une route de montagne) : c'est la généralisation. L'algorithme proposé vise à corriger les erreurs dues au bruit et à la généralisation, et à améliorer la précision du tracé des routes. La méthode proposée consiste à transformer la donnée cartographique en un graphe, et ensuite à définir un champ de Markov afin de faire correspondre le graphe et l'image. |
Abstract :
Herein, we propose a local registration method for cartographic road networks on SPOT satellite images based on Markov Random Fields (MRF) on graphs. Since the cartographic and image data are obtained from exogeneous sources, the noises degrading these data are of different nature. This phenomenon can create important differences between the data. In addition, cartographers sometimes introduce distortions, in the so-called generalization process, in the road map in order to emphasize some details of the road (like the bends of a mountain road). The proposed algorithm aims at correcting the error due to noise and generalization, hence increasing the accuracy of the road map. The proposed method consists in translating the cartographic data into a graph model, and then defining a MRF to fit the graph on the image. |
|
32 - Simulation de processus objets : Etude de faisabilité pour une application à la segmentation d'image. M. Imberty and X. Descombes. Research Report 3881, Inria, February 2000. Keywords : Marked point process, Stochastic geometry, Segmentation.
@TECHREPORT{xd00im,
|
author |
= |
{Imberty, M. and Descombes, X.}, |
title |
= |
{Simulation de processus objets : Etude de faisabilité pour une application à la segmentation d'image}, |
year |
= |
{2000}, |
month |
= |
{February}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3881}, |
url |
= |
{https://hal.inria.fr/inria-00072772}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72772/filename/RR-3881.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/72/PS/RR-3881.ps}, |
keyword |
= |
{Marked point process, Stochastic geometry, Segmentation} |
} |
Résumé :
Dans cette étude, nous comparons l'efficacité de deux techniques de simulation par chaînes de Markov (MCMC) de processus aléatoires sur des ensembles d'objets géométriques : l'algorithme de naissance-mort et celui de Metropolis-- Hastings-Green. Les comparaisons sont effectuées sur différents modèles de processus objets de type attractif présentant un intérêt en traitement d'image. Nous appliquons ensuite ces méthodes de simulation à la segmentation d'image. Pour cela, nous nous plaçons dans le cadre bayésien : nous définisson- s donc un modèle a priori attractif simple sur des objets rectangulaires, ainsi qu'un terme d'attache aux données garantissant l'adéquation des objets à l'image. Nous utilisons ensuite un recuit simulé pour extraire les différentes zones de l'image. Des tests sont effectués sur des images synthétiques. |
Abstract :
In this study, we compare the efficiency of two algorithms using Monte Carlo Markov chains methods in order to simulate random processes of geometric- al objects sets : the algorithm of birth and death and the dynamics of Metropolis-Hastings-Green. The comparisons are carried out on various object models for clustered patterns, which could be of interest in image processing. Then we apply these methods of simulation to image segmentation, using the bayesian approach : thus we define a simple prior model on rectangul- ar objects, as well as a posterior probability guaranteeing the adequacy of the objects to the data. We finally use a stochastic annealing to extract the various zones of the image. Some tests are performed on synthetic data. |
|
33 - A Markov point process for road extraction in remote sensed images. R. Stoica and X. Descombes and J. Zerubia. Research Report 3923, Inria, 2000. Keywords : Stochastic geometry, Marked point process, Candy model, Road network, RJMCMC.
