Mathieu Carrière

Books and Lecture Notes


 
Analyse topologique de données
M.C., Vincent Humilière and Steve Oudot
To appear in the Journées Mathématiques X-UPS, Éditions de l'École Polytechnique, 2024
Draft

Computational Topology


 
Sparsification of the generalized persistence diagrams for scalability through gradient descent
M.C., Seunghyun Kim and Woojin Kim
Preprint, 2024
arXiv, HAL, code

 
Fast, stable and efficient approximation of multi-parameter persistence modules with MMA
David Loiseaux, M.C. and Andrew Blumberg
Preprint, 2022
arXiv, HAL, code

 
On the metric distortion of embedding persistence diagrams into separable Hilbert spaces
M.C. and Ulrich Bauer
Proceedings of the International Symposium on Computational Geometry (SoCG), 2019
arXiv

 
Local equivalence and intrinsic metrics between Reeb graphs
M.C. and Steve Oudot
Proceedings of the International Symposium on Computational Geometry (SoCG), 2017
arXiv, HAL

 
Structure and stability of the 1-dimensional Mapper
M.C. and Steve Oudot
Foundations of Computational Mathematics (FoCM), 2017
Proceedings of the International Symposium on Computational Geometry (SoCG), 2016
arXiv, HAL (proceedings), HAL (journal)


Machine Learning


 
Resampling and averaging coordinates on data
Andrew Blumberg, M.C., Jun Hou Fung and Michael Mandell
Preprint, 2024
arXiv, HAL, code

 
Stable vectorization of multiparameter persistent homology using signed barcodes as measures
David Loiseaux, Luis Scoccola, M.C., Magnus Botnan and Steve Oudot
Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2023
arXiv, HAL, code

 
A framework for fast and stable representations of multiparameter persistent homology decompositions
David Loiseaux, M.C. and Andrew Blumberg
Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2023
arXiv, HAL, code

 
Multiparameter persistence image for topological machine learning
M.C. and Andrew Blumberg
Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020
HAL, code

 
Sliced Wasserstein kernel for persistence diagrams
M.C., Marco Cuturi and Steve Oudot
Proceedings of the International Conference on Machine Learning (ICML), 2017
arXiv, HAL, code


Deep Learning


 
MAGDiff: covariate data set shift detection via activation graphs of neural networks
Felix Hensel, Charles Arnal, M.C., Théo Lacombe, Hiroaki Kurihara, Yuichi Ike and Frédéric Chazal
Transactions on Machine Learning Research (TMLR), 2024
arXiv, HAL, code

 
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds
Thibault de Surrel, Felix Hensel, M.C., Théo Lacombe, Yuichi Ike, Hiroaki Kurihara, Marc Glisse and Frédéric Chazal
Proceedings of Topological, Algebraic, and Geometric Learning Workshops, 2022
arXiv, HAL, code

 
Topological Uncertainty: monitoring trained neural networks through persistence of activation graphs
Théo Lacombe, Yuichi Ike, M.C., Frédéric Chazal, Marc Glisse and Yuhei Umeda
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2021
arXiv, HAL, code

 
PersLay: a neural network layer for persistence diagrams and new graph topological signatures
M.C., Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer and Yuhei Umeda
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
arXiv, HAL, code, legacy code


Statistics


 
Statistical analysis of Mapper for stochastic and multivariate filters
M.C. and Bertrand Michel
Journal of Applied and Computational Topology (JACT), 2022
arXiv, HAL, code

 
Statistical analysis and parameter selection for Mapper
M.C., Bertrand Michel and Steve Oudot
Journal of Machine Learning Research (JMLR), 2018
arXiv, HAL, code


Optimization


 
Diffeomorphic interpolation for efficient persistence-based topological optimization
M.C., Marc Theveneau and Théo Lacombe
To appear in the Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2024
arXiv, HAL

 
Differentiability and optimization of multiparameter persistent homology
Siddharth Setlur, Luis Scoccola, David Loiseaux, M.C. and Steve Oudot
Proceedings of the International Conference on Machine Learning (ICML), 2024
arXiv, HAL, code

 
Differentiable Mapper for topological optimization of data representation
Ziyad Oulhaj, M.C. and Bertrand Michel
Proceedings of the International Conference on Machine Learning (ICML), 2024, oral presentation (top ~6%)
arXiv, HAL, code

 
A gradient sampling algorithm for stratified maps with applications to topological data analysis
Jacob Leygonie, M.C., Théo Lacombe and Steve Oudot
Mathematical Programming, 2023
arXiv, HAL, code

 
Optimizing persistent homology based functions
M.C., Frédéric Chazal, Marc Glisse, Yuichi Ike and Hariprasad Kannan
Proceedings of the International Conference on Machine Learning (ICML), 2021, oral presentation (top ~3%)
arXiv, HAL, code (layer 1, layer 2, layer 3), legacy code


Computational Biology


 
Statistical estimation of sparsity and efficiency for molecular codes
Jun Hou Fung, M.C. and Andrew Blumberg
Preprint, 2024
biorXiv, HAL, code

 
Topological Data Analysis and its usefulness for precision medicine studies
Raquel Iniesta, Ewan Carr, M. C., Naya Yerolemou, Bertrand Michel and Frédéric Chazal
Statistics and Operations Research Transactions (SORT), 2022
HAL, code

 
Identifying homogeneous subgroups of patients and important features: a topological machine learning approach
Ewan Carr, M.C., Bertrand Michel, Frédéric Chazal and Raquel Iniesta
BMC Bioinformatics, 2021
HAL, code

 
Topology identifies emerging adaptive mutations in SARS-CoV-2
Michael Bleher, Lukas Hahn, Juan Ángel Patiño-Galindo, M.C., Ulrich Bauer, Raúl Rabadán and Andreas Ott
Preprint, 2021
medrXiv, arXiv, HAL

 
MREC: a fast and versatile framework for aligning and matching point clouds with applications to single cell molecular data
Andrew Blumberg, M.C., Michael Mandell, Raúl Rabadán and Soledad Villar
Preprint, 2020
arXiv, code

 
Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study
Andrew Aukerman, M.C., Chao Chen, Kevin Gardner, Raúl Rabadán and Rami Vanguri
Journal of Computational Geometry (JoCG), 2022
Proceedings of the International Symposium on Computational Geometry (SoCG), 2020
HAL

 
Two-Tier Mapper: a user-independent clustering method for global gene expression analysis based on topology
Rachel Jeitziner, M.C., Jacques Rougemont, Steve Oudot, Kathryn Hess and Cathrin Brisken
Bioinformatics, 2019
arXiv, code

 
Topological data analysis of single-cell Hi-C contact maps
M.C. and Raúl Rabadán
Proceedings of the Abel Symposium, 2018
arXiv


Computer Graphics


 
Stable topological signatures for points on 3D shapes
M.C., Steve Oudot and Maks Ovsjanikov
Proceedings of the Eurographics Symposium on Geometry Processing (SGP), 2015
HAL, code, technical report