| 
    CGAL 4.4 - 3D Spherical Geometry Kernel 
   | 
 
Operations | |
| Comparison_result | operator() (const SphericalKernel::Circular_arc_3 &a0, const SphericalKernel::Circular_arc_3 &a1, const SphericalKernel::Vector_3 &m) | 
compares the \( z\)-coordinates of the two intersections points of a0 and a1 with the meridian defined by m (see Section Spherical Kernel Objects).  More... | |
| Comparison_result | operator() (const SphericalKernel::Circular_arc_point_3 &p, const SphericalKernel::Circular_arc_3 &a) | 
given a meridian anchored at the poles of the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object, and passing through point p, compares the \( z\)-coordinate of point p and that of the intersection of the meridian with a.  More... | |
| Comparison_result SphericalKernel::CompareZAtTheta_3::operator() | ( | const SphericalKernel::Circular_arc_3 & | a0, | 
| const SphericalKernel::Circular_arc_3 & | a1, | ||
| const SphericalKernel::Vector_3 & | m | ||
| ) | 
compares the \( z\)-coordinates of the two intersections points of a0 and a1 with the meridian defined by m (see Section Spherical Kernel Objects). 
a0 and a1 lie on the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object. m \( \neq(0,0,0)\) and the \( z\)-coordinate of m is \( 0\). Arcs a0 and a1 are \( \theta\)-monotone and both intersected by the meridian defined by m(see Section Spherical Kernel Objects). | Comparison_result SphericalKernel::CompareZAtTheta_3::operator() | ( | const SphericalKernel::Circular_arc_point_3 & | p, | 
| const SphericalKernel::Circular_arc_3 & | a | ||
| ) | 
given a meridian anchored at the poles of the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object, and passing through point p, compares the \( z\)-coordinate of point p and that of the intersection of the meridian with a. 
a and p lie on the context sphere used by the function SphericalKernel::compare_z_at_theta_3_object, arc a is \( \theta\)-monotone and the meridian passing through p intersects arc a.