@TECHREPORT{rs00,
|
author |
= |
{Stoica, R. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Markov point process for road extraction in remote sensed images}, |
year |
= |
{2000}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3923}, |
url |
= |
{https://hal.inria.fr/inria-00072729}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72729/filename/RR-3923.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/29/PS/RR-3923.ps}, |
keyword |
= |
{Stochastic geometry, Marked point process, Candy model, Road network, RJMCMC} |
} |
Résumé :
Nous proposons une nouvelle méthode pour extraire les routes dans les images satellitales et aériennes. Notre approche est basée sur la géométrie stochastique et les dynamiques MCMC à saut réversible. Nous considérons que le réseau routier est un réseau fin, et que ce réseau peut être approximé par des segments connectés. Nous construisons un processus ponctuel marqué qui peut simuler et détecter des réseaux fins. La densité de probabilité de ce processus comporte deux termes : le terme d'attache aux données et le terme a priori. Pour former un réseau, les segments doivent être connectés. Nous souhaitons que les segments soient bien alignés et qu'ils ne se superposent pas. Toutes ces contraintes sont prises en compte par le modèle a priori (Candy modèle). L'emplacement du réseau est donné par le terme d'attache aux données. Ce terme est construit à partir des tests d'hypothèses. Notre modèle probabiliste permet de construire le MAP de l'estimateur du réseau linéique. Pour éviter les minima locaux, nous utilisons un algorithme de type recuit simulé, construit sur une dynamique MCMC à sauts réversibles. Nous montrons des résultats sur des images SPOT, ERS et aériennes. |
Abstract :
In this paper we propose a new method to extract roads in remote sensed images. Our approach is based on stochastic geometry theory and reversible jump Monte Carlo Markov Chains dynamic. We consider that roads consist of a thin network in the image. We make the hypothesis that such a network can be approximated by a network composed of connected line segments. We build a marked point process, which is able to simulate and detect thin networks. The segments have to be connected, in order to form a line-netw- ork. Aligned segments are favored whereas superposition is penalized. Those constraints are taken in account by the prior model (Candy model), which is an area-interaction point process.The location of the network and the specifities of a road network in the image are given by the likelihood term. This term is based on statistical hypothesis tests. The proposed probabilistic model yelds a MAP estimator of the road network. In order to avoid local minima, a simulated annealing algorithm, using a reversible jump MCMC dynamic is designed. Results are shown on SPOT, ERS and aerial images. |
|
34 - Isotropic Properties of Some Multi-body Interaction Models: Two Quality Criteria for Markov Priors in Image Processing. X. Descombes and E. Pechersky. Research Report 3752, Inria, August 1999. Keywords : Gibbs Random Fields, Segmentation, Restoration.
@TECHREPORT{xd99k,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Isotropic Properties of Some Multi-body Interaction Models: Two Quality Criteria for Markov Priors in Image Processing}, |
year |
= |
{1999}, |
month |
= |
{August}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3752}, |
url |
= |
{http://hal.inria.fr/inria-00072910}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/29/10/PDF/RR-3752.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/29/10/PS/RR-3752.ps}, |
keyword |
= |
{Gibbs Random Fields, Segmentation, Restoration} |
} |
Résumé :
Les champs de Gibbs sont très utilisés en traitement d'image à la fois pour la segmentation et la restauration. Définis sur la trâme discrète sous-jacente à l'image, ils présentent un comportement non isotrope. Dans ce rapport, nous étudions et quantifions cette non-isotropie, pour des modèles avec des interactions 3x3, en calculant la tension de bord en fonction de l'angle d'une droite séparant le plan en deux parties contenant une phase différente. De cette étude, nous dérivons deux critères quantitatifs d'anisotropie des modèles. Nous calculons ensuite la forme d'une goutte d'une phase immergée dans une autre phase à la température nulle pour les différents modèles, et étudions la non isotropie des formes obtenues. Pour finir, les artéfacts induits par cette non-isotropie sont mis en évidence sur des exemples de segmentation et de restauration d'image. |
Abstract :
Gibbs Fields are widely used in image processing for both segmentation and restoration. Defined on a discrete lattice representing the image they exhibit a non-isotropic behavior. Herein, we study and quantify this non-isotropy by computing the boundary tension as a function of the angle of a line separating the plane in two parts containing a different phase. From this study, we derive two quantitative criteria of the non isotropy of the model. We then compute the shape at zero temperature of a droplet of one phase within the other phase and study the non-isotropy of the shape for the different models. Finally, we show the artifacts due to this non-isotropic behavior for image segmentation and restoration. |
|
35 - Mise en correspondance et recalage de graphes : application aux réseaux routiers extraits d'un couple carte/image. C. Hivernat and X. Descombes and S. Randriamasy and J. Zerubia. Research Report 3529, Inria, October 1998. Keywords : Markov Fields, Road network, Graph matching.
