|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Lemma | |
jml2b.pog.lemma |
Uses of Lemma in jml2b.pog.lemma |
Subclasses of Lemma in jml2b.pog.lemma | |
(package private) class |
jml2b.pog.lemma.BehaviourLemma
This class defines lemmas resulting from the proof of a method specification with differents cases. |
class |
ExceptionalLemma
This class defines lemmas resulting from the proof of an exceptional method specification. |
class |
ExsuresLemma
This class contains the information extracted from an exsures pragma. |
class |
NormalLemma
This class defines lemmas resulting from the proof of a normal method specification. |
class |
SimpleLemma
This class implements a simple lemma, that is a set of goals |
class |
VariantLemma
|
Methods in jml2b.pog.lemma that return Lemma | |
Lemma |
ExceptionalLemma.throwException(Formula vv,
Formula c)
|
Lemma |
ExceptionalLemma.throwException(java.lang.String vv,
AClass c)
|
Lemma |
ExsuresLemma.throwException(java.lang.String vv,
AClass c)
|
Lemma |
ExsuresLemma.throwException(Formula vv,
Formula c)
|
Lemma |
Lemma.throwException(Formula vv,
Formula c)
Returns the lemma to prove to ensure that the thrown of an exception ensures the current lemma. |
Lemma |
Lemma.throwException(java.lang.String vv,
AClass c)
Returns the lemma to prove to ensure that the thrown of an exception ensures the current lemma. |
Lemma |
Lemma.catchException(Type type,
Field catchParam)
Returns the lemma corresponding to the current lemma encapsulated in the fact that it corresponds to a catch of an exception. |
Lemma |
NormalLemma.catchException(Type type,
Field catchParam)
Creates an exceptional lemma set from the current one and a catched type with a catched parameter. |
Lemma |
SimpleLemma.catchException(Type type,
Field catchParam)
Returns an exsures lemma |
Constructors in jml2b.pog.lemma with parameters of type Lemma | |
Proofs(Lemma l)
Construct a proof from a lemma |
|
SimpleLemma(Lemma l)
Constructs a simple lemma containing only non obvious goals from a lemma. |
|
Theorem(Lemma l)
Construct a theorem containing one lemma |
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |