Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3386 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2737 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (35 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (525 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (30 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (18 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (7 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12 entries)

Global Index

A

Axioms [module, in sset1]
Axioms.chooseT [axiom, in sset1]
Axioms.chooseT_pr [axiom, in sset1]
Axioms.equal_or_not [lemma, in sset1]
Axioms.excluded_middle [axiom, in sset1]
Axioms.extensionality [axiom, in sset1]
Axioms.iff_eq [axiom, in sset1]
Axioms.IM [axiom, in sset1]
Axioms.IM_inc [axiom, in sset1]
Axioms.IM_exists [axiom, in sset1]
Axioms.inc [definition, in sset1]
Axioms.inc_or_not [lemma, in sset1]
Axioms.nonempty [inductive, in sset1]
Axioms.nonemptyT [inductive, in sset1]
Axioms.nonemptyT_intro [constructor, in sset1]
Axioms.nonempty_intro [constructor, in sset1]
Axioms.p_or_not_p [lemma, in sset1]
Axioms.Ro [axiom, in sset1]
Axioms.R_inj [axiom, in sset1]
Axioms.sub [definition, in sset1]


B

Bfunction [module, in sset2]
Bfunction.acreate_bijective [lemma, in sset2]
Bfunction.acreate_target [lemma, in sset2]
Bfunction.acreate_injective [lemma, in sset2]
Bfunction.acreate_surjective [lemma, in sset2]
Bfunction.acreate_W [lemma, in sset2]
Bfunction.acreate_function [lemma, in sset2]
Bfunction.acreate_exten [lemma, in sset2]
Bfunction.acreate_source [lemma, in sset2]
Bfunction.agreeC [definition, in sset2]
Bfunction.agrees_same_restrictionC [lemma, in sset2]
Bfunction.agrees_on [definition, in sset2]
Bfunction.agrees_same_restriction [lemma, in sset2]
Bfunction.bcreate [definition, in sset2]
Bfunction.bcreate_eq [lemma, in sset2]
Bfunction.bcreate_inv2 [lemma, in sset2]
Bfunction.bcreate_inv1 [lemma, in sset2]
Bfunction.bcreate_inv3 [lemma, in sset2]
Bfunction.bcreate_bijective [lemma, in sset2]
Bfunction.bcreate_injective [lemma, in sset2]
Bfunction.bcreate_surjective [lemma, in sset2]
Bfunction.bcreate1 [definition, in sset2]
Bfunction.bcreate1_bijective [lemma, in sset2]
Bfunction.bcreate1_surjective [lemma, in sset2]
Bfunction.bcreate1_injective [lemma, in sset2]
Bfunction.bijection [definition, in sset2]
Bfunction.bijectiveC [definition, in sset2]
Bfunction.bijectiveC_pr [lemma, in sset2]
Bfunction.bijective_ext_to_prod2C [lemma, in sset2]
Bfunction.bijective_double_inverseC [lemma, in sset2]
Bfunction.bijective_pr [lemma, in sset2]
Bfunction.bijective_inv_function [lemma, in sset2]
Bfunction.bijective_double_inverseC1 [lemma, in sset2]
Bfunction.bijective_from_compose [lemma, in sset2]
Bfunction.bijective_target_aux [lemma, in sset2]
Bfunction.bijective_inv_aux [lemma, in sset2]
Bfunction.bijective_source_aux [lemma, in sset2]
Bfunction.bijective_inverseC [lemma, in sset2]
Bfunction.bij_left_compose [lemma, in sset2]
Bfunction.bij_right_inverseC [lemma, in sset2]
Bfunction.bij_is_function [lemma, in sset2]
Bfunction.bij_left_inverse [lemma, in sset2]
Bfunction.bij_left_inverseC [lemma, in sset2]
Bfunction.bij_right_inverse [lemma, in sset2]
Bfunction.bij_right_compose [lemma, in sset2]
Bfunction.BL [definition, in sset2]
Bfunction.bl_graph1 [lemma, in sset2]
Bfunction.bl_function [lemma, in sset2]
Bfunction.bl_graph2 [lemma, in sset2]
Bfunction.bl_graph4 [lemma, in sset2]
Bfunction.bl_target [lemma, in sset2]
Bfunction.bl_injective [lemma, in sset2]
Bfunction.bl_W [lemma, in sset2]
Bfunction.bl_bijective [lemma, in sset2]
Bfunction.bl_graph3 [lemma, in sset2]
Bfunction.bl_source [lemma, in sset2]
Bfunction.bl_surjective [lemma, in sset2]
Bfunction.bl_recovers [lemma, in sset2]
Bfunction.bourbaki_ex5_17 [lemma, in sset2]
Bfunction.canonical_injection [definition, in sset2]
Bfunction.canonical_decomposition1C [lemma, in sset2]
Bfunction.canonical_decomposition1 [lemma, in sset2]
Bfunction.ci_injective [lemma, in sset2]
Bfunction.ci_W [lemma, in sset2]
Bfunction.ci_range [lemma, in sset2]
Bfunction.ci_function [lemma, in sset2]
Bfunction.composable [definition, in sset2]
Bfunction.composable_f_inv [lemma, in sset2]
Bfunction.composable_pr1 [lemma, in sset2]
Bfunction.composable_acreate [lemma, in sset2]
Bfunction.composable_inv_f [lemma, in sset2]
Bfunction.composable_ext_to_prod2 [lemma, in sset2]
Bfunction.composable_pr [lemma, in sset2]
Bfunction.composeC_ev [lemma, in sset2]
Bfunction.composeC_surj [lemma, in sset2]
Bfunction.composeC_inj [lemma, in sset2]
Bfunction.composeC_bij [lemma, in sset2]
Bfunction.compose_bijective [lemma, in sset2]
Bfunction.compose_surjective [lemma, in sset2]
Bfunction.compose_source [lemma, in sset2]
Bfunction.compose_acreate [lemma, in sset2]
Bfunction.compose_W [lemma, in sset2]
Bfunction.compose_id_left [lemma, in sset2]
Bfunction.compose_ext_to_prod2C [lemma, in sset2]
Bfunction.compose_id_right [lemma, in sset2]
Bfunction.compose_id_leftC [lemma, in sset2]
Bfunction.compose_id_rightC [lemma, in sset2]
Bfunction.compose_target [lemma, in sset2]
Bfunction.compose_domain [lemma, in sset2]
Bfunction.compose_injective [lemma, in sset2]
Bfunction.compose_function [lemma, in sset2]
Bfunction.compose_ext_to_prod2 [lemma, in sset2]
Bfunction.compose_assoc [lemma, in sset2]
Bfunction.compositionC_associative [lemma, in sset2]
Bfunction.constant_target [lemma, in sset2]
Bfunction.constant_source [lemma, in sset2]
Bfunction.constant_fun_prC [lemma, in sset2]
Bfunction.constant_function_fun [lemma, in sset2]
Bfunction.constant_W [lemma, in sset2]
Bfunction.constant_function_pr [lemma, in sset2]
Bfunction.constant_function_prop2 [lemma, in sset2]
Bfunction.constant_fun_pr [lemma, in sset2]
Bfunction.constant_function [definition, in sset2]
Bfunction.constant_fun_constantC [lemma, in sset2]
Bfunction.constant_graph [lemma, in sset2]
Bfunction.constant_constant_fun [lemma, in sset2]
Bfunction.diagonal_application [definition, in sset2]
Bfunction.diag_app_injective [lemma, in sset2]
Bfunction.diag_app_W [lemma, in sset2]
Bfunction.diag_app_range [lemma, in sset2]
Bfunction.diag_app_function [lemma, in sset2]
Bfunction.direct_inv_im [lemma, in sset2]
Bfunction.direct_inv_im_surjective [lemma, in sset2]
Bfunction.empty_function [definition, in sset2]
Bfunction.empty_function_prop [lemma, in sset2]
Bfunction.empty_function_graph [lemma, in sset2]
Bfunction.empty_functionC [definition, in sset2]
Bfunction.empty_function_function [lemma, in sset2]
Bfunction.equipotent [definition, in sset2]
Bfunction.equipotentC [lemma, in sset2]
Bfunction.equipotent_aux [lemma, in sset2]
Bfunction.equipotent_symmetric [lemma, in sset2]
Bfunction.equipotent_reflexive [lemma, in sset2]
Bfunction.equipotent_transitive [lemma, in sset2]
Bfunction.equipotent_prod_singleton [lemma, in sset2]
Bfunction.exists_right_inv_from_surjC [lemma, in sset2]
Bfunction.exists_unique_left_composable [lemma, in sset2]
Bfunction.exists_left_composable [lemma, in sset2]
Bfunction.exists_left_composable_aux [lemma, in sset2]
Bfunction.exists_left_composable_auxC [lemma, in sset2]
Bfunction.exists_right_composable [lemma, in sset2]
Bfunction.exists_left_inv_from_injC [lemma, in sset2]
Bfunction.exists_right_composableC [lemma, in sset2]
Bfunction.exists_right_composable_aux [lemma, in sset2]
Bfunction.exists_unique_left_composableC [lemma, in sset2]
Bfunction.exists_left_inv_from_inj [lemma, in sset2]
Bfunction.exists_right_composable_uniqueC [lemma, in sset2]
Bfunction.exists_left_composableC [lemma, in sset2]
Bfunction.exists_right_composable_unique [lemma, in sset2]
Bfunction.exists_right_inv_from_surj [lemma, in sset2]
Bfunction.exists_right_composable_auxC [lemma, in sset2]
Bfunction.extends [definition, in sset2]
Bfunction.extendsC [definition, in sset2]
Bfunction.extendsC_pr [lemma, in sset2]
Bfunction.ext_to_prod_surjective [lemma, in sset2]
Bfunction.ext_to_prod_propQ [lemma, in sset2]
Bfunction.ext_to_prod [definition, in sset2]
Bfunction.ext_to_prod_prop [lemma, in sset2]
Bfunction.ext_to_prod_propJ [lemma, in sset2]
Bfunction.ext_to_prod_function [lemma, in sset2]
Bfunction.ext_to_prod_W2 [lemma, in sset2]
Bfunction.ext_to_prod_range [lemma, in sset2]
Bfunction.ext_to_prod_bijective [lemma, in sset2]
Bfunction.ext_to_prod_injective [lemma, in sset2]
Bfunction.ext_to_prodC [definition, in sset2]
Bfunction.ext_to_prod_inverse [lemma, in sset2]
Bfunction.ext_to_prod_W [lemma, in sset2]
Bfunction.ext_to_prod_propP [lemma, in sset2]
Bfunction.first_proj_W [lemma, in sset2]
Bfunction.first_proj_injective [lemma, in sset2]
Bfunction.first_proj [definition, in sset2]
Bfunction.first_proj_surjective [lemma, in sset2]
Bfunction.first_proj_function [lemma, in sset2]
Bfunction.functional_graph [definition, in sset2]
Bfunction.function_exten3 [lemma, in sset2]
Bfunction.function_exten [lemma, in sset2]
Bfunction.function_extends_restr [lemma, in sset2]
Bfunction.function_rest_of_prolongation [lemma, in sset2]
Bfunction.function_extends_restC [lemma, in sset2]
Bfunction.function_graph [lemma, in sset2]
Bfunction.function_exten4 [lemma, in sset2]
Bfunction.function_exten2 [lemma, in sset2]
Bfunction.function_fgraph [lemma, in sset2]
Bfunction.function_exten1 [lemma, in sset2]
Bfunction.f_range_graph [lemma, in sset2]
Bfunction.f_domain_graph [lemma, in sset2]
Bfunction.identityC [definition, in sset2]
Bfunction.identityC_bijective [lemma, in sset2]
Bfunction.identity_function [lemma, in sset2]
Bfunction.identity_prop2 [lemma, in sset2]
Bfunction.identity_W [lemma, in sset2]
Bfunction.identity_bijective [lemma, in sset2]
Bfunction.identity_prop [lemma, in sset2]
Bfunction.imageC [definition, in sset2]
Bfunction.imageC_inc [lemma, in sset2]
Bfunction.imageC_exists [lemma, in sset2]
Bfunction.image_of_fun_range [lemma, in sset2]
Bfunction.image_singleton [lemma, in sset2]
Bfunction.image_by_fun_source [lemma, in sset2]
Bfunction.image_of_fun_pr [lemma, in sset2]
Bfunction.inclusionC [definition, in sset2]
Bfunction.inclusionC_injective [lemma, in sset2]
Bfunction.inclusionC_compose [lemma, in sset2]
Bfunction.inclusionC_pr [lemma, in sset2]
Bfunction.inclusionC_identity [lemma, in sset2]
Bfunction.inc_W_range_graph [lemma, in sset2]
Bfunction.inc_pr1graph_source [lemma, in sset2]
Bfunction.inc_W_target [lemma, in sset2]
Bfunction.inc_pr2graph_target1 [lemma, in sset2]
Bfunction.inc_pr2graph_target [lemma, in sset2]
Bfunction.inc_graph_restriction2 [lemma, in sset2]
Bfunction.inc_pr1graph_source1 [lemma, in sset2]
Bfunction.injection [definition, in sset2]
Bfunction.injectiveC [definition, in sset2]
Bfunction.injective_pr3 [lemma, in sset2]
Bfunction.injective_ext_to_prod2C [lemma, in sset2]
Bfunction.injective_pr [lemma, in sset2]
Bfunction.injective_pr_bis [lemma, in sset2]
Bfunction.inj_left_compose2 [lemma, in sset2]