@TECHREPORT{hiv98,
|
author |
= |
{Hivernat, C. and Descombes, X. and Randriamasy, S. and Zerubia, J.}, |
title |
= |
{Mise en correspondance et recalage de graphes : application aux réseaux routiers extraits d'un couple carte/image}, |
year |
= |
{1998}, |
month |
= |
{October}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3529}, |
url |
= |
{https://hal.inria.fr/inria-00073156}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73156/filename/RR-3529.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/31/56/PS/RR-3529.ps}, |
keyword |
= |
{Markov Fields, Road network, Graph matching} |
} |
Résumé :
Nous considérons le problème de la mise en correspondance du réseau routier extrait d'une image SPOT avec celui fourni par une base de données cartographi- que. Cette mise en correspondance comprend deux étapes principales fondées sur des modélisations markoviennes. Dans la première étape, les pixels de l'image sont appariés aux segments cartographiques. Le résultat de cette étape permet de découper le réseau obtenu sur l'image sous forme de chaînes. Ces chaînes sont ensuite mises en correspondance avec les segments cartographiques. Pour finir, une étape de qualification des résultats permet de fournir les primitives fiables afin d'affiner le recalage initial. En bouclant l'algorithme sur la mise en correspondance nous obtenons un processus itératif permettant d'améliorer à la fois le recalage et la mise en correspondance. La qualification automatique des résultats est également une aide à l'interprétation pour la mise à jour cartographique. |
Abstract :
We consider herein the matching problem between the road network extracted from a SPOT image and the roads contained in a cartographic database. This matching consists of two main steps based on a Markovian modelling. During the first step, the image road pixels are associated to the map segments. the derived result allows us to split the image network into chains. These chains are matched with the map segments. Finally, an automatic validation procedure provides matched chains/segments which are used to improve the initial registration. An iterative scheme is obtained by performin- g a new matching. The automatic result validation is also helpful for map updating. |
|
36 - Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne. A. Lorette and X. Descombes and J. Zerubia. Research Report 3423, Inria, May 1998. Keywords : Texture, Markov Fields, Urban areas, Entropy.
@TECHREPORT{loretteRR98,
|
author |
= |
{Lorette, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne}, |
year |
= |
{1998}, |
month |
= |
{May}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3423}, |
url |
= |
{http://hal.inria.fr/inria-00073267}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/32/67/PDF/RR-3423.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/32/67/PS/RR-3423.ps}, |
keyword |
= |
{Texture, Markov Fields, Urban areas, Entropy} |
} |
Résumé :
Pour délimiter un masque urbain précis à partir d'une image satellitaire la seule information du niveau de gris est insuffisante. Laplupart des méthodes font donc appel à une analyse de la texture de l'image. Nous nous sommes placés dans ce cadre. Dans une première étape, nous avons défini un nouveau paramètre de texture à partir d'un modèle markovien gaussien. Nous obtenons ce nouveau paramètre en calculant la variance conditionnelle de l'image dans huit directions. Ainsi, nous éliminons la mauvaise classification d'objets ayant une orientation privilégiée tels que les vignes et les serres par exemple. Dans une seconde étape, nous proposons un algorithme de emphfuzzy Cmeans modifié incluant un terme d'entropie et pour lequel le nombre de classes n'est pas fixé a priori. Cet algorithme nous permet d'obtenir une première classification de l'image. Enfin, nous régularisons l'image ainsi obtenue grâce à une modélisation par champs de Markov. Des résultats obtenus sur des simulations d'images SPOT5 fournies par le CNES sont présentés. |
Abstract :
Urban areas cannot be extracted from satellite images through only grey level information. Hence most methods analyze the texture of the image to discriminate between urban areas and non urban areas. We define a new texture parameter derived from a Markovian Gaussian model. This new parameter takes into account the variance of the image in eight directions- . Consequently it copes with the misclassification of objects with a privileged orientation like vineyards or greenhouses for instance. Afterwards we develop a modified fuzzy Cmeans algorithm including an entropy term. The advantage of such an algorithm is that the number of classes does not need to be known a priori. By applying this modified fuzzy Cmeans algorithm on the parameter image we obtain a first classification. Finally we regularize the segmented image by using a Markov random field modelling. Some results on SPOT5 simulated images are presented. These images are provided by the CNES (French Space Agency). |
|
top of the page
7 Collection articles or Books chapters |
1 - Detection and Recognition of a Collection of Objects in a Scene. X. Descombes and I. H. Jermyn and J. Zerubia. In Inverse Problems in Vision and 3D Tomography, pages 155--189, series DSIP, Ed. ISTE, London ; John Wiley and Sons, New York, 2010.
