|
Publications of 2007
Result of the query in the list of publications :
6 Articles |
1 - Higher-Order Active Contour Energies for Gap Closure. M. Rochery and I. H. Jermyn and J. Zerubia. Journal of Mathematical Imaging and Vision, 29(1): pages 1-20, September 2007. Keywords : Gap closure, Higher-order, Active contour, Shape, Prior, Road network.
@ARTICLE{Rochery07,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2007}, |
month |
= |
{September}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{29}, |
number |
= |
{1}, |
pages |
= |
{1-20}, |
url |
= |
{http://dx.doi.org/10.1007/s10851-007-0021-x}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Rochery07.pdf}, |
keyword |
= |
{Gap closure, Higher-order, Active contour, Shape, Prior, Road network} |
} |
Abstract :
One of the main difficulties in extracting line networks from images, and in particular road networks from remote sensing images, is the existence of interruptions in the data caused, for example, by occlusions. These can lead to gaps in the extracted network that do not correspond to gaps in the real network. In this paper, we describe a higher-order active contour energy that in addition to favouring network-like regions, includes a prior term penalizing networks containing ‘nearby opposing extremities’, thereby making gaps in the extracted network less likely. The new energy term causes such extremities to attract one another during gradient descent. They thus move towards one another and join, closing the gap. To minimize the energy, we develop specific techniques to handle the high-order derivatives that appear in the gradient descent equation. We present the results of automatic extraction of networks from real remote-sensing images, showing the ability of the model to overcome interruptions. |
|
2 - Gaussian approximations of fluorescence microscope point-spread function models. B. Zhang and J. Zerubia and J.C. Olivo-Marin. Applied Optics, 46(10): pages 1819-1829, April 2007. Copyright : © 2007 Optical Society of America
@ARTICLE{jz_applied_photo,
|
author |
= |
{Zhang, B. and Zerubia, J. and Olivo-Marin, J.C.}, |
title |
= |
{Gaussian approximations of fluorescence microscope point-spread function models}, |
year |
= |
{2007}, |
month |
= |
{April}, |
journal |
= |
{Applied Optics}, |
volume |
= |
{46}, |
number |
= |
{10}, |
pages |
= |
{1819-1829}, |
keyword |
= |
{} |
} |
Abstract :
We comprehensively study the least-squares Gaussian approximations of the diffraction-limited 2D-3D paraxial-nonparaxial point-spread functions (PSFs) of the wide field fluorescence microscope (WFFM), the laser scanning confocal microscope (LSCM), and the disk scanning confocal microscope (DSCM). The PSFs are expressed using the Debye integral. Under an L∞ constraint imposing peak matching, optimal and near-optimal Gaussian parameters are derived for the PSFs. With an L1 constraint imposing energy conservation, an optimal Gaussian parameter is derived for the 2D paraxial WFFM PSF. We found that (1) the 2D approximations are all very accurate; (2) no accurate Gaussian approximation exists for 3D WFFM PSFs; and (3) with typical pinhole sizes, the 3D approximations are accurate for the DSCM and nearly perfect for the LSCM. All the Gaussian parameters derived in this study are in explicit analytical form, allowing their direct use in practical applications. |
|
3 - Building Outline Extraction from Digital Elevation Models using Marked Point Processes. M. Ortner and X. Descombes and J. Zerubia. International Journal of Computer Vision, 72(2): pages 107-132, April 2007. Keywords : RJMCMC, Buildings, Stochastic geometry, Marked point process, Digital Elevation Model (DEM).
@ARTICLE{ortner_ijcv_05,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Outline Extraction from Digital Elevation Models using Marked Point Processes}, |
year |
= |
{2007}, |
month |
= |
{April}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{72}, |
number |
= |
{2}, |
pages |
= |
{107-132}, |
url |
= |
{http://www.springerlink.com/content/d563v16957427102/?p=873bd324c7c14049a45cc1f2905b5a86&pi=0}, |
keyword |
= |
{RJMCMC, Buildings, Stochastic geometry, Marked point process, Digital Elevation Model (DEM)} |
} |
|
4 - ant colony optimization for image regularization based on a non-stationary Markov modeling. S. Le Hegarat-Mascle and A. Kallel and X. Descombes. IEEE Trans. on Image Processing, 16(3): pages 865-878, March 2007. Keywords : Markov Random Fields, Ants colonization.
@ARTICLE{Ants07,
|
author |
= |
{Le Hegarat-Mascle, S. and Kallel, A. and Descombes, X.}, |
title |
= |
{ant colony optimization for image regularization based on a non-stationary Markov modeling}, |
year |
= |
{2007}, |
month |
= |
{March}, |
journal |
= |
{IEEE Trans. on Image Processing}, |
volume |
= |
{16}, |
number |
= |
{3}, |
pages |
= |
{865-878}, |
keyword |
= |
{Markov Random Fields, Ants colonization} |
} |
Abstract :
Ant colony optimization (ACO) has been proposed as a promising tool for regularization in image classification. The algorithm is applied here in a different way than the classical transposition of the graph color affectation problem. The ants collect information through the image, from one pixel to the others. The choice of the path is a function of the pixel label, favoring paths within the same image segment. We show that this corresponds to an automatic adaptation of the neighborhood to the segment form, and that it outperforms the fixed-form neighborhood used in classical Markov random field regularization techniques. The performance of this new approach is illustrated on a simulated image and on actual remote sensing images |
|
5 - Détection de feux de forêt par analyse statistique d'évènements rares à partir d'images infrarouges thermiques. F. Lafarge and X. Descombes and J. Zerubia and S. Mathieu. Traitement du Signal, 24(1), 2007. Note : copyright Traitement du Signal Keywords : Gaussian Field, Rare event, DT-caracteristic, Intensity peak.
