next up previous contents Up: ALIAS-C++ Previous: Contents

  • La page de J-P. Merlet
  • J-P. Merlet home page
  • La page Présentation de HEPHAISTOS
  • HEPHAISTOS home page
  • La page "Présentation" de l'INRIA
  • INRIA home page

    Bibliography

    1
    Coleman R.
    La méthode de weyl pour le calcul simulatané des racines d'un polynome.
    Research Report 881-M, IMAG, 4January February March April May June July August September October November December Summer 1992.

    2
    Collavizza M., F. Deloble, and Rueher M.
    Comparing partial consistencies.
    Reliable Computing, 5:1-16, 1999.

    3
    Démidovitch B. and Maron I.
    Eléments de calcul numérique.
    Mir, 1979.

    4
    Durand E.
    Solution numérique des équations algébriques.
    Masson, 1960.

    5
    Hansen E.
    Global optimization using interval analysis.
    Marcel Dekker, 1992.

    6
    Jaulin L., Kieffer M., Didrit O., and Walter E.
    Applied Interval Analysis.
    Springer-Verlag, 2001.

    7
    Kearfott R.B. and Manuel N. III.
    INTBIS, a portable interval Newton/Bisection package.
    ACM Trans. on Mathematical Software, 16(2):152-157, 6January February March April May June July August September October November December Summer 1990.

    8
    Krawczyk R.
    Newton-algorithmen zur bestimmung von Nullstellen mit Fehlerschranken.
    Computing, 4:187-201, 1969.

    9
    Merlet J-P.
    A parser for the interval evaluation of analytical functions and its applications to engineering problems.
    J. Symbolic Computation, 31(4):475-486, 2001.

    10
    Merlet J-P.
    Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis.
    Int. J. of Robotics Research, 23(3):221-236, 2004.

    11
    Merlet J-P.
    Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries.
    Int. J. of Robotics Research, 18(9):902-916, 10January February March April May June July August September October November December Summer 1999.

    12
    Merlet J-P. and Daney D.
    A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot.
    In F.C. Park C.C. Iurascu, editor, Computational Kinematics, pages 167-176. EJCK, Seoul, 5January, February, March, April, May, June, July, August, September, October, November, December, Summer 20-22, 2001.

    13
    Mignotte M.
    Mathématiques pour le calcul formel.
    PUF, 1989.

    14
    Mineur H.
    Technique de calcul numérique.
    Dunod, 1966.

    15
    Miranda C.
    Un' osservatione su un theorema di Brouwer.
    Bulletino Unione Mathematica Italiana, pages 5-7, 1940.

    16
    Moore R.E.
    A test for the existence of solution to nonlinear systems.
    SIAM J. of Numerical Analysis, 14:611-615, 1977.

    17
    Moore R.E.
    Methods and Applications of Interval Analysis.
    SIAM Studies in Applied Mathematics, 1979.

    18
    Neumaier A.
    Interval methods for systems of equations.
    Cambridge University Press, 1990.

    19
    Neumaier A.
    Introduction to Numerical Analysis.
    Cambridge Univ. Press, 2001.

    20
    Neumaier A. and Merlet J-P.
    Solving real-life robotics problems with interval techniques.
    In SIAM Workshop on Validated Computing, page 148, Toronto, 5January, February, March, April, May, June, July, August, September, October, November, December, Summer 23-25, 2002.

    21
    Ratscheck H. and Rokne J.
    Interval methods.
    In Horst R. and Pardalos P.M., editors, Handbook of global optimization, pages 751-819. Kluwer, 1995.

    22
    Rex G. and Rohn J.
    Sufficient conditions for regularity and singularity of interval matrices.
    SIAM Journal on Matrix Analysis and Applications, 20(2):437-445, 1998.

    23
    Stiefel E.L.
    An introduction to numerical mathematics.
    Academic Press, 1963.

    24
    Van Hentenryck P., Michel L., and Deville Y.
    Numerica: A Modeling Language for Global Optimization.
    The MIT Press, 1997.

    25
    Yamamura K., Kawata H., and Tokue A.
    Interval solution of nonlinear equations using linear programming.
    BIT, 38(1):186-199, 1998.

    26
    Zippel R.
    Effective polynomial computation.
    Kluwer, 1993.
    In the index keywords in typeset font indicate variable that are used either in the C++ library (with the exception of the C++ procedure of BIAS/Profil that are displayed in normal font) or in the Maple library. In the later case if the keyword is, for example, permute the name of the Maple variable is `ALIAS/permute`. \begin{center}\vbox{\input{index.index}
}\end{center}

    jean-pierre merlet
    2018-07-25