Bfunction.inj_if_exists_left_invC [lemma, in sset2]
Bfunction.inj_right_composeC [lemma, in sset2]
Bfunction.inj_is_function [lemma, in sset2]
Bfunction.inj_right_compose [lemma, in sset2]
Bfunction.inj_left_compose2C [lemma, in sset2]
Bfunction.inj_if_exists_left_inv [lemma, in sset2]
Bfunction.inverseC [definition, in sset2]
Bfunction.inverseC_pra [lemma, in sset2]
Bfunction.inverseC_prc [lemma, in sset2]
Bfunction.inverseC_prb [lemma, in sset2]
Bfunction.inverse_direct_image_inj [lemma, in sset2]
Bfunction.inverse_direct_image [lemma, in sset2]
Bfunction.inverse_ext_to_prod2C [lemma, in sset2]
Bfunction.inverse_fun_involutiveC [lemma, in sset2]
Bfunction.inverse_bij_is_bij [lemma, in sset2]
Bfunction.inv_graph_canon [definition, in sset2]
Bfunction.inv_function_bijective [lemma, in sset2]
Bfunction.inv_graph_canon_bijective [lemma, in sset2]
Bfunction.inv_graph_canon_function [lemma, in sset2]
Bfunction.inv_graph_canon_W [lemma, in sset2]
Bfunction.inv_image_complement [lemma, in sset2]
Bfunction.in_graph_W [lemma, in sset2]
Bfunction.is_left_inverseC [definition, in sset2]
Bfunction.is_constant_function [definition, in sset2]
Bfunction.is_right_inverseC [definition, in sset2]
Bfunction.is_constant_functionC [definition, in sset2]
Bfunction.is_functional [lemma, in sset2]
Bfunction.is_left_inverse [definition, in sset2]
Bfunction.is_function [definition, in sset2]
Bfunction.is_function_functional [lemma, in sset2]
Bfunction.is_function_pr [lemma, in sset2]
Bfunction.is_right_inverse [definition, in sset2]
Bfunction.left_inverse_from_rightC [lemma, in sset2]
Bfunction.left_inverse_composeC [lemma, in sset2]
Bfunction.left_inverse_compose [lemma, in sset2]
Bfunction.left_inverse_surjectiveC [lemma, in sset2]
Bfunction.left_inv_compose_rf2 [lemma, in sset2]
Bfunction.left_inverseC_pr [lemma, in sset2]
Bfunction.left_inv_compose_rf2C [lemma, in sset2]
Bfunction.left_inverse_composable [lemma, in sset2]
Bfunction.left_composable_value [lemma, in sset2]
Bfunction.left_composable_valueC [lemma, in sset2]
Bfunction.left_inverse_comp_id [lemma, in sset2]
Bfunction.left_inverse_from_right [lemma, in sset2]
Bfunction.left_inverse_surjective [lemma, in sset2]
Bfunction.left_inverseC [definition, in sset2]
Bfunction.left_inv_compose_rfC [lemma, in sset2]
Bfunction.left_inv_compose_rf [lemma, in sset2]
Bfunction.pairC [definition, in sset2]
Bfunction.partial_fun1_function [lemma, in sset2]
Bfunction.partial_fun2_function [lemma, in sset2]
Bfunction.partial_fun1_W [lemma, in sset2]
Bfunction.partial_fun2_W [lemma, in sset2]
Bfunction.partial_fun2_axioms [lemma, in sset2]
Bfunction.partial_fun1 [definition, in sset2]
Bfunction.partial_fun1_axioms [lemma, in sset2]
Bfunction.partial_fun2 [definition, in sset2]
Bfunction.prC_prop [lemma, in sset2]
Bfunction.prJ_recov [lemma, in sset2]
Bfunction.prJ_prop [lemma, in sset2]
Bfunction.prop_acreate [lemma, in sset2]
Bfunction.prop_bcreate1 [lemma, in sset2]
Bfunction.prop_bcreate2 [lemma, in sset2]
Bfunction.pr1C [definition, in sset2]
Bfunction.pr1C_prop [lemma, in sset2]
Bfunction.pr2C [definition, in sset2]
Bfunction.pr2C_prop [lemma, in sset2]
Bfunction.range_inc_rw [lemma, in sset2]
Bfunction.related_inc_source [lemma, in sset2]
Bfunction.restriction [definition, in sset2]
Bfunction.restrictionC [definition, in sset2]
Bfunction.restriction_to_image [definition, in sset2]
Bfunction.restriction_recovers [lemma, in sset2]
Bfunction.restriction_function [lemma, in sset2]
Bfunction.restriction_graph1 [lemma, in sset2]
Bfunction.restriction_to_image_pr [lemma, in sset2]
Bfunction.restriction_W [lemma, in sset2]
Bfunction.restriction1 [definition, in sset2]
Bfunction.restriction1_function [lemma, in sset2]
Bfunction.restriction1_W [lemma, in sset2]
Bfunction.restriction1_bijective [lemma, in sset2]
Bfunction.restriction1_pr [lemma, in sset2]
Bfunction.restriction1_surjective [lemma, in sset2]
Bfunction.restriction2 [definition, in sset2]
Bfunction.restriction2C [definition, in sset2]
Bfunction.restriction2C_pr [lemma, in sset2]
Bfunction.restriction2C_pr1 [lemma, in sset2]
Bfunction.restriction2_injective [lemma, in sset2]
Bfunction.restriction2_surjective [lemma, in sset2]
Bfunction.restriction2_graph [lemma, in sset2]
Bfunction.restriction2_props [lemma, in sset2]
Bfunction.restriction2_axioms [definition, in sset2]
Bfunction.restriction2_function [lemma, in sset2]
Bfunction.restriction2_W [lemma, in sset2]
Bfunction.restr_domain2 [lemma, in sset2]
Bfunction.restr_range [lemma, in sset2]
Bfunction.restr_tack_on [lemma, in sset2]
Bfunction.right_inverseC [definition, in sset2]
Bfunction.right_inv_compose_rfC [lemma, in sset2]
Bfunction.right_inv_compose_rf2 [lemma, in sset2]
Bfunction.right_inverse_pr [lemma, in sset2]
Bfunction.right_composable_valueC [lemma, in sset2]
Bfunction.right_composable_value [lemma, in sset2]
Bfunction.right_inverse_injectiveC [lemma, in sset2]
Bfunction.right_inverse_compose [lemma, in sset2]
Bfunction.right_inverse_injective [lemma, in sset2]
Bfunction.right_inverse_composeC [lemma, in sset2]
Bfunction.right_inverse_from_left [lemma, in sset2]
Bfunction.right_inverse_composable [lemma, in sset2]
Bfunction.right_inv_compose_rf2C [lemma, in sset2]
Bfunction.right_inverse_from_leftC [lemma, in sset2]
Bfunction.right_inv_compose_rf [lemma, in sset2]
Bfunction.right_inverse_comp_id [lemma, in sset2]
Bfunction.same_graph_agrees [lemma, in sset2]
Bfunction.second_proj_W [lemma, in sset2]
Bfunction.second_proj_surjective [lemma, in sset2]
Bfunction.second_proj [definition, in sset2]
Bfunction.second_proj_function [lemma, in sset2]
Bfunction.section_uniqueC [lemma, in sset2]
Bfunction.section_unique [lemma, in sset2]
Bfunction.set_of_gfunctions [definition, in sset2]
Bfunction.source_right_inverse [lemma, in sset2]
Bfunction.source_extends [lemma, in sset2]
Bfunction.special_empty_function [lemma, in sset2]
Bfunction.sub_inv_im_source [lemma, in sset2]
Bfunction.sub_image_targetC [lemma, in sset2]
Bfunction.sub_image_target1 [lemma, in sset2]
Bfunction.sub_function [lemma, in sset2]
Bfunction.sub_image_target [lemma, in sset2]
Bfunction.surjection [definition, in sset2]
Bfunction.surjectiveC [definition, in sset2]
Bfunction.surjective_pr4 [lemma, in sset2]
Bfunction.surjective_pr6 [lemma, in sset2]
Bfunction.surjective_pr5 [lemma, in sset2]
Bfunction.surjective_pr2 [lemma, in sset2]
Bfunction.surjective_pr3 [lemma, in sset2]
Bfunction.surjective_pr [lemma, in sset2]
Bfunction.surjective_ext_to_prod2C [lemma, in sset2]
Bfunction.surj_left_composeC [lemma, in sset2]
Bfunction.surj_if_exists_right_invC [lemma, in sset2]
Bfunction.surj_if_exists_right_inv [lemma, in sset2]
Bfunction.surj_left_compose2 [lemma, in sset2]
Bfunction.surj_left_compose2C [lemma, in sset2]
Bfunction.surj_is_function [lemma, in sset2]
Bfunction.surj_left_compose [lemma, in sset2]
Bfunction.tack_on_W_out [lemma, in sset2]
Bfunction.tack_on_g_injective [lemma, in sset2]
Bfunction.tack_on_V_in [lemma, in sset2]
Bfunction.tack_on_f_injective [lemma, in sset2]
Bfunction.tack_on_function [lemma, in sset2]
Bfunction.tack_on_f [definition, in sset2]
Bfunction.tack_on_V_out [lemma, in sset2]
Bfunction.tack_on_surjective [lemma, in sset2]
Bfunction.tack_on_restr [lemma, in sset2]
Bfunction.tack_on_W_in [lemma, in sset2]
Bfunction.tack_on_corresp [lemma, in sset2]
Bfunction.target_left_inverse [lemma, in sset2]
Bfunction.transf_axioms [definition, in sset2]
Bfunction.W [definition, in sset2]
Bfunction.W_pr3 [lemma, in sset2]
Bfunction.W_inverse [lemma, in sset2]
Bfunction.W_inverse3 [lemma, in sset2]
Bfunction.w_left_inverse [lemma, in sset2]
Bfunction.W_mapping [lemma, in sset2]
Bfunction.W_left_inverse [lemma, in sset2]
Bfunction.W_image [lemma, in sset2]
Bfunction.w_right_inverse [lemma, in sset2]
Bfunction.W_pr [lemma, in sset2]
Bfunction.W_pr2 [lemma, in sset2]
Bfunction.W_right_inverse [lemma, in sset2]
Bfunction.W_inverse2 [lemma, in sset2]
Bfunction.W_extends [lemma, in sset2]
_ \coP _ [notation, in sset2]
_ \Eq _ [notation, in sset2]
Border [module, in sset5]
Border.adjoin_greatest [lemma, in sset5]
Border.antisymmetric_r [definition, in sset5]
Border.axioms_of_order [lemma, in sset5]
Border.bounded_both [definition, in sset5]
Border.bounded_above_sub [lemma, in sset5]
Border.bounded_both_sub [lemma, in sset5]
Border.bounded_above [definition, in sset5]
Border.bounded_below [definition, in sset5]
Border.bounded_below_sub [lemma, in sset5]
Border.coarser [definition, in sset5]
Border.coarser_preorder [definition, in sset5]
Border.coarser_preorder_related [lemma, in sset5]
Border.coarser_related [lemma, in sset5]
Border.coarser_preorder_substrate [lemma, in sset5]
Border.coarser_preorder_related1 [lemma, in sset5]
Border.coarser_preorder_order [lemma, in sset5]
Border.coarser_substrate [lemma, in sset5]
Border.coarser_related_bis [lemma, in sset5]
Border.coarser_order [lemma, in sset5]
Border.cofinal_right_directed [lemma, in sset5]
Border.cofinal_set [definition, in sset5]
Border.coinitial_set [definition, in sset5]
Border.coinitial_left_directed [lemma, in sset5]
Border.compare_inf_sup1 [lemma, in sset5]
Border.compare_inf_sup2 [lemma, in sset5]
Border.compatible_equivalence_preorder [lemma, in sset5]
Border.compatible_equivalence_preorder1 [lemma, in sset5]
Border.complementary_decreasing [lemma, in sset5]
Border.compose3_related [lemma, in sset5]
Border.constant_fun_decreasing [lemma, in sset5]
Border.constant_fun_increasing [lemma, in sset5]
Border.decreasing_composition [lemma, in sset5]
Border.decreasing_fun [definition, in sset5]
Border.decreasing_fun_revb [lemma, in sset5]
Border.decreasing_fun_reva [lemma, in sset5]
Border.decreasing_fun_from_strict [lemma, in sset5]
Border.diagonal_order [lemma, in sset5]
Border.eao_related [lemma, in sset5]
Border.emptyset_is_least [lemma, in sset5]
Border.empty_function_tg_function [lemma, in sset5]
Border.empty_interval [lemma, in sset5]
Border.empty_function_tg [definition, in sset5]
Border.equality_is_order [lemma, in sset5]
Border.equivalence_associated_o [definition, in sset5]
Border.equivalence_preorder1 [lemma, in sset5]
Border.equivalence_preorder [lemma, in sset5]
Border.exists_greatest_cofinal [lemma, in sset5]
Border.exists_least_coinitial [lemma, in sset5]
Border.extends_in_prop [lemma, in sset5]
Border.extension_order [definition, in sset5]
Border.extension_order_pr1 [lemma, in sset5]
Border.extension_order_pr2 [lemma, in sset5]
Border.extension_order_pr [lemma, in sset5]
Border.extension_order_rw [lemma, in sset5]
Border.extension_is_order [lemma, in sset5]
Border.fam_of_substrates [definition, in sset5]
Border.function_order_order [lemma, in sset5]
Border.function_order_pr [lemma, in sset5]
Border.function_order_reflexive [lemma, in sset5]
