|
Publications de Olivier Zammit
Résultat de la recherche dans la liste des publications :
Thèse de Doctorat et Habilitation |
1 - Détection de zones brûlées après un feu de forêt à partir d'une seule image satellitaire SPOT 5 par techniques SVM. O. Zammit. Thèse de Doctorat, Universite de Nice Sophia Antipolis, septembre 2008. Mots-clés : Classification, Imagerie satellitaire, Zones brûlées, Feux de foret, Support Vector Machines, Croissance de Region. Copyright :
@PHDTHESIS{zammit_these_08,
|
author |
= |
{Zammit, O.}, |
title |
= |
{Détection de zones brûlées après un feu de forêt à partir d'une seule image satellitaire SPOT 5 par techniques SVM}, |
year |
= |
{2008}, |
month |
= |
{septembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00345683/fr/}, |
pdf |
= |
{http://tel.archives-ouvertes.fr/tel-00345683/fr/}, |
keyword |
= |
{Classification, Imagerie satellitaire, Zones brûlées, Feux de foret, Support Vector Machines, Croissance de Region} |
} |
Résumé :
Cette thèse aborde le problème de cartographie de zones brûlées à partir d'images satellitaires haute résolution. Nos modèles reposent sur le traitement d'une seule image SPOT 5, acquise après le feu afin de détecter automatiquement les zones brûlées.
Le modèle est fondé sur les Séparateurs à Vaste Marge (SVM), une technique de classification supervisée qui a démontré une meilleure précision et une meilleure capacité de généralisation que les algorithmes de classification plus traditionnels. Concernant notre problème de détection, les différentes zones brûlées possèdent des caractéristiques spectrales assez similaires, au contraire des zones non brûlées (végétation, routes, eau, zones urbaines, nuage, ombre...) dont les caractéristiques spectrales varient énormément. Nous proposons donc d'utiliser les One-Class SVM, une technique qui dérive des SVM mais qui n'utilise que des exemples de pixels brûlés pour les phases d'apprentissage et de classification.
Afin de prendre en compte l'information spatiale de l'image, l'algorithme OC-SVM est utilisé comme une technique de croissance de régions, ce qui permet de diminuer les fausses alarmes et d'améliorer les contours des zones brûlées.
De plus, la base d'exemple de pixels brûlés nécessaire à l'apprentissage des techniques SVM est déterminée automatiquement à partir de l'histogramme de l'image.
Finalement, la méthode de classification proposée est testée sur plusieurs images satellitaires afin de valider son efficacité selon le type de végétation et la surface des zones brûlées. Les zones brûlées obtenues sont comparées aux vérités de terrain fournies par le CNES, Infoterra France, le SERTIT, les Services Départementaux d'Incendies et de Secours ou l'Office National des Forêts. |
|
haut de la page
5 Articles de conférence |
1 - Unsupervised One-Class SVM Using a Watershed Algorithm and Hysteresis Thresholding to Detect Burnt Areas. O. Zammit et X. Descombes et J. Zerubia. Dans Proc. International Conference on Pattern Recognition and Image Analysis (PRIA), Nizhny Novgorod, Russia, septembre 2008. Mots-clés : Classification, Segmentation, Support Vector Machines, Zones brûlées, Feux de foret, Imagerie satellitaire. Copyright :
@INPROCEEDINGS{zammit_pria_08,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Unsupervised One-Class SVM Using a Watershed Algorithm and Hysteresis Thresholding to Detect Burnt Areas}, |
year |
= |
{2008}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition and Image Analysis (PRIA)}, |
address |
= |
{Nizhny Novgorod, Russia}, |
pdf |
= |
{http://hal.inria.fr/inria-00316297/fr/}, |
keyword |
= |
{Classification, Segmentation, Support Vector Machines, Zones brûlées, Feux de foret, Imagerie satellitaire} |
} |
|
2 - Combining One-Class Support Vector Machines and hysteresis thresholding: application to burnt area mapping. O. Zammit et X. Descombes et J. Zerubia. Dans Proc. European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, août 2008. Note : à paraître. Mots-clés : Classification, Imagerie satellitaire, Support Vector Machines, Zones brûlées, Feux de foret, Clustering. Copyright :
@INPROCEEDINGS{zammit_eusipco_08,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Combining One-Class Support Vector Machines and hysteresis thresholding: application to burnt area mapping}, |
year |
= |
{2008}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Lausanne, Switzerland}, |
keyword |
= |
{Classification, Imagerie satellitaire, Support Vector Machines, Zones brûlées, Feux de foret, Clustering} |
} |
|
3 - Apprentissage non supervisé des SVM par un algorithme des K-moyennes entropique pour la détection de zones brûlées. O. Zammit et X. Descombes et J. Zerubia. Dans Proc. GRETSI Symposium on Signal and Image Processing, Troyes, France, septembre 2007. Mots-clés : Imagerie satellitaire, Feux de foret, Zones brûlées, Classification, Support Vector Machines, Base d'apprentissage.