@INCOLLECTION{Wiley10,
|
author |
= |
{Descombes, X. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Detection and Recognition of a Collection of Objects in a Scene}, |
year |
= |
{2010}, |
booktitle |
= |
{Inverse Problems in Vision and 3D Tomography}, |
pages |
= |
{155--189}, |
series |
= |
{DSIP}, |
editor |
= |
{ISTE, London ; John Wiley and Sons, New York}, |
url |
= |
{http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848211724.html}, |
pdf |
= |
{http://onlinelibrary.wiley.com/doi/10.1002/9781118603864.ch5/summary}, |
keyword |
= |
{} |
} |
|
2 - Detection d’objets dans une scene. X. Descombes and I. H. Jermyn and J. Zerubia. In Problemes inverses en imagerie et en vision, pages 167--204, series Tr. IC2, Ed. Ali Mohammad-Djafari, Publ. Ed. Hermes, 2009. Copyright : Ed. Hermes
@INCOLLECTION{DESCOMBES_DETECTION,
|
author |
= |
{Descombes, X. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Detection d’objets dans une scene}, |
year |
= |
{2009}, |
booktitle |
= |
{Problemes inverses en imagerie et en vision}, |
pages |
= |
{167--204}, |
series |
= |
{Tr. IC2}, |
editor |
= |
{Ali Mohammad-Djafari}, |
publisher |
= |
{Ed. Hermes}, |
url |
= |
{http://www.lavoisier.fr/livre/electricite-electronique/problemes-inverses-en-imagerie-et-en-vision-en-2-volumes-inseparables/mohammad-djafari/descriptif-9782746219977}, |
keyword |
= |
{} |
} |
|
3 - Unsupervised problems. X. Descombes and Y. Goussard. In Bayesian approach to inverse problems, Ed. J. Idier, Publ. ISTE and John Wiley & Sons, 2008. Note : to appear. Keywords : Inverse Problems, Bayesian approach, Image procressing. Copyright : ISTE Ltd
@INCOLLECTION{descombes08,
|
author |
= |
{Descombes, X. and Goussard, Y.}, |
title |
= |
{Unsupervised problems}, |
year |
= |
{2008}, |
booktitle |
= |
{Bayesian approach to inverse problems}, |
editor |
= |
{J. Idier}, |
publisher |
= |
{ISTE and John Wiley & Sons}, |
url |
= |
{http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848210329.html}, |
pdf |
= |
{http://onlinelibrary.wiley.com/doi/10.1002/9780470611197.ch8/summary}, |
keyword |
= |
{Inverse Problems, Bayesian approach, Image procressing} |
} |
|
4 - Wulff Shapes at Zero Temperature for Some Models Used in Image Processing. X. Descombes and E. Pechersky. In Statistics and Analysis of Shapes, pages 281-302, Ed. H. Krim and A. Yezzi, Publ. Birkhauser, 2006.
@INCOLLECTION{DesPechBook,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Wulff Shapes at Zero Temperature for Some Models Used in Image Processing}, |
year |
= |
{2006}, |
booktitle |
= |
{Statistics and Analysis of Shapes}, |
pages |
= |
{281-302}, |
editor |
= |
{H. Krim and A. Yezzi}, |
publisher |
= |
{Birkhauser}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_DesPechBook.pdf}, |
keyword |
= |
{} |
} |
|
5 - A Reversible Jump MCMC Sampler for Object Detection in Image Processing. M. Ortner and X. Descombes and J. Zerubia. In Monte Carlo and Quasi-Monte Carlo Methods, Publ. Springer Verlag, 2005. Keywords : RJMCMC, Marked point process, Object extraction.