Border.function_order_isomorphism [lemma, in sset5]
Border.function_order_substrate [lemma, in sset5]
Border.function_order_isomorphic [lemma, in sset5]
Border.function_order_r [definition, in sset5]
Border.function_order [definition, in sset5]
Border.gge [definition, in sset5]
Border.ggt [definition, in sset5]
Border.ggt_inva [lemma, in sset5]
Border.ggt_invb [lemma, in sset5]
Border.gle [definition, in sset5]
Border.glt [definition, in sset5]
Border.glt_inva [lemma, in sset5]
Border.gop_axioms [lemma, in sset5]
Border.gop_W [lemma, in sset5]
Border.gop_morphism [lemma, in sset5]
Border.graph_order_r [definition, in sset5]
Border.graph_of_function_isomorphism [lemma, in sset5]
Border.graph_order_pr1 [lemma, in sset5]
Border.graph_of_function_bijective [lemma, in sset5]
Border.graph_of_function [definition, in sset5]
Border.graph_of_partition [definition, in sset5]
Border.graph_of_function_fonction [lemma, in sset5]
Border.graph_order_substrate [lemma, in sset5]
Border.graph_of_function_axioms [lemma, in sset5]
Border.graph_on_rw3 [lemma, in sset5]
Border.graph_of_function_W [lemma, in sset5]
Border.graph_order_r_pr [lemma, in sset5]
Border.graph_of_function_sub [lemma, in sset5]
Border.graph_order_pr [lemma, in sset5]
Border.graph_order_order [lemma, in sset5]
Border.graph_order [definition, in sset5]
Border.greater_upper_bound [lemma, in sset5]
Border.greatest_lower_bound_emptyset [lemma, in sset5]
Border.greatest_prolongation [lemma, in sset5]
Border.greatest_is_sup [lemma, in sset5]
Border.greatest_lower_bound_doubleton [lemma, in sset5]
Border.greatest_right_directed [lemma, in sset5]
Border.greatest_maximal [lemma, in sset5]
Border.greatest_induced [lemma, in sset5]
Border.greatest_lower_bound_pr [lemma, in sset5]
Border.greatest_reverse [lemma, in sset5]
Border.greatest_is_union [lemma, in sset5]
Border.greatest_element_pr [lemma, in sset5]
Border.greatest_lower_bound [definition, in sset5]
Border.greatest_element [definition, in sset5]
Border.greatest_unique_maximal [lemma, in sset5]
Border.has_inf_graph [definition, in sset5]
Border.has_infimum [definition, in sset5]
Border.has_supremum [definition, in sset5]
Border.has_sup_graph [definition, in sset5]
Border.identity_increasing_decreasing [lemma, in sset5]
Border.inclusion_order_rw [lemma, in sset5]
Border.inclusion_order [definition, in sset5]
Border.inclusion_suborder [definition, in sset5]
Border.inclusion_is_order [lemma, in sset5]
Border.increasing_fun_reva [lemma, in sset5]
Border.increasing_fun_from_strict [lemma, in sset5]
Border.increasing_fun_revb [lemma, in sset5]
Border.increasing_fun [definition, in sset5]
Border.inc_supremum_substrate [lemma, in sset5]
Border.inc_infimum_substrate [lemma, in sset5]
Border.induced_order_substrate [lemma, in sset5]
Border.induced_order [definition, in sset5]
Border.inf [definition, in sset5]
Border.infimum [definition, in sset5]
Border.infimum_pr2 [lemma, in sset5]
Border.infimum_unique [lemma, in sset5]
Border.infimum_pr [lemma, in sset5]
Border.infimum_pr1 [lemma, in sset5]
Border.inf_inclusion [lemma, in sset5]
Border.inf_distributive2 [lemma, in sset5]
Border.inf_distributive [lemma, in sset5]
Border.inf_induced1 [lemma, in sset5]
Border.inf_pr [lemma, in sset5]
Border.inf_comparable [lemma, in sset5]
Border.inf_decreasing1 [lemma, in sset5]
Border.inf_induced2 [lemma, in sset5]
Border.inf_comparable1 [lemma, in sset5]
Border.inf_in_total_order [lemma, in sset5]
Border.inf_sup_opp [lemma, in sset5]
Border.inf_graph [definition, in sset5]
Border.inf_distributive1 [lemma, in sset5]
Border.inf_decreasing [lemma, in sset5]
Border.inf_in_product [lemma, in sset5]
Border.inf_distributive3 [lemma, in sset5]
Border.inf_increasing2 [lemma, in sset5]
Border.intersection_is_inf1 [lemma, in sset5]
Border.intersection_interval [lemma, in sset5]
Border.intersection_is_inf [lemma, in sset5]
Border.intersection_i1 [lemma, in sset5]
Border.intersection_i2 [lemma, in sset5]
Border.intersection_i3 [lemma, in sset5]
Border.intersection_is_least [lemma, in sset5]
Border.intersection4 [lemma, in sset5]
Border.interval_co [definition, in sset5]
Border.interval_uc [definition, in sset5]
Border.interval_uu [definition, in sset5]
Border.interval_oo [definition, in sset5]
Border.interval_cc [definition, in sset5]
Border.interval_oc [definition, in sset5]
Border.interval_cu [definition, in sset5]
Border.interval_uo [definition, in sset5]
Border.interval_ou [definition, in sset5]
Border.inter_rel_order [lemma, in sset5]
Border.iorder_gle6 [lemma, in sset5]
Border.iorder_gle5 [lemma, in sset5]
Border.iorder_gle3 [lemma, in sset5]
Border.iorder_gle [lemma, in sset5]
Border.iorder_gle1 [lemma, in sset5]
Border.iorder_gle2 [lemma, in sset5]
Border.iorder_gle4 [lemma, in sset5]
Border.is_semi_open_interval [definition, in sset5]
Border.is_inf_graph_pr [lemma, in sset5]
Border.is_antisymmetric [definition, in sset5]
Border.is_interval [definition, in sset5]
Border.is_left_unbounded_interval [definition, in sset5]
Border.is_closed_interval [definition, in sset5]
Border.is_right_unbounded_interval [definition, in sset5]
Border.is_lu_interval [definition, in sset5]
Border.is_inf_fun_pr [lemma, in sset5]
Border.is_ru_interval [definition, in sset5]
Border.is_sup_graph_pr1 [lemma, in sset5]
Border.is_sup_graph_pr [lemma, in sset5]
Border.is_bounded_interval [definition, in sset5]
Border.is_inf_fun [definition, in sset5]
Border.is_open_interval [definition, in sset5]
Border.is_sup_graph [definition, in sset5]
Border.is_inf_graph [definition, in sset5]
Border.is_sup_fun [definition, in sset5]
Border.is_unbounded_interval [definition, in sset5]
Border.is_sup_fun_pr [lemma, in sset5]
Border.is_inf_graph_pr1 [lemma, in sset5]
Border.largest_partition_is_largest [lemma, in sset5]
Border.lattice [definition, in sset5]
Border.lattice_inf_pr [lemma, in sset5]
Border.lattice_directed [lemma, in sset5]
Border.lattice_sup_pr [lemma, in sset5]
Border.lattice_inverse [lemma, in sset5]
Border.least_upper_bound [definition, in sset5]
Border.least_left_directed [lemma, in sset5]
Border.least_induced [lemma, in sset5]
Border.least_unique_minimal [lemma, in sset5]
Border.least_element_pr [lemma, in sset5]
Border.least_upper_bound_emptyset [lemma, in sset5]
Border.least_equivalence [lemma, in sset5]
Border.least_not_greatest [lemma, in sset5]
Border.least_upper_bound_doubleton [lemma, in sset5]
Border.least_element [definition, in sset5]
Border.least_is_inf [lemma, in sset5]
Border.least_minimal [lemma, in sset5]
Border.least_reverse [lemma, in sset5]
Border.least_prolongation [lemma, in sset5]
Border.least_is_intersection [lemma, in sset5]
Border.least_upper_bound_pr [lemma, in sset5]
Border.left_directed [definition, in sset5]
Border.left_directed_pr [lemma, in sset5]
Border.left_directed_mimimal [lemma, in sset5]
Border.leq_lt_trans [lemma, in sset5]
Border.le_pr [lemma, in sset5]
Border.le_antisym [lemma, in sset5]
Border.lower_bound [definition, in sset5]
Border.lt_leq_trans [lemma, in sset5]
Border.lt_lt_trans [lemma, in sset5]
Border.maximal_element [definition, in sset5]
Border.maximal_opposite [lemma, in sset5]
Border.maximal_prolongation [lemma, in sset5]
Border.maximal_element_opp [lemma, in sset5]
Border.minimal_inclusion [lemma, in sset5]
Border.minimal_element_opp [lemma, in sset5]
Border.minimal_element [definition, in sset5]
Border.monotone_fun [definition, in sset5]
Border.monotone_fun_reva [lemma, in sset5]
Border.monotone_fun_revb [lemma, in sset5]
Border.nondisjoint [lemma, in sset5]
Border.nonempty_closed_interval [lemma, in sset5]
Border.not_le_gt [lemma, in sset5]
Border.opposite_upper_bound [lemma, in sset5]
Border.opposite_is_order [lemma, in sset5]
Border.opposite_gle [lemma, in sset5]
Border.opposite_relation [definition, in sset5]
Border.opposite_right_directed [lemma, in sset5]
Border.opposite_is_order_r [lemma, in sset5]
Border.opposite_lower_bound [lemma, in sset5]
Border.opposite_induced [lemma, in sset5]
Border.opposite_gge [lemma, in sset5]
Border.opposite_is_preorder_r [lemma, in sset5]
Border.opposite_left_directed [lemma, in sset5]
Border.opposite_order [definition, in sset5]
Border.opposite_is_preorder1 [lemma, in sset5]
Border.order [definition, in sset5]
Border.order_associated_pr [lemma, in sset5]
Border.order_has_graph [lemma, in sset5]
Border.order_associated_related2 [lemma, in sset5]
Border.order_is_graph [lemma, in sset5]
Border.order_is_order [lemma, in sset5]
Border.order_associated_order [lemma, in sset5]
Border.order_isomorphism_increasing [lemma, in sset5]
Border.order_has_graph2 [lemma, in sset5]
Border.order_isomorphic [definition, in sset5]
Border.order_pr [lemma, in sset5]
Border.order_with_greatest_pr [lemma, in sset5]
Border.order_re [definition, in sset5]
Border.order_isomorphism_pr [lemma, in sset5]
Border.order_axioms [definition, in sset5]
Border.order_if_has_graph2 [lemma, in sset5]
Border.order_transitivity [lemma, in sset5]
Border.order_r [definition, in sset5]
Border.order_transportation [lemma, in sset5]
Border.order_isomorphism_opposite [lemma, in sset5]
Border.order_morphism_increasing [lemma, in sset5]
Border.order_reflexivity_pr [lemma, in sset5]
Border.order_associated [definition, in sset5]
Border.order_from_rel [lemma, in sset5]
Border.order_associated_substrate [lemma, in sset5]
Border.order_morphism [definition, in sset5]
Border.order_reflexivity [lemma, in sset5]
Border.order_associated_related1 [lemma, in sset5]
Border.order_symmetricity_pr [lemma, in sset5]
Border.order_if_has_graph [lemma, in sset5]
Border.order_associated_graph [lemma, in sset5]
Border.order_induced_order [lemma, in sset5]
Border.order_with_greatest [definition, in sset5]
Border.order_has_graph0 [lemma, in sset5]
Border.order_antisymmetry [lemma, in sset5]
Border.order_isomorphism [definition, in sset5]
Border.order_from_rel1 [lemma, in sset5]
Border.order_preorder [lemma, in sset5]
Border.partial_fun [definition, in sset5]
Border.partition_relation_set_pr [lemma, in sset5]
Border.partition_relation_set_order [lemma, in sset5]
Border.partition_fun_of_set [definition, in sset5]
Border.partition_set_in_double_powerset [lemma, in sset5]
Border.partition_relation_set_pr1 [lemma, in sset5]
Border.partition_relation_set [definition, in sset5]
Border.partition_relation_set_order_antisymmetric [lemma, in sset5]
Border.partition_relation_set_aux [definition, in sset5]
Border.pfs_partition [lemma, in sset5]
Border.pfs_function [lemma, in sset5]
Border.pfs_W [lemma, in sset5]
Border.powerset_lattice [lemma, in sset5]
Border.preorder [definition, in sset5]
Border.preorder_graph [lemma, in sset5]
Border.preorder_r [definition, in sset5]
Border.preorder_prop1 [lemma, in sset5]
Border.preorder_induced_order [lemma, in sset5]
Border.preorder_is_preorder [lemma, in sset5]
Border.preorder_reflexivity [lemma, in sset5]
