next up previous
Next: Estimation of the model Up: Indexing and segmentation Previous: Introduction

The 2D-Wold decomposition for textures

The texture field, $\{y(n,m)\}$ is decomposed as follows :

\begin{displaymath}y(n,m)=w(n,m)+h(n,m)+\sum_{(\alpha,\beta )\in O}e_{(\alpha,\beta)}(n,m)
\end{displaymath}

$\{w(n,m)\}$ : random component (w.r.t. granularity)
$\{h(n,m)\}$ : harmonic component (w.r.t. repetitiveness)
$\sum_{(\alpha,\beta )\in O}e_{(\alpha,\beta)}(n,m)$ : generalised evanescent component (w.r.t directionality)

The random component can be written as :

 \begin{displaymath}
w(n,m)=-\sum_{(0,0)<(k,l)}a(k,l)u(n-k,m-l)
\end{displaymath}

$\{u(n,m)\}$ is the 2D innovation which is a white noise with variance $\sigma
^{2}$

The harmonic component is given by :

 \begin{displaymath}
h(n,m)=\sum_{p=1}^{P}(C_{p}\cos2\pi(n\omega_{p}+m\nu_{p})
+D_{p}\sin2\pi(n\omega_{p}+m\nu_{p}))
\end{displaymath}

Cp,Dpare mutually orthogonal random variables

The evanescent component can be expressed :

\begin{displaymath}\begin{array}{lcc}
e_{(\alpha,\beta)}(n,m) & = & \sum_{i=1}^...
...,\beta)}}{\alpha ^{2}+\beta ^{2}}(n\beta+m\alpha))
\end{array}\end{displaymath}

si,sj,tk,tl are 1-D random proceses mutually orthogonal for all $i,j,k,l,i\neq j,k\neq l$



Radu Stoica
1999-05-21