Imp
[using it]
Interface Manipulation Package v4.0 (2008-06-25) a-projector ©copyright Author


imp.estimator
Class Model.Samplings

java.lang.Object
  extended by imp.estimator.Model.Samplings
Enclosing class:
Model

public static class Model.Samplings
extends Object

Defines a set samplings of the state estimation.


Constructor Summary
Model.Samplings()
          Constructs a set of sampling.
 
Method Summary
 Model.Samplings addMeasure(double[] m)
          Adds a measure to all models and return this.
 Model.Samplings addModel(Model model)
          Adds a model and return this.
 Model.Samplings delMeasure(double[] m)
          Removes a measure to all models and return this.
 Model.Samplings delModel(Model model)
          Removes a model and return this.
 Iterator<Model.Estimate> getEstimates()
          Returns an iterator over the estimates in decreasing quality order.
 boolean sample(double threshold, int modelMinimalSize, int maximalNumberOfModel)
          Samples once a state estimation for a randomly chosen model and returns true if the sampling is acceptable.
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Model.Samplings

public Model.Samplings()
Constructs a set of sampling.

Method Detail

addMeasure

public Model.Samplings addMeasure(double[] m)
Adds a measure to all models and return this.


addModel

public Model.Samplings addModel(Model model)
Adds a model and return this.


delMeasure

public Model.Samplings delMeasure(double[] m)
Removes a measure to all models and return this.


delModel

public Model.Samplings delModel(Model model)
Removes a model and return this.


getEstimates

public Iterator<Model.Estimate> getEstimates()
Returns an iterator over the estimates in decreasing quality order.


sample

public boolean sample(double threshold,
                      int modelMinimalSize,
                      int maximalNumberOfModel)
Samples once a state estimation for a randomly chosen model and returns true if the sampling is acceptable.

Parameters:
threshold - Quadratic measurement error threshold.
modelMinimalSize - minimal number of compatible measure to accept a model.
maximalNumberOfModel - maximal number of estimates, only the best estimates are maintained.