@ARTICLE{lafarge_ts06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Mathieu, S.}, |
title |
= |
{Détection de feux de forêt par analyse statistique d'évènements rares à partir d'images infrarouges thermiques}, |
year |
= |
{2007}, |
journal |
= |
{Traitement du Signal}, |
volume |
= |
{24}, |
number |
= |
{1}, |
note |
= |
{copyright Traitement du Signal}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_lafarge_ts06.pdf}, |
keyword |
= |
{Gaussian Field, Rare event, DT-caracteristic, Intensity peak} |
} |
|
6 - Computing Statistics from Man-Made Structures on the Earth's Surface for Indexing Satellite Images. A. Bhattacharya and M. Roux and H. Maitre and I. H. Jermyn and X. Descombes and J. Zerubia. International Journal of Simulation Modelling, 6(2): pages 73--83, 2007.
@ARTICLE{Bhattacharya07,
|
author |
= |
{Bhattacharya, A. and Roux, M. and Maitre, H. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Computing Statistics from Man-Made Structures on the Earth's Surface for Indexing Satellite Images}, |
year |
= |
{2007}, |
journal |
= |
{International Journal of Simulation Modelling}, |
volume |
= |
{6}, |
number |
= |
{2}, |
pages |
= |
{73--83}, |
url |
= |
{http://www.ijsimm.com/Full_Papers/Fulltext2007/text6-2_73-83.pdf}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Bhattacharya07.pdf}, |
keyword |
= |
{} |
} |
Abstract :
Indexing and retrieval from remote sensing image databases relies on the extraction of appropriate information from the data about the entity of interest (e.g. land cover type) and on the robustness of this extraction to nuisance variables. Other entities in an image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. The road network contained in an image is one example. The properties of road networks vary considerably from one geographical environment to another, and they can therefore be used to classify and retrieve such environments. In this paper, we define several such environments, and classify them with the aid of geometrical and topological features computed from the road networks occurring in them. The relative failure of network extraction methods in certain types of urban area obliges us to segment such areas and to add a second set of geometrical and topological features computed from the segmentations. To validate the approach, feature selection and SVM linear kernel classification are performed on the feature set arising from a diverse image database. |
|
top of the page
3 PhD Thesis and Habilitations |
1 - The 'Gas of circles' model and its application to tree crown extraction. P. Horvath. PhD Thesis, Universite de Szeged, Universite de Nice Sophia Antipolis, December 2007. Keywords : geometric prior, Contours actifs d'ordre supérieur, Phase Field, Gas of circles.
@PHDTHESIS{horvath_these,
|
author |
= |
{Horvath, P.}, |
title |
= |
{The 'Gas of circles' model and its application to tree crown extraction}, |
year |
= |
{2007}, |
month |
= |
{December}, |
school |
= |
{Universite de Szeged, Universite de Nice Sophia Antipolis}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_horvath_these.pdf}, |
keyword |
= |
{geometric prior, Contours actifs d'ordre supérieur, Phase Field, Gas of circles} |
} |
|
2 - Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains. F. Lafarge. PhD Thesis, Ecole des Mines de Paris, October 2007. Keywords : 3D reconstruction, Urban areas, Satellite images, Structural approach, Simulated Annealing, MCMC.
@PHDTHESIS{lafarge_phd07,
|
author |
= |
{Lafarge, F.}, |
title |
= |
{Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains}, |
year |
= |
{2007}, |
month |
= |
{October}, |
school |
= |
{Ecole des Mines de Paris}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00179695/en/}, |
keyword |
= |
{3D reconstruction, Urban areas, Satellite images, Structural approach, Simulated Annealing, MCMC} |
} |
Résumé :
Cette thèse aborde le problème de la reconstruction tridimensionnelle de zones urbaines à partir d'images satellitaires très haute résolution. Le contenu informatif de ce type de données est insuffisant pour permettre une utilisation efficace des nombreux algorithmes développés pour des données aériennes. Dans ce contexte, l'introduction de connaissances a priori fortes sur les zones urbaines est nécessaire. Les outils stochastiques sont particulièrement bien adaptés pour traiter cette problématique.
Nous proposons une approche structurelle pour aborder ce sujet. Cela consiste à modéliser un bâtiment comme un assemblage de modules urbains élémentaires extraits d'une bibliothèque de modèles 3D paramétriques. Dans un premier temps, nous extrayons les supports 2D de ces modules à partir d'un Modèle Numérique d' Elévation (MNE). Le résultat est un agencement de quadrilatères dont les éléments voisins sont connectés entre eux. Ensuite, nous reconstruisons les bâtiments en recherchant la configuration optimale de modèles 3D se fixant sur les supports précédemment extraits. Cette configuration correspond à la réalisation qui maximise une densité mesurant la cohérence entre la réalisation et le MNE, mais également prenant en compte des connaissances a priori telles que des lois d'assemblage des modules. Nous discutons enfin de la pertinence de cette approche en analysant les résultats obtenus à partir de données satellitaires (simulations PLEIADES). Des expérimentations sont également réalisées à partir d'images aériennes mieux résolues. |
|
3 - Indexing of satellite images using structural information. A. Bhattacharya. PhD Thesis, Ecole Nationale Supérieure des Télécommunications, 2007. Keywords : Landscape, Segmentation, Features, Extraction, Classification, Data mining.
@PHDTHESIS{bhattacharya_these,
|
author |
= |
{Bhattacharya, A.}, |
title |
= |
{Indexing of satellite images using structural information}, |
year |
= |
{2007}, |
school |
= |
{Ecole Nationale Supérieure des Télécommunications}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_bhattacharya_these.pdf}, |
keyword |
= |
{Landscape, Segmentation, Features, Extraction, Classification, Data mining} |
} |
|
top of the page
28 Conference articles |
1 - Forest Fire Detection based on Gaussian field analysis. F. Lafarge and X. Descombes and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), Poznan, Poland, September 2007. Note : Copyright EURASIP Keywords : Gaussian Field, DT-caracteristic, Forest fires.
@INPROCEEDINGS{lafarge_eusipco07,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Forest Fire Detection based on Gaussian field analysis}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Poznan, Poland}, |
note |
= |
{Copyright EURASIP}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_lafarge_eusipco07.pdf}, |
keyword |
= |
{Gaussian Field, DT-caracteristic, Forest fires} |
} |
|
2 - 3D city modeling based on Hidden Markov Model. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE International Conference on Image Processing (ICIP), San Antonio, U.S., September 2007. Note : Copyright IEEE Keywords : 3D reconstruction, Building, Hidden Markov Model.