Border.preorder_from_rel [lemma, in sset5]
Border.preorder_prop2 [lemma, in sset5]
Border.preorder_prop [lemma, in sset5]
Border.product_right_directed [lemma, in sset5]
Border.product_order_r [definition, in sset5]
Border.product_lattice [lemma, in sset5]
Border.product_order_order [lemma, in sset5]
Border.product_order_substrate [lemma, in sset5]
Border.product_left_directed [lemma, in sset5]
Border.product_order_axioms_x [lemma, in sset5]
Border.product_order_def [lemma, in sset5]
Border.product_order [definition, in sset5]
Border.product_order_related [lemma, in sset5]
Border.product_order_axioms [definition, in sset5]
Border.product2_order_preorder_substrate [lemma, in sset5]
Border.product2_order_preorder [lemma, in sset5]
Border.product2_order_order [lemma, in sset5]
Border.product2_order_pr [lemma, in sset5]
Border.product2_order_substrate [lemma, in sset5]
Border.product2_order [definition, in sset5]
Border.prod_of_substrates_rw [lemma, in sset5]
Border.prod_of_substrates [definition, in sset5]
Border.prs_is_equivalence [lemma, in sset5]
Border.reflexive_induced_order [lemma, in sset5]
Border.reflexive_rr [definition, in sset5]
Border.relation_induced_order [lemma, in sset5]
Border.right_directed [definition, in sset5]
Border.right_directed_pr [lemma, in sset5]
Border.right_directed_maximal [lemma, in sset5]
Border.set_of_preorders [definition, in sset5]
Border.set_of_upper_bounds_emptyset [lemma, in sset5]
Border.set_of_graphs_pr [lemma, in sset5]
Border.set_of_preorders_rw [lemma, in sset5]
Border.set_of_fgraphs [definition, in sset5]
Border.set_of_partition_set [definition, in sset5]
Border.set_of_majorants1_decreasing [lemma, in sset5]
Border.set_of_majorants1_pr [lemma, in sset5]
Border.set_of_partition_rw [lemma, in sset5]
Border.set_of_lower_bounds_emptyset [lemma, in sset5]
Border.set_of_majorants1 [definition, in sset5]
Border.singleton_bounded [lemma, in sset5]
Border.singleton_interval [lemma, in sset5]
Border.smaller_lower_bound [lemma, in sset5]
Border.smallest_partition_is_smallest [lemma, in sset5]
Border.strict_increasing_fun_revb [lemma, in sset5]
Border.strict_decreasing_from_injective [lemma, in sset5]
Border.strict_monotone_fun [definition, in sset5]
Border.strict_monotone_from_injective [lemma, in sset5]
Border.strict_increasing_from_injective [lemma, in sset5]
Border.strict_decreasing_fun [definition, in sset5]
Border.strict_decreasing_fun_revb [lemma, in sset5]
Border.strict_monotone_fun_reva [lemma, in sset5]
Border.strict_monotone_fun_revb [lemma, in sset5]
Border.strict_increasing_fun [definition, in sset5]
Border.strict_decreasing_fun_reva [lemma, in sset5]
Border.strict_increasing_fun_reva [lemma, in sset5]
Border.subinclusion_is_order [lemma, in sset5]
Border.subinclusion_order_rw [lemma, in sset5]
Border.substrate_graph_on [lemma, in sset5]
Border.substrate_extension_order [lemma, in sset5]
Border.substrate_subinclusion_order [lemma, in sset5]
Border.substrate_inclusion_order [lemma, in sset5]
Border.substrate_induced_order [lemma, in sset5]
Border.substrate_domain_order [lemma, in sset5]
Border.substrate_opposite_order [lemma, in sset5]
Border.substrate_induced_order1 [lemma, in sset5]
Border.substrate_equivalence_associated_o [lemma, in sset5]
Border.sub_is_order [lemma, in sset5]
Border.sub_upper_bound [lemma, in sset5]
Border.sub_lower_bound [lemma, in sset5]
Border.sub_partition_relation_set_coarse [lemma, in sset5]
Border.sup [definition, in sset5]
Border.supremum [definition, in sset5]
Border.supremum_unique [lemma, in sset5]
Border.supremum_pr1 [lemma, in sset5]
Border.supremum_pr [lemma, in sset5]
Border.supremum_pr2 [lemma, in sset5]
Border.sup_pr [lemma, in sset5]
Border.sup_distributive1 [lemma, in sset5]
Border.sup_comparable [lemma, in sset5]
Border.sup_induced2 [lemma, in sset5]
Border.sup_induced1 [lemma, in sset5]
Border.sup_extension_order1 [lemma, in sset5]
Border.sup_comparable1 [lemma, in sset5]
Border.sup_increasing2 [lemma, in sset5]
Border.sup_in_product [lemma, in sset5]
Border.sup_inf_opp [lemma, in sset5]
Border.sup_in_total_order [lemma, in sset5]
Border.sup_graph [definition, in sset5]
Border.sup_increasing [lemma, in sset5]
Border.sup_distributive3 [lemma, in sset5]
Border.sup_distributive2 [lemma, in sset5]
Border.sup_increasing1 [lemma, in sset5]
Border.sup_extension_order2 [lemma, in sset5]
Border.sup_distributive [lemma, in sset5]
Border.sup_inclusion [lemma, in sset5]
Border.the_least_interval [lemma, in sset5]
Border.the_least_reverse [lemma, in sset5]
Border.the_greatest_element_pr [lemma, in sset5]
Border.the_greatest_element [definition, in sset5]
Border.the_greatest_element_pr2 [lemma, in sset5]
Border.the_least_element [definition, in sset5]
Border.the_least_element_pr [lemma, in sset5]
Border.the_least_element_pr2 [lemma, in sset5]
Border.the_greatest_interval [lemma, in sset5]
Border.total_order_monotone_injective [lemma, in sset5]
Border.total_order [definition, in sset5]
Border.total_order_opposite [lemma, in sset5]
Border.total_order_lattice [lemma, in sset5]
Border.total_order_increasing_morphism [lemma, in sset5]
Border.total_order_conterexample [lemma, in sset5]
Border.total_order_directed [lemma, in sset5]
Border.total_order_sub [lemma, in sset5]
Border.total_order_pr2 [lemma, in sset5]
Border.total_order_pr1 [lemma, in sset5]
Border.total_order_pr [lemma, in sset5]
Border.total_order_small [lemma, in sset5]
Border.transitive_induced_order [lemma, in sset5]
Border.union_is_greatest [lemma, in sset5]
Border.union_is_sup1 [lemma, in sset5]
Border.union_is_sup [lemma, in sset5]
Border.unique_least [lemma, in sset5]
Border.unique_greatest [lemma, in sset5]
Border.upper_bound [definition, in sset5]
Border.wholeset_is_greatest [lemma, in sset5]
_ \Is _ [notation, in sset5]
Bordinal [module, in sset7]
Bordinal.asymmetric_set [definition, in sset7]
Bordinal.CantorBernstein [lemma, in sset7]
Bordinal.Cantor_Bernstein1 [lemma, in sset7]
Bordinal.cardinal [abbreviation, in sset7]
Bordinal.Cardinal [module, in sset7]
Bordinal.CardinalSig [module, in sset7]
Bordinal.CardinalSig.cardinal [axiom, in sset7]
Bordinal.CardinalSig.cardinalE [axiom, in sset7]
Bordinal.cardinalVp [definition, in sset7]
Bordinal.cardinalV_unique [lemma, in sset7]
Bordinal.cardinalV_exists [lemma, in sset7]
Bordinal.cardinalV_pr [lemma, in sset7]
Bordinal.cardinal_succ_pr [lemma, in sset7]
Bordinal.cardinal_ordinal [lemma, in sset7]
Bordinal.cardinal_irreflexive [lemma, in sset7]
Bordinal.cardinal_cardinal [lemma, in sset7]
Bordinal.cardinal_of [definition, in sset7]
Bordinal.cardinal_pr [lemma, in sset7]
Bordinal.cardinal_equipotent [lemma, in sset7]
Bordinal.cardinal_succ_pr2 [lemma, in sset7]
Bordinal.cardinal_pr0 [lemma, in sset7]
Bordinal.cardinal_of_cardinal [lemma, in sset7]
Bordinal.cardinal_succ_pr1 [lemma, in sset7]
Bordinal.Cardinal.cardinal [definition, in sset7]
Bordinal.Cardinal.cardinalE [lemma, in sset7]
Bordinal.cardinal0 [lemma, in sset7]
Bordinal.cardinal1 [lemma, in sset7]
Bordinal.cardinal2 [lemma, in sset7]
Bordinal.card_one [definition, in sset7]
Bordinal.card_two [definition, in sset7]
Bordinal.card_zero [definition, in sset7]
Bordinal.decent_union [lemma, in sset7]
Bordinal.decent_succ [lemma, in sset7]
Bordinal.decent_intersection [lemma, in sset7]
Bordinal.decent_set [definition, in sset7]
Bordinal.double_cardinal [lemma, in sset7]
Bordinal.elt_of_ordinal [lemma, in sset7]
Bordinal.equipotent_restriction1 [lemma, in sset7]
Bordinal.equipotent_to_emptyset [lemma, in sset7]
Bordinal.equipotent_range [lemma, in sset7]
Bordinal.finite_o_pr [lemma, in sset7]
Bordinal.finite_cardinal_pr1 [lemma, in sset7]
Bordinal.finite_one [lemma, in sset7]
Bordinal.finite_o_increasing [lemma, in sset7]
Bordinal.finite_cardinal_pr [lemma, in sset7]
Bordinal.finite_o [definition, in sset7]
Bordinal.finite_cardinal_pr2 [lemma, in sset7]
Bordinal.finite_zero [lemma, in sset7]
Bordinal.finite_c [definition, in sset7]
Bordinal.finite_two [lemma, in sset7]
Bordinal.finite_set [definition, in sset7]
Bordinal.finite_succ [lemma, in sset7]
Bordinal.infinite_c [definition, in sset7]
Bordinal.infinite_set_pr1 [lemma, in sset7]
Bordinal.infinite_dichot1 [lemma, in sset7]
Bordinal.infinite_o_pr [lemma, in sset7]
Bordinal.infinite_set_pr2 [lemma, in sset7]
Bordinal.infinite_dichot2 [lemma, in sset7]
Bordinal.infinite_set_pr [lemma, in sset7]
Bordinal.infinite_o_increasing [lemma, in sset7]
Bordinal.infinite_set [definition, in sset7]
Bordinal.infinite_nonempty [lemma, in sset7]
Bordinal.infinite_pr1 [lemma, in sset7]
Bordinal.infinite_card_limit2 [lemma, in sset7]
Bordinal.infinite_o [definition, in sset7]
Bordinal.infinite_card_limit1 [lemma, in sset7]
Bordinal.isomorphism_worder2 [lemma, in sset7]
Bordinal.is_cardinal [definition, in sset7]
Bordinal.is_ordinal [definition, in sset7]
Bordinal.is_cardinal_pr [lemma, in sset7]
Bordinal.least_ordinal [definition, in sset7]
Bordinal.limit_ordinal [definition, in sset7]
Bordinal.limit_ordinal_pr2 [lemma, in sset7]
Bordinal.limit_ordinal_pr1 [lemma, in sset7]
Bordinal.limit_infinite [lemma, in sset7]
Bordinal.limit_ordinal_pr0 [lemma, in sset7]
Bordinal.nat_infinite_set [lemma, in sset7]
Bordinal.non_collectivizing_ordinal [lemma, in sset7]
Bordinal.omega_limit3 [lemma, in sset7]
Bordinal.omega0 [definition, in sset7]
Bordinal.omega0_pr2 [lemma, in sset7]
Bordinal.omega0_pr [lemma, in sset7]
Bordinal.omega0_cardinal [lemma, in sset7]
Bordinal.omega0_limit2 [lemma, in sset7]
Bordinal.omega0_pr1 [lemma, in sset7]
Bordinal.omega0_limit [lemma, in sset7]
Bordinal.omega0_limit1 [lemma, in sset7]
Bordinal.omega0_infinite [lemma, in sset7]
Bordinal.omega0_ordinal [lemma, in sset7]
Bordinal.orderIR [lemma, in sset7]
Bordinal.orderIS [lemma, in sset7]
Bordinal.orderIT [lemma, in sset7]
Bordinal.order_isomorphism_pr2 [lemma, in sset7]
Bordinal.order_morphism_pr0 [lemma, in sset7]
Bordinal.order_le_alt [lemma, in sset7]
Bordinal.order_le_alt2 [lemma, in sset7]
Bordinal.order_isomorphism_morphism [lemma, in sset7]
Bordinal.order_le_compatible1 [lemma, in sset7]
Bordinal.order_le [definition, in sset7]
Bordinal.order_isomorphism_pr0 [lemma, in sset7]
Bordinal.order_isomorphism_pr1 [lemma, in sset7]
Bordinal.order_morphism_pr1 [lemma, in sset7]
Bordinal.order_morphism_pr2 [lemma, in sset7]
Bordinal.order_le_compatible [lemma, in sset7]
Bordinal.ordinal [definition, in sset7]
Bordinal.ordinal_irreflexive [lemma, in sset7]
Bordinal.ordinal_p3 [lemma, in sset7]
Bordinal.ordinal_segment1 [lemma, in sset7]
Bordinal.ordinal_le_antisymmetric [lemma, in sset7]
Bordinal.ordinal_le_total_order2 [lemma, in sset7]
Bordinal.ordinal_le [definition, in sset7]
Bordinal.ordinal_set [definition, in sset7]
Bordinal.ordinal_le_lt_trans [lemma, in sset7]
Bordinal.ordinal_isomorphism_unique [lemma, in sset7]