@INCOLLECTION{ortner_lnsmc2qmc,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Reversible Jump MCMC Sampler for Object Detection in Image Processing}, |
year |
= |
{2005}, |
booktitle |
= |
{Monte Carlo and Quasi-Monte Carlo Methods}, |
publisher |
= |
{Springer Verlag}, |
url |
= |
{http://link.springer.com/book/10.1007/3-540-31186-6}, |
pdf |
= |
{http://link.springer.com/chapter/10.1007%2F3-540-31186-6_23}, |
keyword |
= |
{RJMCMC, Marked point process, Object extraction} |
} |
|
6 - An application of marked point process to the extraction of linear networks for images. R. Stoica and X. Descombes and M.N.M. Van Lieshout and J. Zerubia. In Spatial statitics through applications, Publ. WITPress, 2002. Keywords : Line networks, Road network, Object extraction, Satellite images, Marked point process.
@INCOLLECTION{stoicaXDlivre,
|
author |
= |
{Stoica, R. and Descombes, X. and Van Lieshout, M.N.M. and Zerubia, J.}, |
title |
= |
{An application of marked point process to the extraction of linear networks for images}, |
year |
= |
{2002}, |
booktitle |
= |
{Spatial statitics through applications}, |
publisher |
= |
{WITPress}, |
url |
= |
{http://www.witpress.com/books/978-1-85312-649-9}, |
pdf |
= |
{http://oai.cwi.nl/oai/asset/10645/10645A.pdf}, |
keyword |
= |
{Line networks, Road network, Object extraction, Satellite images, Marked point process} |
} |
|
7 - Problèmes non supervisés. X. Descombes and Y. Goussard. In Approche bayésienne pour les problèmes inverses, Ed. J. Idier, Publ. Hermes, 2001. Copyright :
@INCOLLECTION{GoussardXD01,
|
author |
= |
{Descombes, X. and Goussard, Y.}, |
title |
= |
{Problèmes non supervisés}, |
year |
= |
{2001}, |
booktitle |
= |
{Approche bayésienne pour les problèmes inverses}, |
editor |
= |
{J. Idier}, |
publisher |
= |
{Hermes}, |
url |
= |
{http://editions.lavoisier.fr/mathematiques/approche-bayesienne-pour-les-problemes-inverses/idier/hermes-science-publications/traite-ic2/livre/9782746203488}, |
keyword |
= |
{} |
} |
|
top of the page
2 Books |
1 - Applications de la geometrie stochastique a l'analyse d'images. X. Descombes and et al. Publ. Hermes, Ed. X. Descombes, 2011.
@BOOK{GeoStoFR,
|
author |
= |
{Descombes, X. and al, et}, |
title |
= |
{Applications de la geometrie stochastique a l'analyse d'images}, |
year |
= |
{2011}, |
publisher |
= |
{Hermes}, |
edition |
= |
{X. Descombes}, |
url |
= |
{http://www.lavoisier.fr/livre/mathematiques/applications-de-la-geometrie-stochastique-a-l-analyse-d-images/descombes/descriptif-9782746221451}, |
keyword |
= |
{} |
} |
|
2 - Stochastic geometry for image analysis. X. Descombes and et al. Publ. Wiley/Iste, Ed. X. Descombes, 2011.
@BOOK{GeoStoEn,
|
author |
= |
{Descombes, X. and al, et}, |
title |
= |
{Stochastic geometry for image analysis}, |
year |
= |
{2011}, |
publisher |
= |
{Wiley/Iste}, |
edition |
= |
{X. Descombes}, |
url |
= |
{http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848212402.html}, |
keyword |
= |
{} |
} |
|
top of the page
These pages were generated by
|