|
Laurent Garcin
Ancien Stagiaire Master, Ecole Polytechnique / IGN, DEA
Contact :
|
| Dernières publications dans le projet Ariana :
Buiding extraction using a Markov point process. L. Garcin et X. Descombes et J. Zerubia et H. Le Men. Dans Proc. IEEE International Conference on Image Processing (ICIP), papier invité, Thessalonique, Grèce, octobre 2001.
@INPROCEEDINGS{xd01d,
|
author |
= |
{Garcin, L. and Descombes, X. and Zerubia, J. and Le Men, H.}, |
title |
= |
{Buiding extraction using a Markov point process}, |
year |
= |
{2001}, |
month |
= |
{octobre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{papier invité, Thessalonique, Grèce}, |
keyword |
= |
{} |
} |
Building detection by markov object processes and a MCMC algorithm. L. Garcin et X. Descombes et J. Zerubia et H. Le Men. Rapport de Recherche 4206, Inria, France, juin 2001. Mots-clés : Geometrie stochastique, Processus ponctuels marques, Batiments, RJMCMC.
@TECHREPORT{xd01a,
|
author |
= |
{Garcin, L. and Descombes, X. and Zerubia, J. and Le Men, H.}, |
title |
= |
{Building detection by markov object processes and a MCMC algorithm}, |
year |
= |
{2001}, |
month |
= |
{juin}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4206}, |
address |
= |
{France}, |
url |
= |
{http://www.inria.fr/rrrt/rr-4206.html}, |
pdf |
= |
{ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-4206.pdf}, |
ps |
= |
{ftp://ftp.inria.fr/INRIA/publication/publi-psgz/RR/RR-4206.ps.gz}, |
keyword |
= |
{Geometrie stochastique, Processus ponctuels marques, Batiments, RJMCMC} |
} |
Résumé :
Le but de ce travail est de détecter les bâtiments à partir de photographies aeriennes numériques. Nous modélisons un ensemble de bâtiments par une configuration d'objets. Nous définissons un processus ponctuel sur l'ensemble des configurations qui se décompose en deux parties :
* La première est un modèle a priori sur les configurations qui considère des interactions entre les objets,
* la seconde est un modèle d'attache aux données qui induit la cohérence du résultat avec l'image traitée.
Nous avons ainsi une distribution a posteriori dont nous recherchons la configuration maximale. Pour obtenir ce maximum, nous utilisons une simulatio- n de type MCMC - un algorithme de Metropolis-Hasting-Green- couplée avec un schéma de recuit simulé. Nous testons la méthode décrite à la fois sur des données synthétiques et des images stéréoscopiques réelles. |
Abstract :
This work aims at detecting buildings in digital aerial photographs. Here we model a set of buildings by a configuration of objects. We define a point process on the set of configurations, which splits into two parts :
* the first one is a prior model on the configurations which use interactions between objects,
* the second one is a data model which enforces the coherence with the image.
Thus we have a posterior distribution whose maximum has to be found. In order to achieve this maximum, we use a MCMC simulation - a Metropolis-Hasting- s-Green algorithm - mixed with a simulated annealing. Then we test this method on both synthetic and real stereo-images. |
A RJMCMC algorithm for object processes in image processing. X. Descombes et R. Stoica et L. Garcin et J. Zerubia. Monte Carlo Methods and Applications, 7(1-2): pages 149-156, 2001.
@ARTICLE{xd01c,
|
author |
= |
{Descombes, X. and Stoica, R. and Garcin, L. and Zerubia, J.}, |
title |
= |
{A RJMCMC algorithm for object processes in image processing}, |
year |
= |
{2001}, |
journal |
= |
{Monte Carlo Methods and Applications}, |
volume |
= |
{7}, |
number |
= |
{1-2}, |
pages |
= |
{149-156}, |
keyword |
= |
{} |
} |
|
Liste complète des publications dans le projet Ariana
|
|