Bordinal.ordinal_le_order_r [lemma, in sset7]
Bordinal.ordinal_succ_pr [lemma, in sset7]
Bordinal.ordinal_p1 [lemma, in sset7]
Bordinal.ordinal_sub4 [lemma, in sset7]
Bordinal.ordinal_p7 [lemma, in sset7]
Bordinal.ordinal_p4 [lemma, in sset7]
Bordinal.ordinal_p5 [lemma, in sset7]
Bordinal.ordinal_isomorphism_exists [lemma, in sset7]
Bordinal.ordinal_lt_le_trans [lemma, in sset7]
Bordinal.ordinal_oa [definition, in sset7]
Bordinal.ordinal_lt [definition, in sset7]
Bordinal.ordinal_one [lemma, in sset7]
Bordinal.ordinal_o_lt [lemma, in sset7]
Bordinal.ordinal_segment [lemma, in sset7]
Bordinal.ordinal_transitive_decent [lemma, in sset7]
Bordinal.ordinal_le_reflexive [lemma, in sset7]
Bordinal.ordinal_sub2 [lemma, in sset7]
Bordinal.ordinal_two [lemma, in sset7]
Bordinal.ordinal_worder2 [lemma, in sset7]
Bordinal.ordinal_lt_pr2 [lemma, in sset7]
Bordinal.ordinal_zero [lemma, in sset7]
Bordinal.ordinal_asymmetric [lemma, in sset7]
Bordinal.ordinal_le_pr [lemma, in sset7]
Bordinal.ordinal_pr [lemma, in sset7]
Bordinal.ordinal_lt_pr0 [lemma, in sset7]
Bordinal.ordinal_least [lemma, in sset7]
Bordinal.ordinal_worder [lemma, in sset7]
Bordinal.ordinal_le_pr1 [lemma, in sset7]
Bordinal.ordinal_lt_pr1 [lemma, in sset7]
Bordinal.ordinal_succ [lemma, in sset7]
Bordinal.ordinal_predecessor1 [lemma, in sset7]
Bordinal.ordinal_trichotomy [lemma, in sset7]
Bordinal.ordinal_le_pr0 [lemma, in sset7]
Bordinal.ordinal_predecessor [lemma, in sset7]
Bordinal.ordinal_le_antisymmetry1 [lemma, in sset7]
Bordinal.ordinal_sub3 [lemma, in sset7]
Bordinal.ordinal_pr1 [lemma, in sset7]
Bordinal.ordinal_o [definition, in sset7]
Bordinal.ordinal_le_total_order1 [lemma, in sset7]
Bordinal.ordinal_intersection [lemma, in sset7]
Bordinal.ordinal_decent [lemma, in sset7]
Bordinal.ordinal_p2 [lemma, in sset7]
Bordinal.ordinal_le_transitive [lemma, in sset7]
Bordinal.ordinal_sub [lemma, in sset7]
Bordinal.ordinal_transitive [lemma, in sset7]
Bordinal.ordinal_le_total_order [lemma, in sset7]
Bordinal.ordinal_worder1 [lemma, in sset7]
Bordinal.ordinal_same_wo [lemma, in sset7]
Bordinal.ordinal_le_pr3 [lemma, in sset7]
Bordinal.ordinal_le_pr2 [lemma, in sset7]
Bordinal.ord_sup_pr [definition, in sset7]
Bordinal.ord_sup_pr4 [lemma, in sset7]
Bordinal.ord_sup_pr1 [lemma, in sset7]
Bordinal.ord_sup_pr3 [lemma, in sset7]
Bordinal.ord_sup_pr2 [lemma, in sset7]
Bordinal.ord_sup_unique [lemma, in sset7]
Bordinal.segments_iso1 [lemma, in sset7]
Bordinal.segments_iso2 [lemma, in sset7]
Bordinal.succ [definition, in sset7]
Bordinal.succ_injective_o [lemma, in sset7]
Bordinal.succ_o_one [lemma, in sset7]
Bordinal.succ_o [definition, in sset7]
Bordinal.succ_o_zero [lemma, in sset7]
Bordinal.succ_injective1 [lemma, in sset7]
Bordinal.tack_on_injective_card3 [lemma, in sset7]
Bordinal.tack_on_injective_card2 [lemma, in sset7]
Bordinal.tack_on_injective_card1 [lemma, in sset7]
Bordinal.total_order_isomorphism [lemma, in sset7]
Bordinal.total_order_morphism [lemma, in sset7]
Bordinal.transitive_intersection [lemma, in sset7]
Bordinal.transitive_succ [lemma, in sset7]
Bordinal.transitive_union [lemma, in sset7]
Bordinal.transitive_set [definition, in sset7]
Bordinal.wordering_ordinal_le [lemma, in sset7]
Bordinal.worder_of [definition, in sset7]
Bordinal.Zermelo_ter [lemma, in sset7]
_ [notation, in sset7]
_ <=o _ [notation, in sset7]
0 c [notation, in sset7]
1 c [notation, in sset7]
2 c [notation, in sset7]
\csup [notation, in sset7]
\opred [notation, in sset7]
\osup [notation, in sset7]
Bproduct [module, in sset3]
Bproduct.cf_injective [lemma, in sset3]
Bproduct.compose_V [lemma, in sset3]
Bproduct.constant_functor [definition, in sset3]
Bproduct.constant_graph_function [lemma, in sset3]
Bproduct.constant_graph_V [lemma, in sset3]
Bproduct.constant_graph_is_constant [lemma, in sset3]
Bproduct.constant_graph_small_range [lemma, in sset3]
Bproduct.cst_graph_pr [lemma, in sset3]
Bproduct.cst_graph [definition, in sset3]
Bproduct.diagonal_graph_rw [lemma, in sset3]
Bproduct.diagonal_graphp [definition, in sset3]
Bproduct.distrib_prod_inter2_prod [lemma, in sset3]
Bproduct.distrib_prod2_inter [lemma, in sset3]
Bproduct.distrib_inter_union [lemma, in sset3]
Bproduct.distrib_product2_inter [lemma, in sset3]
Bproduct.distrib_product2_union [lemma, in sset3]
Bproduct.distrib_union2_inter [lemma, in sset3]
Bproduct.distrib_inter2_union [lemma, in sset3]
Bproduct.distrib_inter_prod [lemma, in sset3]
Bproduct.distrib_union_inter [lemma, in sset3]
Bproduct.distrib_prod_intersection [lemma, in sset3]
Bproduct.distrib_prod_union [lemma, in sset3]
Bproduct.distrib_prod2_union [lemma, in sset3]
Bproduct.distrib_inter_prod_inter [lemma, in sset3]
Bproduct.extension_partial_product [lemma, in sset3]
Bproduct.ext_map_prod_WV [lemma, in sset3]
Bproduct.ext_map_prod_W [lemma, in sset3]
Bproduct.ext_map_prod_surjective [lemma, in sset3]
Bproduct.ext_map_prod_injective [lemma, in sset3]
Bproduct.ext_map_prod_compose [lemma, in sset3]
Bproduct.ext_map_prod_function [lemma, in sset3]
Bproduct.ext_map_prod_taxioms [lemma, in sset3]
Bproduct.ext_map_prod [definition, in sset3]
Bproduct.ext_map_prod_aux [definition, in sset3]
Bproduct.ext_map_prod_axioms [definition, in sset3]
Bproduct.ext_map_prod_composable [lemma, in sset3]
Bproduct.first_proj_bijective [lemma, in sset3]
Bproduct.fun_set_to_prod4 [lemma, in sset3]
Bproduct.fun_set_to_prod8 [lemma, in sset3]
Bproduct.fun_set_to_prod7 [lemma, in sset3]
Bproduct.fun_set_to_prod [definition, in sset3]
Bproduct.fun_set_to_prod2 [lemma, in sset3]
Bproduct.fun_set_to_prod3 [lemma, in sset3]
Bproduct.fun_set_to_prod6 [lemma, in sset3]
Bproduct.fun_set_to_prod5 [definition, in sset3]
Bproduct.fun_set_to_prod1 [lemma, in sset3]
Bproduct.gbcreate [definition, in sset3]
Bproduct.gbcreate_domain [lemma, in sset3]
Bproduct.gbcreate_fgraph [lemma, in sset3]
Bproduct.gbcreate_graph [lemma, in sset3]
Bproduct.gbcreate_rw [lemma, in sset3]
Bproduct.gbcreate_V [lemma, in sset3]
Bproduct.graphset_pr1 [lemma, in sset3]
Bproduct.graphset_pr2 [lemma, in sset3]
Bproduct.graph_exten [lemma, in sset3]
Bproduct.is_constant_graph [definition, in sset3]
Bproduct.nonempty_product3 [lemma, in sset3]
Bproduct.pam_W [lemma, in sset3]
Bproduct.pam_bijective [lemma, in sset3]
Bproduct.pam_function [lemma, in sset3]
Bproduct.pam_injective [lemma, in sset3]
Bproduct.pam_axioms [lemma, in sset3]
Bproduct.partition_product [lemma, in sset3]
Bproduct.pc_W [lemma, in sset3]
Bproduct.pc_bijective [lemma, in sset3]
Bproduct.pc_WV [lemma, in sset3]
Bproduct.pc_axioms0 [lemma, in sset3]
Bproduct.pc_function [lemma, in sset3]
Bproduct.pc_axioms [lemma, in sset3]
Bproduct.popc_target [lemma, in sset3]
Bproduct.popc_W [lemma, in sset3]
Bproduct.popc_target_aux [lemma, in sset3]
Bproduct.popc_bijection [lemma, in sset3]
Bproduct.popc_axioms [lemma, in sset3]
Bproduct.pri_surjective [lemma, in sset3]
Bproduct.pri_axioms [lemma, in sset3]
Bproduct.pri_function [lemma, in sset3]
Bproduct.pri_W [lemma, in sset3]
Bproduct.prj_surjective [lemma, in sset3]
Bproduct.prj_axioms [lemma, in sset3]
Bproduct.prj_W [lemma, in sset3]
Bproduct.prj_bijective [lemma, in sset3]
Bproduct.prj_function [lemma, in sset3]
Bproduct.prj_WV [lemma, in sset3]
Bproduct.productb [definition, in sset3]
Bproduct.productb_monotone2 [lemma, in sset3]
Bproduct.productb_exten [lemma, in sset3]
Bproduct.productb_monotone1 [lemma, in sset3]
Bproduct.productb_rw [lemma, in sset3]
Bproduct.productf [definition, in sset3]
Bproduct.productf_extension [lemma, in sset3]
Bproduct.productf_rw [lemma, in sset3]
Bproduct.productf_exten [lemma, in sset3]
Bproduct.productt [definition, in sset3]
Bproduct.productt_nonempty2 [lemma, in sset3]
Bproduct.productt_rw [lemma, in sset3]
Bproduct.productt_nonempty [lemma, in sset3]
Bproduct.productt_exten [lemma, in sset3]
Bproduct.product_singleton [lemma, in sset3]
Bproduct.product_compose [definition, in sset3]
Bproduct.product_eq_graphset [lemma, in sset3]
Bproduct.product_trivial [lemma, in sset3]
Bproduct.product_sub_graphset [lemma, in sset3]
Bproduct.product_nonempty2 [lemma, in sset3]
Bproduct.product_nonempty [lemma, in sset3]
Bproduct.product1 [definition, in sset3]
Bproduct.product1_canon_axioms [lemma, in sset3]
Bproduct.product1_pr [lemma, in sset3]
Bproduct.product1_canon_bijective [lemma, in sset3]
Bproduct.product1_canon [definition, in sset3]
Bproduct.product1_rw [lemma, in sset3]
Bproduct.product1_canon_function [lemma, in sset3]
Bproduct.product1_pr2 [lemma, in sset3]
Bproduct.product1_canon_W [lemma, in sset3]
Bproduct.product2 [definition, in sset3]
Bproduct.product2_rw [lemma, in sset3]
Bproduct.product2_canon_W [lemma, in sset3]
Bproduct.product2_trivial [lemma, in sset3]
Bproduct.product2_canon_function [lemma, in sset3]
Bproduct.product2_canon [definition, in sset3]
Bproduct.product2_canon_bijective [lemma, in sset3]
Bproduct.product2_canon_axioms [lemma, in sset3]
Bproduct.prod_of_products_fam_pr [lemma, in sset3]
Bproduct.prod_of_function_axioms [lemma, in sset3]
Bproduct.prod_assoc_axioms [definition, in sset3]
Bproduct.prod_of_product_aux [definition, in sset3]
Bproduct.prod_of_prod_target [definition, in sset3]
Bproduct.prod_of_function_function [lemma, in sset3]
Bproduct.prod_of_products [definition, in sset3]
Bproduct.prod_assoc_map2 [lemma, in sset3]
Bproduct.prod_of_products_W [lemma, in sset3]
Bproduct.prod_of_products_target [lemma, in sset3]
Bproduct.prod_of_prod_inc_target [lemma, in sset3]
Bproduct.prod_of_products_function [lemma, in sset3]
Bproduct.prod_of_products_canon [definition, in sset3]
Bproduct.prod_of_products_source [lemma, in sset3]
Bproduct.prod_assoc_map [definition, in sset3]
Bproduct.prod_of_function [definition, in sset3]
Bproduct.prod_of_function_W [lemma, in sset3]
Bproduct.pr_it [definition, in sset3]
Bproduct.pr_i [definition, in sset3]
Bproduct.pr_j [definition, in sset3]
Bproduct.restriction_product [definition, in sset3]
Bproduct.restriction_graph2 [lemma, in sset3]
Bproduct.trivial_fgraph [lemma, in sset3]
Bproduct.trivial_product1 [lemma, in sset3]
Bproduct.unionf_emptyset [lemma, in sset3]
Bproduct.variantLc_prop [lemma, in sset3]
Bproduct.variant_if_rw1 [lemma, in sset3]
Bproduct.variant_if_not_rw1 [lemma, in sset3]
Bunion [module, in sset3]
Bunion.agrees_on_covering [lemma, in sset3]
Bunion.coarser_c [definition, in sset3]
Bunion.coarser_reflexive [lemma, in sset3]
Bunion.coarser_transitive [lemma, in sset3]
Bunion.coarser_covering [definition, in sset3]
Bunion.coarser_same [lemma, in sset3]
Bunion.coarser_antisymmetric [lemma, in sset3]
Bunion.complementary_union1 [lemma, in sset3]
Bunion.complementary_intersection [lemma, in sset3]
Bunion.complementary_union [lemma, in sset3]
Bunion.complementary_intersection1 [lemma, in sset3]
Bunion.composable_for_function [lemma, in sset3]