@INPROCEEDINGS{lafarge_icip07,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{3D city modeling based on Hidden Markov Model}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{San Antonio, U.S.}, |
note |
= |
{Copyright IEEE}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4379207}, |
keyword |
= |
{3D reconstruction, Building, Hidden Markov Model} |
} |
|
3 - A `Gas of Circles' Phase Field Model and its Application to Tree Crown Extraction. P. Horvath and I. H. Jermyn. In Proc. European Signal Processing Conference (EUSIPCO), Poznan, Poland, September 2007. Keywords : Phase Field, Tree Crown Extraction.
@INPROCEEDINGS{Horvath07d,
|
author |
= |
{Horvath, P. and Jermyn, I. H.}, |
title |
= |
{A `Gas of Circles' Phase Field Model and its Application to Tree Crown Extraction}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Poznan, Poland}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07d.pdf}, |
keyword |
= |
{Phase Field, Tree Crown Extraction} |
} |
Abstract :
The problem of extracting the region in the image domain
corresponding to an a priori unknown number of circular objects
occurs in several domains. We propose a new model of a `gas of
circles', the ensemble of regions in the image domain composed of
circles of a given radius. The model uses the phase field
reformulation of higher-order active contours (HOACs). Phase fields
possess several advantages over contour and level set approaches to
region modelling, in particular for HOAC models. The reformulation
allows us to benefit from these advantages without losing the
strengths of the HOAC framework. Combined with a suitable likelihood
energy, and applied to the tree crown extraction problem, the new
model shows markedly improved performance, both in quality of
results and in computation time, which is two orders of magnitude
less than the HOAC level set implementation.
|
|
4 - A Phase Field Model Incorporating Generic and Specific Prior Knowledge Applied to Road Network Extraction from VHR Satellite Images. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia and B. Hu. In Proc. British Machine Vision Conference (BMVC), Warwick, UK, September 2007. Keywords : Road network, Very high resolution, Higher-order, Active contour, Shape, Prior.
@INPROCEEDINGS{Peng07a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J. and Hu, B.}, |
title |
= |
{A Phase Field Model Incorporating Generic and Specific Prior Knowledge Applied to Road Network Extraction from VHR Satellite Images}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. British Machine Vision Conference (BMVC)}, |
address |
= |
{Warwick, UK}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Peng07a.pdf}, |
keyword |
= |
{Road network, Very high resolution, Higher-order, Active contour, Shape, Prior} |
} |
Abstract :
We address the problem of updating road maps in dense urban areas by extracting the main road network from a very high resolution (VHR) satellite image. Our model of the region occupied by the road network in the image is innovative. It incorporates three different types of prior geometric knowledge: generic boundary smoothness constraints, equivalent to a standard active contour prior; knowledge of the geometric properties of road networks (i.e. that they occupy regions composed of long, low-curvature segments joined at junctions), equivalent to a higher-order active contour prior; and knowledge of the road network at an earlier date derived from GIS data, similar to other ‘shape priors’ in the literature. In addition, we represent the road network region as a ‘phase field’, which offers a number of important advantages over other region modelling frameworks. All three types of prior knowledge prove important for overcoming the complexity of geometric ‘noise’ in VHR images. Promising results and a comparison with several other techniques demonstrate the effectiveness of our approach. |
|
5 - Apprentissage non supervisé des SVM par un algorithme des K-moyennes entropique pour la détection de zones brûlées. O. Zammit and X. Descombes and J. Zerubia. In Proc. GRETSI Symposium on Signal and Image Processing, Troyes, France, September 2007. Keywords : Satellite images, Forest fires, Burnt areas, Classification, Support Vector Machines, Learning base.
@INPROCEEDINGS{zammit_gretsi_07,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Apprentissage non supervisé des SVM par un algorithme des K-moyennes entropique pour la détection de zones brûlées}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Troyes, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_zammit_gretsi_07.pdf}, |
keyword |
= |
{Satellite images, Forest fires, Burnt areas, Classification, Support Vector Machines, Learning base} |
} |
|
6 - Rectangular Road Marking Detection with Marked Point Processes. O. Tournaire and N. Paparoditis and F. Lafarge. In ISPRS Conference Photogrammetric Image Analysis (PIA), Vol. 36, pages 149--154, Org. IAPRS, Munich, Germany, September 2007.
@INPROCEEDINGS{tournaire_pia07,
|
author |
= |
{Tournaire, O. and Paparoditis, N. and Lafarge, F.}, |
title |
= |
{Rectangular Road Marking Detection with Marked Point Processes}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{ISPRS Conference Photogrammetric Image Analysis (PIA)}, |
volume |
= |
{36}, |
pages |
= |
{149--154}, |
organization |
= |
{IAPRS}, |
address |
= |
{Munich, Germany}, |
pdf |
= |
{http://www-sop.inria.fr/ariana/Publis/2007-tournaire-pia.pdf}, |
keyword |
= |
{} |
} |
|
7 - A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs. C. Benedek and T. Szirányi and Z. Kato and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Vol. 6, pages 141--144, San Antonio, Texas, USA, September 2007. Keywords : Change detection, Aerial images, Camera motion, MRF. Copyright : Copyright IEEE
@INPROCEEDINGS{benedek_ICIP07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
volume |
= |
{6}, |
pages |
= |
{141--144}, |
address |
= |
{San Antonio, Texas, USA}, |
url |
= |
{http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4379541&isnumber=4379494&punumber=4378863&k2dockey=4379541@ieeecnfs&query=%28benedek+%3Cin%3E+metadata%29+%3Cand%3E+%284379494+%3Cin%3E+isnumber%29&pos=0}, |
pdf |
= |
{http://web.eee.sztaki.hu/~bcsaba/Publications/Pdf/benedek_icip2007.pdf}, |
keyword |
= |
{Change detection, Aerial images, Camera motion, MRF} |
} |
Abstract :
In this paper, we give a probabilistic model for automatic change detection on airborne images taken with moving cameras. To ensure robustness, we adopt an unsupervised coarse matching instead of a precise image registration. The challenge of the proposed model is to eliminate the registration errors, noise and the parallax artifacts caused by the static objects having considerable height (buildings, trees, walls etc.) from the difference image. We describe the background membership of a given image point through two different features, and introduce a novel three-layerMarkov Random Field (MRF) model to ensure connected homogenous regions in the segmented image. |
|
8 - Sur la complexite et la rapidite d’algorithmes pour la minimisation de la variation totale sous contraintes. P. Weiss and L. Blanc-Féraud and G. Aubert. In Proc. Symposium on Signal and Image Processing (GRETSI), Troyes, France, September 2007. Keywords : l1 norm minimization, compression noise denoising, optimal algorithm, convex analysis, Total variation, nesterov scheme.
