| CGAL 4.4 - 2D and 3D Linear Geometry Kernel | 
AdaptableFunctor (with two arguments) CGAL::Iso_rectangle_2<Kernel> | Operations | |
| Kernel::Iso_rectangle_2 | operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q) | 
| introduces an iso-oriented rectangle with diagonal opposite vertices pandqsuch thatpis the lexicographically smallest point in the rectangle.  More... | |
| Kernel::Iso_rectangle_2 | operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q, int) | 
| introduces an iso-oriented rectangle with diagonal opposite vertices pandq.  More... | |
| Kernel::Iso_rectangle_2 | operator() (const Kernel::Point_2 &left, const Kernel::Point_2 &right, const Kernel::Point_2 &bottom, const Kernel::Point_2 &top) | 
| introduces an iso-oriented rectangle fowhose minimal \( x\) coordinate is the one ofleft, the maximal \( x\) coordinate is the one ofright, the minimal \( y\) coordinate is the one ofbottom, the maximal \( y\) coordinate is the one oftop.  More... | |
| Kernel::Iso_rectangle_2 Kernel::ConstructIsoRectangle_2::operator() | ( | const Kernel::Point_2 & | p, | 
| const Kernel::Point_2 & | q | ||
| ) | 
introduces an iso-oriented rectangle with diagonal opposite vertices p and q such that p is the lexicographically smallest point in the rectangle. 
| Kernel::Iso_rectangle_2 Kernel::ConstructIsoRectangle_2::operator() | ( | const Kernel::Point_2 & | p, | 
| const Kernel::Point_2 & | q, | ||
| int | |||
| ) | 
introduces an iso-oriented rectangle with diagonal opposite vertices p and q. 
The int argument value is only used to distinguish the two overloaded functions. 
p.x()<=q.x() and p.y()<=q.y(). | Kernel::Iso_rectangle_2 Kernel::ConstructIsoRectangle_2::operator() | ( | const Kernel::Point_2 & | left, | 
| const Kernel::Point_2 & | right, | ||
| const Kernel::Point_2 & | bottom, | ||
| const Kernel::Point_2 & | top | ||
| ) | 
introduces an iso-oriented rectangle fo whose minimal \( x\) coordinate is the one of left, the maximal \( x\) coordinate is the one of right, the minimal \( y\) coordinate is the one of bottom, the maximal \( y\) coordinate is the one of top.