Bunion.compose3function [definition, in sset3]
Bunion.constant_function_pr3 [lemma, in sset3]
Bunion.constant_function_pr2 [lemma, in sset3]
Bunion.covering [definition, in sset3]
Bunion.covering_s [definition, in sset3]
Bunion.covering_pr [lemma, in sset3]
Bunion.covering_f [definition, in sset3]
Bunion.covering_f_pr [lemma, in sset3]
Bunion.c3f_W [lemma, in sset3]
Bunion.c3f_bijective [lemma, in sset3]
Bunion.c3f_axioms [lemma, in sset3]
Bunion.c3f_surjective [lemma, in sset3]
Bunion.c3f_injective [lemma, in sset3]
Bunion.c3f_function [lemma, in sset3]
Bunion.disjoint_union_fam [definition, in sset3]
Bunion.disjoint_union_pr [lemma, in sset3]
Bunion.disjoint_union [definition, in sset3]
Bunion.disjoint_union_disjoint [lemma, in sset3]
Bunion.disjoint_union_lemma [lemma, in sset3]
Bunion.du_index_pr [lemma, in sset3]
Bunion.empty_target_graph [lemma, in sset3]
Bunion.empty_unionf [lemma, in sset3]
Bunion.empty_uniont1 [lemma, in sset3]
Bunion.empty_unionf1 [lemma, in sset3]
Bunion.empty_set_of_functions_target [lemma, in sset3]
Bunion.empty_source_graph [lemma, in sset3]
Bunion.etp_injective [lemma, in sset3]
Bunion.etp_surjective [lemma, in sset3]
Bunion.etp_identity [lemma, in sset3]
Bunion.etp_axioms [lemma, in sset3]
Bunion.etp_W [lemma, in sset3]
Bunion.etp_compose [lemma, in sset3]
Bunion.etp_function [lemma, in sset3]
Bunion.etp_composable [lemma, in sset3]
Bunion.extension_covering1 [lemma, in sset3]
Bunion.extension_covering [lemma, in sset3]
Bunion.extension_to_parts [definition, in sset3]
Bunion.extension_partition1 [lemma, in sset3]
Bunion.extension_partition [lemma, in sset3]
Bunion.first_partial_map [definition, in sset3]
Bunion.first_partial_fun [definition, in sset3]
Bunion.first_partial_function [definition, in sset3]
Bunion.fpfa_bijective [lemma, in sset3]
Bunion.fpfa_axioms [lemma, in sset3]
Bunion.fpfa_W [lemma, in sset3]
Bunion.fpfa_function [lemma, in sset3]
Bunion.fpfb_WW [lemma, in sset3]
Bunion.fpfb_function [lemma, in sset3]
Bunion.fpfb_axioms [lemma, in sset3]
Bunion.fpfb_W [lemma, in sset3]
Bunion.fpf_W [lemma, in sset3]
Bunion.fpf_axioms [lemma, in sset3]
Bunion.fpf_function [lemma, in sset3]
Bunion.function_prop_sub [definition, in sset3]
Bunion.function_prop [definition, in sset3]
Bunion.graph_axioms [lemma, in sset3]
Bunion.graph_bijective [lemma, in sset3]
Bunion.image_of_covering [lemma, in sset3]
Bunion.image_of_intersection [lemma, in sset3]
Bunion.image_of_union [lemma, in sset3]
Bunion.image_of_intersection2 [lemma, in sset3]
Bunion.image_of_union2 [lemma, in sset3]
Bunion.inc_set_of_gfunctions [lemma, in sset3]
Bunion.inc_disjoint_union [lemma, in sset3]
Bunion.injective_graph [definition, in sset3]
Bunion.injective_partition [lemma, in sset3]
Bunion.inj_image_of_intersection [lemma, in sset3]
Bunion.inj_image_of_intersection2 [lemma, in sset3]
Bunion.inj_image_of_comp [lemma, in sset3]
Bunion.intersectionb [definition, in sset3]
Bunion.intersectionb_rewrite [lemma, in sset3]
Bunion.intersectionb_empty [lemma, in sset3]
Bunion.intersectionb_rw [lemma, in sset3]
Bunion.intersectionb_exten [lemma, in sset3]
Bunion.intersectionb_forall [lemma, in sset3]
Bunion.intersectionb_inc [lemma, in sset3]
Bunion.intersectionf [definition, in sset3]
Bunion.intersectionf_rw [lemma, in sset3]
Bunion.intersectionf_forall [lemma, in sset3]
Bunion.intersectionf_exten [lemma, in sset3]
Bunion.intersectionf_singleton [lemma, in sset3]
Bunion.intersectionf_inc [lemma, in sset3]
Bunion.intersectionf_empty [lemma, in sset3]
Bunion.intersectiont [definition, in sset3]
Bunion.intersectiont_constant [lemma, in sset3]
Bunion.intersectiont_sub [lemma, in sset3]
Bunion.intersectiont_empty [lemma, in sset3]
Bunion.intersectiont_rw [lemma, in sset3]
Bunion.intersectiont_exten [lemma, in sset3]
Bunion.intersectiont_forall [lemma, in sset3]
Bunion.intersectiont_sub2 [lemma, in sset3]
Bunion.intersectiont_inc [lemma, in sset3]
Bunion.intersectiont_singleton [lemma, in sset3]
Bunion.intersectiont_rewrite [lemma, in sset3]
Bunion.intersection_union_distrib1 [lemma, in sset3]
Bunion.intersection_of_twosets_aux [lemma, in sset3]
Bunion.intersection_assoc [lemma, in sset3]
Bunion.intersection_of_twosets [lemma, in sset3]
Bunion.intersection_covering [definition, in sset3]
Bunion.intersection_rw [lemma, in sset3]
Bunion.intersection_covering_coarser1 [lemma, in sset3]
Bunion.intersection_monotone2 [lemma, in sset3]
Bunion.intersection_is_covering [lemma, in sset3]
Bunion.intersection_monotone [lemma, in sset3]
Bunion.intersection_covering2 [definition, in sset3]
Bunion.intersection_union_distrib2 [lemma, in sset3]
Bunion.intersection_covering_coarser3 [lemma, in sset3]
Bunion.intersection_covering2_pr [lemma, in sset3]
Bunion.intersection_cov_coarser1 [lemma, in sset3]
Bunion.intersection_cov_coarser3 [lemma, in sset3]
Bunion.intersection_cov_coarser2 [lemma, in sset3]
Bunion.intersection_prop [lemma, in sset3]
Bunion.intersection_covering_coarser2 [lemma, in sset3]
Bunion.intersection2_comp [lemma, in sset3]
Bunion.intersection2_complement [lemma, in sset3]
Bunion.inv_image_of_covering [lemma, in sset3]
Bunion.inv_image_disjoint [lemma, in sset3]
Bunion.inv_image_of_comp [lemma, in sset3]
Bunion.inv_image_of_intersection [lemma, in sset3]
Bunion.inv_image_of_intersection2 [lemma, in sset3]
Bunion.is_partition_with_complement [lemma, in sset3]
Bunion.largest_partition [definition, in sset3]
Bunion.largest_partition_pr [lemma, in sset3]
Bunion.mutually_disjoint_prop1 [lemma, in sset3]
Bunion.mutually_disjoint [definition, in sset3]
Bunion.mutually_disjoint_prop [lemma, in sset3]
Bunion.mutually_disjoint_prop2 [lemma, in sset3]
Bunion.nonempty_domain [lemma, in sset3]
Bunion.nonempty_aux [lemma, in sset3]
Bunion.partial_fun_axioms_pr [lemma, in sset3]
Bunion.partial_fun_axioms [definition, in sset3]
Bunion.partion_union_disjoint [lemma, in sset3]
Bunion.partition [definition, in sset3]
Bunion.partitionset_pr [lemma, in sset3]
Bunion.partitions_is_covering [lemma, in sset3]
Bunion.partition_inc_unique [lemma, in sset3]
Bunion.partition_fam [definition, in sset3]
Bunion.partition_fam_partition [lemma, in sset3]
Bunion.partition_smallest [lemma, in sset3]
Bunion.partition_inc_exists [lemma, in sset3]
Bunion.partition_largest [lemma, in sset3]
Bunion.partition_s [definition, in sset3]
Bunion.partition_same [lemma, in sset3]
Bunion.partition_with_complement [definition, in sset3]
Bunion.partition_fam_is_covering [lemma, in sset3]
Bunion.partition_same2 [lemma, in sset3]
Bunion.product_of_covering [lemma, in sset3]
Bunion.product_is_covering2 [lemma, in sset3]
Bunion.second_partial_map [definition, in sset3]
Bunion.second_partial_fun [definition, in sset3]
Bunion.second_partial_function [definition, in sset3]
Bunion.set_of_gfunctions_inc [lemma, in sset3]
Bunion.set_of_functions_equipotent [lemma, in sset3]
Bunion.set_of_sub_functions_rw [lemma, in sset3]
Bunion.set_of_functions_extens [lemma, in sset3]
Bunion.set_of_sub_functions [definition, in sset3]
Bunion.set_of_permutations [definition, in sset3]
Bunion.set_of_functions_rw [lemma, in sset3]
Bunion.set_of_functions [definition, in sset3]
Bunion.singleton_type_inj [lemma, in sset3]
Bunion.smallest_partition [definition, in sset3]
Bunion.small_set_of_functions_source [lemma, in sset3]
Bunion.small_set_of_functions_target [lemma, in sset3]
Bunion.spfa_axioms [lemma, in sset3]
Bunion.spfa_W [lemma, in sset3]
Bunion.spfa_function [lemma, in sset3]
Bunion.spfa_bijective [lemma, in sset3]
Bunion.spfb_W [lemma, in sset3]
Bunion.spfb_function [lemma, in sset3]
Bunion.spfb_axioms [lemma, in sset3]
Bunion.spfb_WW [lemma, in sset3]
Bunion.spf_axioms [lemma, in sset3]
Bunion.spf_function [lemma, in sset3]
Bunion.spf_W [lemma, in sset3]
Bunion.sub_uniont2 [lemma, in sset3]
Bunion.sub_intersectiont [lemma, in sset3]
Bunion.sub_uniont [lemma, in sset3]
Bunion.sub_covering [lemma, in sset3]
Bunion.Uintegral [record, in sset3]
Bunion.UI_z [projection, in sset3]
Bunion.UI_elt [projection, in sset3]
Bunion.unionb [definition, in sset3]
Bunion.unionb_exists [lemma, in sset3]
Bunion.unionb_rewrite1 [lemma, in sset3]
Bunion.unionb_alt [lemma, in sset3]
Bunion.unionb_rewrite [lemma, in sset3]
Bunion.unionb_identity [lemma, in sset3]
Bunion.unionb_exten [lemma, in sset3]
Bunion.unionb_rw [lemma, in sset3]
Bunion.unionb_inc [lemma, in sset3]
Bunion.unionf [definition, in sset3]
Bunion.unionf_singleton [lemma, in sset3]
Bunion.unionf_exten [lemma, in sset3]
Bunion.unionf_inc [lemma, in sset3]
Bunion.unionf_rw [lemma, in sset3]
Bunion.unionf_exists [lemma, in sset3]
Bunion.uniont [definition, in sset3]
Bunion.uniont_rewrite [lemma, in sset3]
Bunion.uniont_inc [lemma, in sset3]
Bunion.uniont_sub [lemma, in sset3]
Bunion.uniont_singleton [lemma, in sset3]
Bunion.uniont_exten [lemma, in sset3]
Bunion.uniont_constant [lemma, in sset3]
Bunion.uniont_rw [lemma, in sset3]
Bunion.union_monotone [lemma, in sset3]
Bunion.union_monotone2 [lemma, in sset3]
Bunion.union_prop [lemma, in sset3]
Bunion.union_of_twosets_aux [lemma, in sset3]
Bunion.union_assoc [lemma, in sset3]
Bunion.union_of_twosets [lemma, in sset3]
Bunion.union2_complement [lemma, in sset3]
Bunion.union2_comp [lemma, in sset3]
Bunion.variant [definition, in sset3]
Bunion.varianti [definition, in sset3]
Bunion.varianti_out [lemma, in sset3]
Bunion.varianti_in [lemma, in sset3]
Bunion.variantL [definition, in sset3]
Bunion.variantLc [definition, in sset3]
Bunion.variantLc_domain [lemma, in sset3]
Bunion.variantLc_fgraph [lemma, in sset3]
Bunion.variantLc_domain_nonempty [lemma, in sset3]
Bunion.variant_fgraph [lemma, in sset3]
Bunion.variant_V_cb [lemma, in sset3]
Bunion.variant_V_ca [lemma, in sset3]
Bunion.variant_if_not_rw [lemma, in sset3]
Bunion.variant_V_b [lemma, in sset3]
Bunion.variant_V_a [lemma, in sset3]
Bunion.variant_if_rw [lemma, in sset3]
Bunion.variant_domain [lemma, in sset3]


C

Cardinal [module, in sset7]
Cardinal.cantor [lemma, in sset7]
Cardinal.cantor_bis [lemma, in sset7]
Cardinal.cardinal_singleton [lemma, in sset7]
Cardinal.cardinal_nonemptyset1 [lemma, in sset7]
Cardinal.cardinal_lt [definition, in sset7]
Cardinal.cardinal_sum_pr3 [lemma, in sset7]
Cardinal.cardinal_set [definition, in sset7]
Cardinal.cardinal_sum_commutative2 [lemma, in sset7]
Cardinal.cardinal_emptyset [lemma, in sset7]
Cardinal.cardinal_le [definition, in sset7]
Cardinal.cardinal_le_when_complement [lemma, in sset7]
Cardinal.cardinal_supremum2 [lemma, in sset7]
Cardinal.cardinal_sum_pr1 [lemma, in sset7]
Cardinal.cardinal_doubleton [lemma, in sset7]
Cardinal.cardinal_antisymmetry1 [lemma, in sset7]
Cardinal.cardinal_prod_commutative [lemma, in sset7]
Cardinal.cardinal_le_total_order2 [lemma, in sset7]
Cardinal.cardinal_two_is_doubleton [lemma, in sset7]