@INPROCEEDINGS{Pierre Weiss,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{Sur la complexite et la rapidite d’algorithmes pour la minimisation de la variation totale sous contraintes}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. Symposium on Signal and Image Processing (GRETSI)}, |
address |
= |
{Troyes, France}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/Conferences/Gretsi_WeissBlancFeraudAubert_2010.PDF}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Pierre Weiss.pdf}, |
keyword |
= |
{l1 norm minimization, compression noise denoising, optimal algorithm, convex analysis, Total variation, nesterov scheme} |
} |
|
9 - A Multispectral Data Model for Higher-Order Active Contours and its Application to Tree Crown Extraction. P. Horvath. In Proc. Advanced Concepts for Intelligent Vision Systems, Delft, Netherlands, August 2007. Keywords : Higher-order, Tree Crown Extraction, Colour.
@INPROCEEDINGS{Horvath07c,
|
author |
= |
{Horvath, P.}, |
title |
= |
{A Multispectral Data Model for Higher-Order Active Contours and its Application to Tree Crown Extraction}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. Advanced Concepts for Intelligent Vision Systems}, |
address |
= |
{Delft, Netherlands}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07c.pdf}, |
keyword |
= |
{Higher-order, Tree Crown Extraction, Colour} |
} |
Abstract :
Forestry management makes great use of statistics concerning the
individual trees making up a forest, but the acquisition of this
information is expensive. Image processing can potentially both
reduce this cost and improve the statistics. The key problem is the
delineation of tree crowns in aerial images. The automatic solution
of this problem requires considerable prior information to be built
into the image and region models. Our previous work has focused on
including shape information in the region model; in this paper we
examine the image model. The aerial images involved have three
bands. We study the statistics of these bands, and construct both
multispectral and single band image models. We combine these with a
higher-order active contour model of a `gas of circles' in order to
include prior shape information about the region occupied by the
tree crowns in the image domain. We compare the results produced by
these models on real aerial images and conclude that multiple bands
improves the quality of the segmentation. The model has many other
potential applications, e.g. to nano-technology, microbiology,
physics, and medical imaging.
|
|
10 - A New Phase Field Model of a `Gas of Circles' for Tree Crown Extraction from Aerial Images. P. Horvath and I. H. Jermyn. In Proc. International Conference on Computer Analysis of Images and Patterns (CAIP), Vienna, Austria, August 2007. Keywords : Phase Field, Tree Crown Extraction.
@INPROCEEDINGS{Horvath07b,
|
author |
= |
{Horvath, P. and Jermyn, I. H.}, |
title |
= |
{A New Phase Field Model of a `Gas of Circles' for Tree Crown Extraction from Aerial Images}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. International Conference on Computer Analysis of Images and Patterns (CAIP)}, |
address |
= |
{Vienna, Austria}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07b.pdf}, |
keyword |
= |
{Phase Field, Tree Crown Extraction} |
} |
Abstract :
We describe a model for tree crown extraction from aerial images, a
problem of great practical importance for the forestry industry. The
novelty lies in the prior model of the region occupied by tree
crowns in the image, which is a phase field version of the
higher-order active contour inflection point `gas of circles' model.
The model combines the strengths of the inflection point model with
those of the phase field framework: it removes the `phantom circles'
produced by the original `gas of circles' model, while executing two
orders of magnitude faster than the contour-based inflection point
model. The model has many other areas of application e.g., to
imagery in nanotechnology, biology, and physics. |
|
11 - Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves. S. Joshi and E. Klassen and A. Srivastava and I. H. Jermyn. In Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), Ezhou, China, August 2007. Keywords : Shape, Reparameterization, Metric, Geodesic. Copyright : The original publication is available at www.springerlink.com.
@INPROCEEDINGS{Joshi07b,
|
author |
= |
{Joshi, S. and Klassen, E. and Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)}, |
address |
= |
{Ezhou, China}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Joshi07b.pdf}, |
keyword |
= |
{Shape, Reparameterization, Metric, Geodesic} |
} |
Abstract :
This paper illustrates and extends an efficient framework, called the square-root-elastic (SRE) framework, for studying shapes of closed curves, that was first introduced in [2]. This framework combines the strengths of two important ideas - elastic shape metric and path-straightening methods - for finding geodesics in shape spaces of curves. The elastic metric allows for optimal matching of features between curves while path-straightening ensures that the algorithm results in geodesic paths. This paper extends this framework by removing two important shape preserving transformations: rotations and re-parameterizations, by forming quotient spaces and constructing geodesics on these quotient spaces. These ideas are demonstrated using experiments involving 2D and 3D curves. |
|
12 - Parametric blind deconvolution for confocal laser scanning microscopy. P. Pankajakshan and B. Zhang and L. Blanc-Féraud and Z. Kam and J.C. Olivo-Marin and J. Zerubia. In Proc. 29th International Conference of IEEE EMBS (EMBC-07), pages 6531-6534, August 2007. Keywords : Confocal microscopy, Blind Deconvolution, Poisson noise, Total variation, EM algorithm, Bayesian estimation. Copyright : ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
@INPROCEEDINGS{Pankajakshan07a,
|
author |
= |
{Pankajakshan, P. and Zhang, B. and Blanc-Féraud, L. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Parametric blind deconvolution for confocal laser scanning microscopy}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. 29th International Conference of IEEE EMBS (EMBC-07)}, |
pages |
= |
{6531-6534}, |
pdf |
= |
{http://ieeexplore.ieee.org/iel5/4352184/4352185/04353856.pdf?tp=&isnumber=&arnumber=4353856}, |
keyword |
= |
{Confocal microscopy, Blind Deconvolution, Poisson noise, Total variation, EM algorithm, Bayesian estimation} |
} |
Abstract :
In this paper, we propose a method for the
iterative restoration of fluorescence Confocal Laser Scanning
Microscopic (CLSM) images and parametric estimation of the
acquisition system’s Point Spread Function (PSF). The CLSM is
an optical fluorescence microscope that scans a specimen in 3D
and uses a pinhole to reject most of the out-of-focus light. However,
the quality of the images suffers from two basic physical
limitations. The diffraction-limited nature of the optical system,
and the reduced amount of light detected by the photomultiplier
cause blur and photon counting noise respectively. These images
can hence benefit from post-processing restoration methods
based on deconvolution. An efficient method for parametric
blind image deconvolution involves the simultaneous estimation
of the specimen 3D distribution of fluorescent sources and
the microscope PSF. By using a model for the microscope
image acquisition physical process, we reduce the number of
free parameters describing the PSF and introduce constraints.