@INPROCEEDINGS{zammit_gretsi_07,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Apprentissage non supervisé des SVM par un algorithme des K-moyennes entropique pour la détection de zones brûlées}, |
year |
= |
{2007}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Troyes, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_zammit_gretsi_07.pdf}, |
keyword |
= |
{Imagerie satellitaire, Feux de foret, Zones brûlées, Classification, Support Vector Machines, Base d'apprentissage} |
} |
|
4 - Assessment of different classification algorithms for burnt land discrimination. O. Zammit et X. Descombes et J. Zerubia. Dans Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelone, Spain, juillet 2007. Mots-clés : Imagerie satellitaire, Zones brûlées, Support Vector Machines, Feux de foret, Classification. Copyright : IEEE
|
5 - Burnt area mapping using Support Vector Machines. O. Zammit et X. Descombes et J. Zerubia. Dans Proc. International Conference on Forest Fire Research, Figueira da Foz, Portugal, novembre 2006. Mots-clés : Imagerie satellitaire, Feux de foret, Zones brûlées, Support Vector Machines.
@INPROCEEDINGS{zammit_icffr_06,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Burnt area mapping using Support Vector Machines}, |
year |
= |
{2006}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. International Conference on Forest Fire Research}, |
address |
= |
{Figueira da Foz, Portugal}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_zammit_icffr_06.pdf}, |
keyword |
= |
{Imagerie satellitaire, Feux de foret, Zones brûlées, Support Vector Machines} |
} |
|
haut de la page
Rapport de recherche et Rapport technique |
1 - Support Vector Machines for burnt area discrimination. O. Zammit et X. Descombes et J. Zerubia. Rapport de Recherche 6343, INRIA, novembre 2007. Mots-clés : Feux de foret, Zones brûlées, Imagerie satellitaire, Support Vector Machines, Classification.
@TECHREPORT{zammit_RR_07,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Support Vector Machines for burnt area discrimination}, |
year |
= |
{2007}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6343}, |
url |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
pdf |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
keyword |
= |
{Feux de foret, Zones brûlées, Imagerie satellitaire, Support Vector Machines, Classification} |
} |
Résumé :
Ce rapport aborde le problème de l'évaluation des dégâts après un feux de forêt. La détection est effectuée à partir d'une seule image satellite (SPOT 5) acquise après le feu. Afin de détecter les zones brûlées, nous utilisons une approche récente de classification nommée SVM (Séparateurs à Vaste Marge). Cette méthode est comparée aux algorithmes de classification plus conventionnels comme les K-moyennes ou les K-plus proches voisins, qui sont régulièrement utilisés en traitement d'image. Nous proposons également une méthode de classification non supervisée combinant les K-moyennes et les SVM. Les résultats fournis par les différentes techniques sont comparés à des vérités de terrain sur diverses zones brûlées. |
Abstract :
This report addresses the problem of burnt area discrimination using remote sensing images. The detection is based on a single post-fire image acquired by SPOT 5 satellite. To delineate the burnt areas, we use a recent classification method called Support Vectors Machines (SVM). This approach is compared to more conventional classifiers such as K-means or K-nearest neighbours which are widely used in image processing. We also proposed a new automatic classification approach combining K-means and SVM. The results given by the different methods are finally compared to ground truths on various burnt areas |
|
haut de la page
Ces pages sont générées par
|