Cardinal.cardinal_le_aux1 [lemma, in sset7]
Cardinal.cardinal_distrib_prod_sum3 [lemma, in sset7]
Cardinal.cardinal_commutativity_aux [lemma, in sset7]
Cardinal.cardinal_sum_assoc [lemma, in sset7]
Cardinal.cardinal_sum_pr [lemma, in sset7]
Cardinal.cardinal_distrib_prod2_sum [lemma, in sset7]
Cardinal.cardinal_le_transitive [lemma, in sset7]
Cardinal.cardinal_supremum [lemma, in sset7]
Cardinal.cardinal_equipotent1 [lemma, in sset7]
Cardinal.cardinal_sum [definition, in sset7]
Cardinal.cardinal_le_lt_trans [lemma, in sset7]
Cardinal.cardinal_supremum1 [lemma, in sset7]
Cardinal.cardinal_distrib_prod_sum2 [lemma, in sset7]
Cardinal.cardinal_prod_pr [lemma, in sset7]
Cardinal.cardinal_complement1 [lemma, in sset7]
Cardinal.cardinal_le_total_order1 [lemma, in sset7]
Cardinal.cardinal_prod_assoc [lemma, in sset7]
Cardinal.cardinal_complement [lemma, in sset7]
Cardinal.cardinal_lt_le_trans [lemma, in sset7]
Cardinal.cardinal_prod_commutative2 [lemma, in sset7]
Cardinal.cardinal_nonemptyset [lemma, in sset7]
Cardinal.cardinal_le_total_order3 [lemma, in sset7]
Cardinal.cardinal_distrib_prod_sum [lemma, in sset7]
Cardinal.cardinal_sum_commutative [lemma, in sset7]
Cardinal.cardinal_le_aux2 [lemma, in sset7]
Cardinal.cardinal_sum_pr2 [lemma, in sset7]
Cardinal.cardinal_prod [definition, in sset7]
Cardinal.cardinal_le_reflexive [lemma, in sset7]
Cardinal.card_commutative_aux [lemma, in sset7]
Cardinal.card_mult_pr2 [lemma, in sset7]
Cardinal.card_mult_pr [lemma, in sset7]
Cardinal.card_multC [lemma, in sset7]
Cardinal.card_mult_pr2b [lemma, in sset7]
Cardinal.card_powerset [lemma, in sset7]
Cardinal.card_mult_pr1 [lemma, in sset7]
Cardinal.card_one_not_two [lemma, in sset7]
Cardinal.card_pow [definition, in sset7]
Cardinal.card_le_two_prop [lemma, in sset7]
Cardinal.card_plus [definition, in sset7]
Cardinal.card_multA [lemma, in sset7]
Cardinal.card_plus_pr [lemma, in sset7]
Cardinal.card_plus_pr2 [lemma, in sset7]
Cardinal.card_pow_pr2 [lemma, in sset7]
Cardinal.card_plusC [lemma, in sset7]
Cardinal.card_two_pr [lemma, in sset7]
Cardinal.card_mult_pr0 [lemma, in sset7]
Cardinal.card_plus_pr1 [lemma, in sset7]
Cardinal.card_pow_pr3 [lemma, in sset7]
Cardinal.card_one_not_zero [lemma, in sset7]
Cardinal.card_plus_pr0 [lemma, in sset7]
Cardinal.card_plusA [lemma, in sset7]
Cardinal.card_pow_pr [lemma, in sset7]
Cardinal.card_mult [definition, in sset7]
Cardinal.card_mult_is_cardinal [lemma, in sset7]
Cardinal.card_two_not_zero [lemma, in sset7]
Cardinal.card_pow_pr1 [lemma, in sset7]
Cardinal.card_le_two_prop1 [lemma, in sset7]
Cardinal.card_plus_is_cardinal [lemma, in sset7]
Cardinal.card_le_one_prop1 [lemma, in sset7]
Cardinal.card_le_one_prop [lemma, in sset7]
Cardinal.card_plus_pr2b [lemma, in sset7]
Cardinal.disjointLv [lemma, in sset7]
Cardinal.disjoint_union2_pr1 [lemma, in sset7]
Cardinal.disjoint_union2_pr0 [lemma, in sset7]
Cardinal.disjoint_union2_pr4 [lemma, in sset7]
Cardinal.disjoint_union2_pr [lemma, in sset7]
Cardinal.disjoint_with_singleton [lemma, in sset7]
Cardinal.disjoint_union2_pr3 [lemma, in sset7]
Cardinal.distrib_inter_prod3 [lemma, in sset7]
Cardinal.distrib_inter_prod2 [lemma, in sset7]
Cardinal.distrib_prod2_sum [lemma, in sset7]
Cardinal.doubleton_fam [definition, in sset7]
Cardinal.doubleton_fam_canon [lemma, in sset7]
Cardinal.doubleton_equipotent1 [lemma, in sset7]
Cardinal.equipotent_ex_pr [lemma, in sset7]
Cardinal.equipotent_productb [lemma, in sset7]
Cardinal.equipotent_product1 [lemma, in sset7]
Cardinal.equipotent_a_times_singl [lemma, in sset7]
Cardinal.equipotent_disjoint_union2 [lemma, in sset7]
Cardinal.equipotent_disjoint_union [lemma, in sset7]
Cardinal.equipotent_disjoint_union1 [lemma, in sset7]
Cardinal.equipotent_ex [definition, in sset7]
Cardinal.equipotent_product [lemma, in sset7]
Cardinal.equipotent_to_subset [definition, in sset7]
Cardinal.equipotent_product_sym [lemma, in sset7]
Cardinal.equipotent_singl_times_a [lemma, in sset7]
Cardinal.equipotent_productf [lemma, in sset7]
Cardinal.eq_subset_card1 [lemma, in sset7]
Cardinal.eq_subset_ex_inj [lemma, in sset7]
Cardinal.eq_subset_card [lemma, in sset7]
Cardinal.eq_subset_pr2 [lemma, in sset7]
Cardinal.image_smaller_cardinal [lemma, in sset7]
Cardinal.incr_fun_morph [lemma, in sset7]
Cardinal.inj_compose1 [lemma, in sset7]
Cardinal.not_card_le_lt [lemma, in sset7]
Cardinal.one_unit_prodl [lemma, in sset7]
Cardinal.one_small_cardinal [lemma, in sset7]
Cardinal.one_unit_prod [lemma, in sset7]
Cardinal.one_unit_prodr [lemma, in sset7]
Cardinal.one_small_cardinal1 [lemma, in sset7]
Cardinal.ordinal_cardinal_le [lemma, in sset7]
Cardinal.ord_non_zero_prop [lemma, in sset7]
Cardinal.power_of_sum2 [lemma, in sset7]
Cardinal.power_x_1 [lemma, in sset7]
Cardinal.power_of_prod3 [lemma, in sset7]
Cardinal.power_0_x [lemma, in sset7]
Cardinal.power_0_0 [lemma, in sset7]
Cardinal.power_of_prod2 [lemma, in sset7]
Cardinal.power_x_2 [lemma, in sset7]
Cardinal.power_of_sum [lemma, in sset7]
Cardinal.power_of_prod [lemma, in sset7]
Cardinal.power_x_0 [lemma, in sset7]
Cardinal.power_increasing1 [lemma, in sset7]
Cardinal.power_1_x [lemma, in sset7]
Cardinal.power_x_1c [lemma, in sset7]
Cardinal.product_increasing3 [lemma, in sset7]
Cardinal.product_increasing1 [lemma, in sset7]
Cardinal.product_increasing [lemma, in sset7]
Cardinal.product_increasing2 [lemma, in sset7]
Cardinal.product2associative [lemma, in sset7]
Cardinal.restriction_to_image_axioms [lemma, in sset7]
Cardinal.restriction_to_image [definition, in sset7]
Cardinal.restriction_to_image_surjective [lemma, in sset7]
Cardinal.restriction_to_image_bijective [lemma, in sset7]
Cardinal.set_of_cardinals_le [definition, in sset7]
Cardinal.set_of_card_one [lemma, in sset7]
Cardinal.set_of_card_two [lemma, in sset7]
Cardinal.set_of_cardinals_pr [lemma, in sset7]
Cardinal.singletons_equipotent [lemma, in sset7]
Cardinal.sub_smaller [lemma, in sset7]
Cardinal.succ_injective [lemma, in sset7]
Cardinal.sum_of_same [lemma, in sset7]
Cardinal.sum_increasing1 [lemma, in sset7]
Cardinal.sum_increasing2 [lemma, in sset7]
Cardinal.sum_of_same1 [lemma, in sset7]
Cardinal.sum_of_ones [lemma, in sset7]
Cardinal.sum_increasing [lemma, in sset7]
Cardinal.sum_of_sums [lemma, in sset7]
Cardinal.sum_increasing3 [lemma, in sset7]
Cardinal.sum_of_ones1 [lemma, in sset7]
Cardinal.surjective_cardinal_le [lemma, in sset7]
Cardinal.TPas [definition, in sset7]
Cardinal.TPbs [definition, in sset7]
Cardinal.trivial_cardinal_prod2 [lemma, in sset7]
Cardinal.trivial_card_plus [lemma, in sset7]
Cardinal.trivial_cardinal_sum [lemma, in sset7]
Cardinal.trivial_cardinal_prod [lemma, in sset7]
Cardinal.trivial_cardinal_sum1 [lemma, in sset7]
Cardinal.trivial_cardinal_prod1 [lemma, in sset7]
Cardinal.trivial_cardinal_sum2 [lemma, in sset7]
Cardinal.two_terms_bij [lemma, in sset7]
Cardinal.union2Lv [lemma, in sset7]
Cardinal.wordering_cardinal_le_pr [lemma, in sset7]
Cardinal.wordering_cardinal_le [lemma, in sset7]
Cardinal.zero_unit_sumr [lemma, in sset7]
Cardinal.zero_unit_suml [lemma, in sset7]
Cardinal.zero_cardinal_product2 [lemma, in sset7]
Cardinal.zero_smallest [lemma, in sset7]
Cardinal.zero_unit_sum [lemma, in sset7]
Cardinal.zero_cardinal_product [lemma, in sset7]
Cardinal.zero_product_absorbing [lemma, in sset7]
Cardinal.zero_prod_absorbing [lemma, in sset7]
Cardinal.zero_smallest2 [lemma, in sset7]
Cardinal.zero_smallest1 [lemma, in sset7]
_ ^c _ [notation, in sset7]
_ <=c _ [notation, in sset7]
_ +c _ [notation, in sset7]
_ [notation, in sset7]
_ *c _ [notation, in sset7]
Cartesian [module, in sset1]
Cartesian.empty_product_pr [lemma, in sset1]
Cartesian.empty_product1 [lemma, in sset1]
Cartesian.empty_product2 [lemma, in sset1]
Cartesian.pair_in_product [lemma, in sset1]
Cartesian.product [definition, in sset1]
Cartesian.product_monotone_left2 [lemma, in sset1]
Cartesian.product_pr [lemma, in sset1]
Cartesian.product_inc [lemma, in sset1]
Cartesian.product_pair_rw [lemma, in sset1]
Cartesian.product_pair_pr [lemma, in sset1]
Cartesian.product_pair_inc [lemma, in sset1]
Cartesian.product_monotone [lemma, in sset1]
Cartesian.product_monotone_right [lemma, in sset1]
Cartesian.product_monotone_right2 [lemma, in sset1]
Cartesian.product_inc_rw [lemma, in sset1]
Cartesian.product_monotone_left [lemma, in sset1]
Complement [module, in sset1]
Complement.complement [definition, in sset1]
Complement.complement_itself [lemma, in sset1]
Complement.complement_emptyset [lemma, in sset1]
Complement.complement_monotone [lemma, in sset1]
Complement.complement_rw [lemma, in sset1]
Complement.double_complement [lemma, in sset1]
Complement.empty_complement [lemma, in sset1]
Complement.not_inc_complement_singleton [lemma, in sset1]
Complement.strict_sub_nonempty_complement [lemma, in sset1]
Complement.sub_complement [lemma, in sset1]
Complement.use_complement [lemma, in sset1]
Constructions [module, in sset1]
Constructions.Bo [definition, in sset1]
Constructions.by_cases_if [lemma, in sset1]
Constructions.by_cases [definition, in sset1]
Constructions.by_cases_if_not [lemma, in sset1]
Constructions.by_cases_nonempty [lemma, in sset1]
Constructions.B_eq [lemma, in sset1]
Constructions.B_back [lemma, in sset1]
Constructions.choose [definition, in sset1]
Constructions.choose_not [lemma, in sset1]
Constructions.choose_pr [lemma, in sset1]
Constructions.empty [definition, in sset1]
Constructions.emptyset [inductive, in sset1]
Constructions.emptyset_dichot [lemma, in sset1]
Constructions.emptyset_pr [lemma, in sset1]
Constructions.emptyset_sub_any [lemma, in sset1]
Constructions.exists_proof2 [lemma, in sset1]
Constructions.exists_unique [definition, in sset1]
Constructions.exists_proof [lemma, in sset1]
Constructions.IM_rw [lemma, in sset1]
Constructions.inc_nonempty [lemma, in sset1]
Constructions.is_emptyset [lemma, in sset1]
Constructions.nonemptyT_not_empty0 [lemma, in sset1]
Constructions.nonemptyT_not_empty [lemma, in sset1]
Constructions.nonempty_or_empty [lemma, in sset1]
Constructions.nonempty_rep [lemma, in sset1]
Constructions.not_exists_pr [lemma, in sset1]
Constructions.not_nonempty_empty [lemma, in sset1]
Constructions.rep [definition, in sset1]
Constructions.R_inc [lemma, in sset1]
Constructions.strict_sub_trans2 [lemma, in sset1]
Constructions.strict_sub_trans1 [lemma, in sset1]
Constructions.strict_sub [definition, in sset1]
Constructions.sub_trans [lemma, in sset1]
Constructions.sub_refl [lemma, in sset1]
Constructions.Yo [definition, in sset1]
Constructions.Y_if_rw [lemma, in sset1]
Constructions.Y_if_not_rw [lemma, in sset1]
Constructions.Y_if_not [lemma, in sset1]
Constructions.Y_if [lemma, in sset1]
Constructions.Zo [definition, in sset1]
Constructions.Zorec [inductive, in sset1]
Constructions.Zorec_c [constructor, in sset1]
Constructions.Z_inc [lemma, in sset1]