The parameters of the PSF may vary during the course of
experimentation, and so they have to be estimated directly from
the observed data. A priori model of the specimen is further
applied to stabilize the alternate minimization algorithm and to
converge to the solutions. |
|
13 - Assessment of different classification algorithms for burnt land discrimination. O. Zammit and X. Descombes and J. Zerubia. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 3000-3003, Barcelone, Spain, July 2007. Keywords : Satellite images, Burnt areas, Support Vector Machines, Forest fires, Classification. Copyright : IEEE
|
14 - A Hierarchical Texture Model for Unsupervised Segmentation of Remotely Sensed Images. G. Scarpa and M. Haindl and J. Zerubia. In Scandinavian Conference on Image Analysis, Vol. 4522/2007, pages 303-312, series LNCS 4522, Ed. Springer Berlin / Heidelberg, Aalborg, Denmark, June 2007.
@INPROCEEDINGS{scarpa_scia_07,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{A Hierarchical Texture Model for Unsupervised Segmentation of Remotely Sensed Images}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Scandinavian Conference on Image Analysis}, |
volume |
= |
{4522/2007}, |
pages |
= |
{303-312}, |
series |
= |
{LNCS 4522}, |
editor |
= |
{Springer Berlin / Heidelberg}, |
address |
= |
{Aalborg, Denmark}, |
url |
= |
{http://link.springer.com/chapter/10.1007%2F978-3-540-73040-8_31}, |
keyword |
= |
{} |
} |
|
15 - A Novel Representation for Riemannian Analysis of Elastic Curves in R^n. S. Joshi and E. Klassen and A. Srivastava and I. H. Jermyn. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA, June 2007. Keywords : Shape, Metric, Geodesic, Prior.
@INPROCEEDINGS{Joshi07a,
|
author |
= |
{Joshi, S. and Klassen, E. and Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{A Novel Representation for Riemannian Analysis of Elastic Curves in R^n}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Minneapolis, USA}, |
url |
= |
{http://dx.doi.org/10.1109/CVPR.2007.383185}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Joshi07a.pdf}, |
keyword |
= |
{Shape, Metric, Geodesic, Prior} |
} |
Abstract :
We propose an efficient representation for studying shapes of closed curves in R^n. This paper combines the strengths of two important ideas---elastic shape metric and path-straightening methods---and results in a very fast algorithm for finding geodesics in shape spaces. The elastic metric allows for optimal matching of features between the two curves while path-straightening ensures that the algorithm results in geodesic paths. For the novel representation proposed here, the elastic metric becomes the simple L^2 metric, in contrast to the past usage where more complex forms were used. We present the step-by-step algorithms for computing geodesics and demonstrate them with 2-D as well as 3-D examples. |
|
16 - Indexing Satellite Images with Features Computed from Man-Made Structures on the Earth’s Surface. A. Bhattacharya and M. Roux and H. Maitre and I. H. Jermyn and X. Descombes and J. Zerubia. In Proc. International Workshop on Content-Based Multimedia Indexing, Bordeaux, France, June 2007. Keywords : Indexation, Road network, Semantic, Retrieval, Feature statistics.
@INPROCEEDINGS{Bhattacharya07a,
|
author |
= |
{Bhattacharya, A. and Roux, M. and Maitre, H. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Indexing Satellite Images with Features Computed from Man-Made Structures on the Earth’s Surface}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. International Workshop on Content-Based Multimedia Indexing}, |
address |
= |
{Bordeaux, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Bhattacharya07a.pdf}, |
keyword |
= |
{Indexation, Road network, Semantic, Retrieval, Feature statistics} |
} |
Abstract :
Indexing and retrieval from remote sensing image databases relies on the extraction of appropriate information from the data about the entity of interest (e.g. land cover type) and on the robustness of this extraction to nuisance variables. Other entities in an image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. The road network contained in an image is one example. The properties of road networks vary considerably from one geographical environment to another, and they can therefore be used to classify and retrieve such environments. In this paper, we define several such environments, and classify them with the aid of geometrical and topological features computed from the road networks occurring in them. The relative failure of network extraction methods in certain types of urban area obliges us to segment such areas and to add a second set of geometrical and topological features computed from the segmentations. To validate the approach, feature selection and SVM linear kernel classification are performed on the feature set arising from a diverse image database. |
|
17 - Riemannian Analysis of Probability Density Functions with Applications in Vision. S. Joshi and A. Srivastava and I. H. Jermyn. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA, June 2007. Keywords : Probability density function, Metric, Geodesic, Reparameterization.
@INPROCEEDINGS{Joshi07,
|
author |
= |
{Joshi, S. and Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{Riemannian Analysis of Probability Density Functions with Applications in Vision}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Minneapolis, USA}, |
url |
= |
{http://dx.doi.org/10.1109/CVPR.2007.383188 }, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Joshi07.pdf}, |
keyword |
= |
{Probability density function, Metric, Geodesic, Reparameterization} |
} |
Abstract :
Applications in computer vision involve statistically analyzing an important class of constrained, non- negative functions, including probability density functions (in texture analysis), dynamic time-warping functions (in activity analysis), and re-parametrization or non-rigid registration functions (in shape analysis of curves). For this one needs to impose a Riemannian structure on the spaces formed by these functions. We propose a em spherical version of the Fisher-Rao metric that provides closed form expressions for geodesics and distances, and allows an efficient computation of statistics. We compare this metric with some previously used metrics and present an application in planar shape classification. |
|
18 - A Hierarchical finite-state model for texture segmentation. G. Scarpa and M. Haindl and J. Zerubia. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 1, pages 1209-1212, Honolulu, HI (USA), April 2007.
@INPROCEEDINGS{scarpa_icassp_07,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{A Hierarchical finite-state model for texture segmentation}, |
year |
= |
{2007}, |
month |
= |
{April}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
volume |
= |
{1}, |
pages |
= |
{1209-1212}, |
address |
= |
{Honolulu, HI (USA)}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4217303}, |
keyword |
= |
{} |
} |
|
19 - Urban road extraction from VHR images using a multiscale image model and a phase field model of network geometry. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. In Proc. Urban, Paris, France, April 2007. Keywords : Road network, Very high resolution, Multiscale, Higher-order, Active contour, Shape.
@INPROCEEDINGS{Peng07_urban,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Urban road extraction from VHR images using a multiscale image model and a phase field model of network geometry}, |
year |
= |
{2007}, |
month |
= |
{April}, |
booktitle |
= |
{Proc. Urban}, |
address |
= |
{Paris, France}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Peng07urban.pdf}, |
keyword |
= |
{Road network, Very high resolution, Multiscale, Higher-order, Active contour, Shape} |
} |
Abstract :
This paper addresses the problem of automatically
extracting the main road network in a dense urban area from
a very high resolution optical satellite image using a variational
approach. The model energy has two parts: a phase field higherorder
active contour energy that describes our prior knowledge
of road network geometry, i.e. that it is composed of elongated
structures with roughly parallel borders that meet at junctions;
and a multi-scale statistical image model describing the image
we expect to see given a road network. By minimizing the model
energy, an estimate of the road network is obtained. Promising
results on 0.6m QuickBird Panchromatic images are presented,
and future improvements to the models are outlined. |
|
20 - Image deconvolution using a stochastic differential equation approach. X. Descombes and M. Lebellego and E. Zhizhina. In Proc. nternational Conference on Computer Vision Theory
and Applications, Barcelona, Spain, March 2007. Keywords : Deconvolution, Stochastic Differential Equation.
@INPROCEEDINGS{xavBarca2,
|
author |
= |
{Descombes, X. and Lebellego, M. and Zhizhina, E.}, |
title |
= |
{Image deconvolution using a stochastic differential equation approach}, |
year |
= |
{2007}, |
month |
= |
{March}, |
booktitle |
= |
{Proc. nternational Conference on Computer Vision Theory
and Applications}, |
address |
= |
{Barcelona, Spain}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_xavBarca2.pdf}, |
keyword |
= |
{Deconvolution, Stochastic Differential Equation} |
} |
|
21 - Circular object segmentation using higher-order active contours. P. Horvath and I. H. Jermyn and Z. Kato and J. Zerubia. In In Proc. Conference of the Hungarian Association for Image Analysis and Pattern Recognition (KEPAF'07), Debrecen, Hungary, January 2007. Note : In Hungarian Keywords : Higher-order, Tree Crown Extraction, Shape.
@INPROCEEDINGS{Horvath07a,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{Circular object segmentation using higher-order active contours}, |
year |
= |
{2007}, |
month |
= |
{January}, |
booktitle |
= |
{In Proc. Conference of the Hungarian Association for Image Analysis and Pattern Recognition (KEPAF'07)}, |
address |
= |
{Debrecen, Hungary}, |
note |
= |
{In Hungarian}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07a.pdf}, |
keyword |
= |
{Higher-order, Tree Crown Extraction, Shape} |
} |
|
22 - Gap Filling in 3D Vessel like Patterns with Tensor Fields. L. Risser and F. Plouraboue and X. Descombes. In Proc. International Conference on Computer Vision Theory
and Applications, 2007. Keywords : tensor voting, vascular network.
@INPROCEEDINGS{XDbarca1,
|
author |
= |
{Risser, L. and Plouraboue, F. and Descombes, X.}, |
title |
= |
{Gap Filling in 3D Vessel like Patterns with Tensor Fields}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. International Conference on Computer Vision Theory
and Applications}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_XDbarca1.pdf}, |
keyword |
= |
{tensor voting, vascular network} |
} |
|
23 - Wavelet-based restoration methods: application to 3D confocal microscopy images. C. Chaux and L. Blanc-Féraud and J. Zerubia. In Proc. SPIE Conference on Wavelets, 2007. Keywords : Restoration, Deconvolution, 3D images, Confocal microscopy, Poisson noise, Wavelets. Copyright : Copyright 2007 Society of Photo-Optical Instrumentation Engineers.
This paper was published in Proc. SPIE Conference on Wavelets and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
@INPROCEEDINGS{chaux2007,
|
author |
= |
{Chaux, C. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Wavelet-based restoration methods: application to 3D confocal microscopy images}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. SPIE Conference on Wavelets}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_chaux2007.pdf}, |
keyword |
= |
{Restoration, Deconvolution, 3D images, Confocal microscopy, Poisson noise, Wavelets} |
} |
|
24 - Detection and Completion of Filaments: A Vector Field and PDE Approach. A. Baudour and G. Aubert and L. Blanc-Féraud. In SSVM 2007, LNCS 4485 proceedings, 2007.
@INPROCEEDINGS{ssvm2007,
|
author |
= |
{Baudour, A. and Aubert, G. and Blanc-Féraud, L.}, |
title |
= |
{Detection and Completion of Filaments: A Vector Field and PDE Approach}, |
year |
= |
{2007}, |
booktitle |
= |
{ SSVM 2007, LNCS 4485 proceedings}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_ssvm2007.pdf}, |
keyword |
= |
{} |
} |
|
25 - Détection et Complétion de Filaments: une approche variationelle et vectorielle. A. Baudour and G. Aubert and L. Blanc-Féraud. In Colloque Gretsi Troyes, 2007, 2007.
@INPROCEEDINGS{ Gretsi 2007,
|
author |
= |
{Baudour, A. and Aubert, G. and Blanc-Féraud, L.}, |
title |
= |
{Détection et Complétion de Filaments: une approche variationelle et vectorielle}, |
year |
= |
{2007}, |
booktitle |
= |
{Colloque Gretsi Troyes, 2007}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_ Gretsi 2007.pdf}, |
keyword |
= |
{} |
} |
|
26 - Vers une détection et une classification non-supervisées des changements inter-images. A. Fournier and X. Descombes and J. Zerubia. In Proc. Traitement et Analyse de l'Information - Méthodes et Applications (TAIMA), 2007. Keywords : Markov Random Fields, Registration, Change detection, Clustering.
@INPROCEEDINGS{fournier-taima-07,
|
author |
= |
{Fournier, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Vers une détection et une classification non-supervisées des changements inter-images}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. Traitement et Analyse de l'Information - Méthodes et Applications (TAIMA)}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_fournier-taima-07.pdf}, |
keyword |
= |
{Markov Random Fields, Registration, Change detection, Clustering} |
} |
|
27 - Use of ant colony
optimization for finding neighbourhoods in non-stationary Markov random
field models. S. Le Hegarat-Mascle and A. Kallel and X. Descombes. In Pattern Recognition and Machine Intelligence (PReMI'07), 2007. Keywords : Ants colonization, Markov Random Fields.
@INPROCEEDINGS{ant07b,
|
author |
= |
{Le Hegarat-Mascle, S. and Kallel, A. and Descombes, X.}, |
title |
= |
{Use of ant colony
optimization for finding neighbourhoods in non-stationary Markov random
field models}, |
year |
= |
{2007}, |
booktitle |
= |
{Pattern Recognition and Machine Intelligence (PReMI'07)}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_ant07b.pdf}, |
keyword |
= |
{Ants colonization, Markov Random Fields} |
} |
|
28 - Tree Species Classification Using Radiometry, Texture and Shape Based Features. M. S. Kulikova and M. Mani and A. Srivastava and X. Descombes and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), 2007. Keywords : shape based features, SVM, tree classification.
@INPROCEEDINGS{Kulikova07,
|
author |
= |
{Kulikova, M. S. and Mani, M. and Srivastava, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Tree Species Classification Using Radiometry, Texture and Shape Based Features}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/46/55/05/PDF/Kulikova_EUSIPCO2007.pdf}, |
keyword |
= |
{shape based features, SVM, tree classification} |
} |
Abstract :
We consider the problem of tree species classification from high resolution aerial images based on radiometry, texture and a shape modeling. We use the notion of shape space proposed by Klassen et al., which provides a shape description invariant to translation, rotation and scaling. The shape features are extracted within a geodesic distance in the shape space. We then perform a classification using a SVM approach. We are able to show that the shape descriptors improve the classification performance relative to a classifier based on radiometric and textural descriptors alone. We obtain these results using high resolution Colour InfraRed (CIR) aerial images provided by the Swedish University of Agricultural Sciences. The image viewpoint is close to the nadir, i.e. the tree crowns are seen from above. |
|
top of the page
6 Technical and Research Reports |
1 - Support Vector Machines for burnt area discrimination. O. Zammit and X. Descombes and J. Zerubia. Research Report 6343, INRIA, November 2007. Keywords : Forest fires, Burnt areas, Satellite images, Support Vector Machines, Classification.
@TECHREPORT{zammit_RR_07,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Support Vector Machines for burnt area discrimination}, |
year |
= |
{2007}, |
month |
= |
{November}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6343}, |
url |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
pdf |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
keyword |
= |
{Forest fires, Burnt areas, Satellite images, Support Vector Machines, Classification} |
} |
Résumé :
Ce rapport aborde le problème de l'évaluation des dégâts après un feux de forêt. La détection est effectuée à partir d'une seule image satellite (SPOT 5) acquise après le feu. Afin de détecter les zones brûlées, nous utilisons une approche récente de classification nommée SVM (Séparateurs à Vaste Marge). Cette méthode est comparée aux algorithmes de classification plus conventionnels comme les K-moyennes ou les K-plus proches voisins, qui sont régulièrement utilisés en traitement d'image. Nous proposons également une méthode de classification non supervisée combinant les K-moyennes et les SVM. Les résultats fournis par les différentes techniques sont comparés à des vérités de terrain sur diverses zones brûlées. |
Abstract :
This report addresses the problem of burnt area discrimination using remote sensing images. The detection is based on a single post-fire image acquired by SPOT 5 satellite. To delineate the burnt areas, we use a recent classification method called Support Vectors Machines (SVM). This approach is compared to more conventional classifiers such as K-means or K-nearest neighbours which are widely used in image processing. We also proposed a new automatic classification approach combining K-means and SVM. The results given by the different methods are finally compared to ground truths on various burnt areas |
|
2 - Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations. S. Descamps and X. Descombes and A. Béchet and J. Zerubia. Research Report 6328, INRIA, October 2007. Keywords : Object extraction, modélisation stochastique , Marked point process, dynamique de naissance/mort, environnement, flamants roses.
@TECHREPORT{Descamps-Descombes,
|
author |
= |
{Descamps, S. and Descombes, X. and Béchet, A. and Zerubia, J.}, |
title |
= |
{Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations}, |
year |
= |
{2007}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6328}, |
url |
= |
{http://hal.inria.fr/inria-00180811}, |
pdf |
= |
{http://hal.inria.fr/docs/00/18/08/93/PDF/RR-Desc-Desc-Bech-Zeru.pdf}, |
keyword |
= |
{Object extraction, modélisation stochastique , Marked point process, dynamique de naissance/mort, environnement, flamants roses} |
} |
|
3 - An adaptive simulated annealing cooling schedule for object detection in images. M. Ortner and X. Descombes and J. Zerubia. Research Report 6336, INRIA, October 2007. Keywords : Image procressing, Shape extraction, Spatial point process, Simulated Annealing, Adaptive cooling schedule.
@TECHREPORT{Ortner-Descombes,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{An adaptive simulated annealing cooling schedule for object detection in images}, |
year |
= |
{2007}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6336}, |
url |
= |
{https://hal.inria.fr/inria-00181764}, |
pdf |
= |
{https://hal.inria.fr/inria-00181764}, |
keyword |
= |
{Image procressing, Shape extraction, Spatial point process, Simulated Annealing, Adaptive cooling schedule} |
} |
|
4 - Efficient schemes for total variation minimization under constraints in image processing. P. Weiss and L. Blanc-Féraud and G. Aubert. Research Report 6260, INRIA, July 2007. Keywords : l1 norm, total variation minimization, duality lp norms, gradient and subgradient descent, nesterov scheme, texture + geometry decomposition.
@TECHREPORT{RR-6260,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{Efficient schemes for total variation minimization under constraints in image processing}, |
year |
= |
{2007}, |
month |
= |
{July}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6260}, |
url |
= |
{http://hal.inria.fr/inria-00166096/fr/}, |
pdf |
= |
{http://hal.inria.fr/docs/00/26/16/35/PDF/RR-6260.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/26/16/35/PS/RR-6260.ps}, |
keyword |
= |
{l1 norm, total variation minimization, duality lp norms, gradient and subgradient descent, nesterov scheme, texture + geometry decomposition} |
} |
Résumé :
Ce papier présente de nouveaux algorithmes pour minimiser la variation totale, et plus généralement des normes l^1, sous des contraintes convexes. Ces algorithmes proviennent d'une avancée récente en optimisation convexe proposée par Yurii Nesterov. Suivant la régularité de l'attache aux données, nous résolvons soit un problème primal, soit un problème dual. Premièrement, nous montrons que les schémas standard de premier ordre permettent d'obtenir des solutions de précision epsilon en O(frac1epsilon^2) itérations au pire des cas. Pour une contrainte convexe quelconque, nous proposons un schéma qui permet d'obtenir une solution de précision epsilon en O(frac1epsilon) itérations. Pour une contrainte fortement convexe, nous résolvons un problème dual avec un schéma qui demande O(frac1sqrtepsilon) itérations pour obtenir une solution de précision epsilon. Suivant la contrainte, nous gagnons donc un à deux ordres dans la rapidité de convergence par rapport à des approches standard. Finalement, nous faisons quelques expériences numériques qui confirment les résultats théoriques sur de nombreux problèmes. |
Abstract :
This paper presents new algorithms to minimize total variation and more generally l^1-norms under a general convex constraint. The algorithms are based on a recent advance in convex optimization proposed by Yurii Nesterov citeNESTEROV. Depending on the regularity of the data fidelity term, we solve either a primal problem, either a dual problem. First we show that standard first order schemes allow to get solutions of precision epsilon in O(frac1epsilon^2) iterations at worst. For a general convex constraint, we propose a scheme that allows to obtain a solution of precision epsilon in O(frac1epsilon) iterations. For a strongly convex constraint, we solve a dual problem with a scheme that requires O(frac1sqrtepsilon) iterations to get a solution of precision epsilon. Thus, depending on the regularity of the data term, we gain from one to two orders of magnitude in the convergence rates with respect to standard schemes. Finally we perform some numerical experiments which confirm the theoretical results on various problems. |
|
5 - A Three-layer MRF model for Object Motion Detection in Airborne Images. C. Benedek and T. Szirányi and Z. Kato and J. Zerubia. Research Report 6208, INRIA, June 2007. Keywords : Aerial images, Change detection, Camera motion, MRF.
@TECHREPORT{benedek_INRIARR07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Three-layer MRF model for Object Motion Detection in Airborne Images}, |
year |
= |
{2007}, |
month |
= |
{June}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6208}, |
url |
= |
{https://hal.inria.fr/inria-00150805}, |
pdf |
= |
{https://hal.inria.fr/inria-00150805}, |
keyword |
= |
{Aerial images, Change detection, Camera motion, MRF} |
} |
|
6 - Object extraction using a stochastic birth-and-death dynamics in continuum. X. Descombes and R. Minlos and E. Zhizhina. Research Report 6135, INRIA, 2007. Keywords : birth and death process, Stochastic modeling, Wavelets.
@TECHREPORT{RR-6135,
|
author |
= |
{Descombes, X. and Minlos, R. and Zhizhina, E.}, |
title |
= |
{Object extraction using a stochastic birth-and-death dynamics in continuum}, |
year |
= |
{2007}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6135}, |
url |
= |
{https://hal.inria.fr/inria-00133726}, |
pdf |
= |
{http://hal.inria.fr/inria-00133726}, |
keyword |
= |
{birth and death process, Stochastic modeling, Wavelets} |
} |
Abstract :
We define a new birth and death dynamics dealing with configurations of discs in the plane. We prove the convergence of the continuous process and propose a discrete scheme converging to the continuous case. This framework is developed to address image processing problems consisting in extracting objects. The derived algorithm is applied for tree crown extraction and bird detection from aerial images. The performance of this approach is shown on real data. |
|
top of the page
Collection article or Book chapter |
1 - Bayesian estimation of blur and noise in remote sensing imaging. A. Jalobeanu and J. Zerubia and L. Blanc-Féraud. In Blind image deconvolution: theory and applications, Ed. P. Campisi and K. Egiazarian, Publ. CRC Press, 2007.
@INCOLLECTION{jalo2006,
|
author |
= |
{Jalobeanu, A. and Zerubia, J. and Blanc-Féraud, L.}, |
title |
= |
{Bayesian estimation of blur and noise in remote sensing imaging}, |
year |
= |
{2007}, |
booktitle |
= |
{Blind image deconvolution: theory and applications}, |
editor |
= |
{P. Campisi and K. Egiazarian}, |
publisher |
= |
{CRC Press}, |
url |
= |
{https://www.crcpress.com/Blind-Image-Deconvolution-Theory-and-Applications/Campisi-Egiazarian/9780849373671}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_jalo2006.pdf}, |
keyword |
= |
{} |
} |
|
top of the page
These pages were generated by
|