Constructions.Z_sub [lemma, in sset1]
Constructions.Z_rw [lemma, in sset1]
Correspondence [module, in sset2]
Correspondence.acreate [definition, in sset2]
Correspondence.acreate_corresp [lemma, in sset2]
Correspondence.composableC [definition, in sset2]
Correspondence.compose [definition, in sset2]
Correspondence.compose_related [lemma, in sset2]
Correspondence.compose_of_sets [lemma, in sset2]
Correspondence.compose_graph [definition, in sset2]
Correspondence.compose_range1 [lemma, in sset2]
Correspondence.compose_identity_left [lemma, in sset2]
Correspondence.compose_range [lemma, in sset2]
Correspondence.compose_correspondence [lemma, in sset2]
Correspondence.compose_domain [lemma, in sset2]
Correspondence.compose_identity_right [lemma, in sset2]
Correspondence.compose_domain1 [lemma, in sset2]
Correspondence.compose_identity_identity [lemma, in sset2]
Correspondence.composition_increasing [lemma, in sset2]
Correspondence.composition_is_graph [lemma, in sset2]
Correspondence.composition_associative [lemma, in sset2]
Correspondence.constant_function_p1 [lemma, in sset2]
Correspondence.corresp [definition, in sset2]
Correspondence.corresp_source [lemma, in sset2]
Correspondence.corresp_target [lemma, in sset2]
Correspondence.corresp_sub_range [lemma, in sset2]
Correspondence.corresp_create [lemma, in sset2]
Correspondence.corresp_is_graph [lemma, in sset2]
Correspondence.corresp_sub_domain [lemma, in sset2]
Correspondence.corresp_recov [lemma, in sset2]
Correspondence.corresp_recov1 [lemma, in sset2]
Correspondence.corresp_graph [lemma, in sset2]
Correspondence.corr_propc [lemma, in sset2]
Correspondence.corr_propcc [lemma, in sset2]
Correspondence.diagonal [definition, in sset2]
Correspondence.diagonal_is_identity [lemma, in sset2]
Correspondence.domain_inverse [lemma, in sset2]
Correspondence.emptyset_domain [lemma, in sset2]
Correspondence.emptyset_graph [lemma, in sset2]
Correspondence.emptyset_fgraph [lemma, in sset2]
Correspondence.emptyset_range [lemma, in sset2]
Correspondence.empty_graph1 [lemma, in sset2]
Correspondence.empty_graph2 [lemma, in sset2]
Correspondence.gacreate [definition, in sset2]
Correspondence.graph [definition, in sset2]
Correspondence.identity [definition, in sset2]
Correspondence.identity_graph0 [lemma, in sset2]
Correspondence.identity_target [lemma, in sset2]
Correspondence.identity_source [lemma, in sset2]
Correspondence.identity_corresp [lemma, in sset2]
Correspondence.identity_graph [lemma, in sset2]
Correspondence.identity_self_inverse [lemma, in sset2]
Correspondence.image_by_increasing [lemma, in sset2]
Correspondence.image_by_graph_domain [lemma, in sset2]
Correspondence.image_by_fun [definition, in sset2]
Correspondence.image_by_graph_rw [lemma, in sset2]
Correspondence.image_composition [lemma, in sset2]
Correspondence.image_by_nonemptyset [lemma, in sset2]
Correspondence.image_of_large [lemma, in sset2]
Correspondence.image_by_graph [definition, in sset2]
Correspondence.image_by_emptyset [lemma, in sset2]
Correspondence.image_of_fun [definition, in sset2]
Correspondence.im_singleton_pr [lemma, in sset2]
Correspondence.im_singleton_inclusion [lemma, in sset2]
Correspondence.im_singleton [definition, in sset2]
Correspondence.inc_pair_diagonal [lemma, in sset2]
Correspondence.inc_diagonal_rw [lemma, in sset2]
Correspondence.inc_compose_rw [lemma, in sset2]
Correspondence.inverse_graph_involutive [lemma, in sset2]
Correspondence.inverse_compose_cor [lemma, in sset2]
Correspondence.inverse_direct_image [lemma, in sset2]
Correspondence.inverse_target [lemma, in sset2]
Correspondence.inverse_graph [definition, in sset2]
Correspondence.inverse_correspondence [lemma, in sset2]
Correspondence.inverse_fun [definition, in sset2]
Correspondence.inverse_fun_involutive [lemma, in sset2]
Correspondence.inverse_graph_rw [lemma, in sset2]
Correspondence.inverse_graph_pr2 [lemma, in sset2]
Correspondence.inverse_graph_is_graph [lemma, in sset2]
Correspondence.inverse_compose [lemma, in sset2]
Correspondence.inverse_graph_emptyset [lemma, in sset2]
Correspondence.inverse_graph_alt [lemma, in sset2]
Correspondence.inverse_identity_g [lemma, in sset2]
Correspondence.inverse_graph_pair [lemma, in sset2]
Correspondence.inverse_product [lemma, in sset2]
Correspondence.inverse_source [lemma, in sset2]
Correspondence.inv_image_fun_rw [lemma, in sset2]
Correspondence.inv_image_graph_rw [lemma, in sset2]
Correspondence.inv_image_by_fun [definition, in sset2]
Correspondence.inv_image_by_fun_pr [lemma, in sset2]
Correspondence.inv_image_by_graph [definition, in sset2]
Correspondence.is_triple_corr [lemma, in sset2]
Correspondence.is_triple [definition, in sset2]
Correspondence.is_correspondence [definition, in sset2]
Correspondence.product_is_graph [lemma, in sset2]
Correspondence.product_domain [lemma, in sset2]
Correspondence.product_related [lemma, in sset2]
Correspondence.product_range [lemma, in sset2]
Correspondence.range_domain_exists [lemma, in sset2]
Correspondence.range_inverse [lemma, in sset2]
Correspondence.related [definition, in sset2]
Correspondence.set_of_correspondences [definition, in sset2]
Correspondence.set_of_correspondences_propa [lemma, in sset2]
Correspondence.set_of_correspondences_rw [lemma, in sset2]
Correspondence.source [definition, in sset2]
Correspondence.sub_graph_prod [lemma, in sset2]
Correspondence.sub_image_by_graph [lemma, in sset2]
Correspondence.sub_emptyset [lemma, in sset2]
Correspondence.sub_product_is_graph [lemma, in sset2]
Correspondence.target [definition, in sset2]
_ \co _ [notation, in sset2]


F

FiniteSets [module, in sset8]
FiniteSets.bijective_if_same_finite_c_surj [lemma, in sset8]
FiniteSets.bijective_if_same_finite_c_inj [lemma, in sset8]
FiniteSets.Bnat [definition, in sset8]
FiniteSets.Bnat_in_product [lemma, in sset8]
FiniteSets.Bnat_interval_cc_pr1 [lemma, in sset8]
FiniteSets.Bnat_order_substrate [lemma, in sset8]
FiniteSets.Bnat_is_cardinal [lemma, in sset8]
FiniteSets.Bnat_in_sum [lemma, in sset8]
FiniteSets.Bnat_order [definition, in sset8]
FiniteSets.Bnat_cardinal [lemma, in sset8]
FiniteSets.Bnat_in_sum2 [lemma, in sset8]
FiniteSets.Bnat_interval_co_pr1 [lemma, in sset8]
FiniteSets.Bnat_le [definition, in sset8]
FiniteSets.Bnat_interval_co_pr [lemma, in sset8]
FiniteSets.Bnat_wordered [lemma, in sset8]
FiniteSets.Bnat_lt [definition, in sset8]
FiniteSets.Bnat_order_worder [lemma, in sset8]
FiniteSets.Bnat_interval_cc_pr [lemma, in sset8]
FiniteSets.Bnat_order_le [lemma, in sset8]
FiniteSets.Bnat0_unit_sumr [lemma, in sset8]
FiniteSets.Bnat0_unit_suml [lemma, in sset8]
FiniteSets.Bsucc_rw [lemma, in sset8]
FiniteSets.BS_nsucc [lemma, in sset8]
FiniteSets.BS_succ [lemma, in sset8]
FiniteSets.BS_plus [lemma, in sset8]
FiniteSets.BS_mult [lemma, in sset8]
FiniteSets.BS_pow [lemma, in sset8]
FiniteSets.cardinal_c_induction4_v [lemma, in sset8]
FiniteSets.cardinal_c_induction4 [lemma, in sset8]
FiniteSets.cardinal_lt20 [lemma, in sset8]
FiniteSets.cardinal_succ_pr4 [lemma, in sset8]
FiniteSets.cardinal_succ [lemma, in sset8]
FiniteSets.cardinal_complement2 [lemma, in sset8]
FiniteSets.cardinal_succ_pr3 [lemma, in sset8]
FiniteSets.cardinal_c_induction2 [lemma, in sset8]
FiniteSets.cardinal_c_induction [lemma, in sset8]
FiniteSets.cardinal_c_induction3_v [lemma, in sset8]
FiniteSets.cardinal_complement3 [lemma, in sset8]
FiniteSets.cardinal_c_induction3 [lemma, in sset8]
FiniteSets.cardinal_c_induction1 [lemma, in sset8]
FiniteSets.card_four [definition, in sset8]
FiniteSets.card_three [definition, in sset8]
FiniteSets.doubleton_finite [lemma, in sset8]
FiniteSets.emptyset_finite [lemma, in sset8]
FiniteSets.finite_set_maximal [lemma, in sset8]
FiniteSets.finite_graph_range [lemma, in sset8]
FiniteSets.finite_set_torder_worder [lemma, in sset8]
FiniteSets.finite_lt_infinite [lemma, in sset8]
FiniteSets.finite_dichot [lemma, in sset8]
FiniteSets.finite_image_by [lemma, in sset8]
FiniteSets.finite_set_induction2 [lemma, in sset8]
FiniteSets.finite_set_torder_greatest [lemma, in sset8]
FiniteSets.finite_subset_lattice_sup [lemma, in sset8]
FiniteSets.finite_image [lemma, in sset8]
FiniteSets.finite_subset_torder_least [lemma, in sset8]
FiniteSets.finite_le_infinite [lemma, in sset8]
FiniteSets.finite_subset_directed_bounded [lemma, in sset8]
FiniteSets.finite_set_induction1 [lemma, in sset8]
FiniteSets.finite_c_pr [lemma, in sset8]
FiniteSets.finite_set_induction0 [lemma, in sset8]
FiniteSets.finite_fun_image [lemma, in sset8]
FiniteSets.finite_set_induction3 [lemma, in sset8]
FiniteSets.finite_dichot1 [lemma, in sset8]
FiniteSets.finite_subset_torder_greatest [lemma, in sset8]
FiniteSets.finite_set_induction [lemma, in sset8]
FiniteSets.finite_range [lemma, in sset8]
FiniteSets.finite_graph_domain [lemma, in sset8]
FiniteSets.finite_domain_graph [lemma, in sset8]
FiniteSets.finite_subset_lattice_inf [lemma, in sset8]
FiniteSets.inc_Bnat [lemma, in sset8]
FiniteSets.inc0_Bnat [lemma, in sset8]
FiniteSets.inc1_Bnat [lemma, in sset8]
FiniteSets.inc2_Bnat [lemma, in sset8]
FiniteSets.inc3_Bnat [lemma, in sset8]
FiniteSets.inc4_Bnat [lemma, in sset8]
FiniteSets.infinite_c_pr [lemma, in sset8]
FiniteSets.infinite_set_rw [lemma, in sset8]
FiniteSets.is_lt_succ [lemma, in sset8]
FiniteSets.is_finite_in_sum [lemma, in sset8]
FiniteSets.is_le_succ [lemma, in sset8]
FiniteSets.is_finite_in_sum2 [lemma, in sset8]
FiniteSets.is_le_succ0 [lemma, in sset8]
FiniteSets.is_finite_succ [lemma, in sset8]
FiniteSets.le_int_is_int [lemma, in sset8]
FiniteSets.le_int_in_Bnat [lemma, in sset8]
FiniteSets.lt_n_succ_le1 [lemma, in sset8]
FiniteSets.lt_is_le_succ [lemma, in sset8]
FiniteSets.lt_is_le_succ1 [lemma, in sset8]
FiniteSets.lt_n_succ_le [lemma, in sset8]
FiniteSets.lt_n_succ_le0 [lemma, in sset8]
FiniteSets.maximal_inclusion [lemma, in sset8]
FiniteSets.maximal_inclusion_aux [lemma, in sset8]
FiniteSets.mult_via_plus [lemma, in sset8]
FiniteSets.of_finite_character [definition, in sset8]
FiniteSets.of_finite_character_example [lemma, in sset8]
FiniteSets.one_small_cardinal2 [lemma, in sset8]
FiniteSets.plus_via_succ [lemma, in sset8]
FiniteSets.plus_via_succ1 [lemma, in sset8]
FiniteSets.power_2_4 [lemma, in sset8]
FiniteSets.pow_succ [lemma, in sset8]
FiniteSets.predc [definition, in sset8]
FiniteSets.predc_pr3 [lemma, in sset8]
FiniteSets.predc_pr [lemma, in sset8]
FiniteSets.predc_pr1 [lemma, in sset8]
FiniteSets.predc_pr2 [lemma, in sset8]
FiniteSets.singleton_finite [lemma, in sset8]
FiniteSets.strict_sub_smaller [lemma, in sset8]
FiniteSets.strict_sub_smaller1 [lemma, in sset8]
FiniteSets.sub_finite_set [lemma, in sset8]
FiniteSets.sub_image_of_fun [lemma, in sset8]
FiniteSets.succ_nonzero [lemma, in sset8]
FiniteSets.succ_is_cardinal [lemma, in sset8]
FiniteSets.succ_one [lemma, in sset8]
FiniteSets.succ_zero [lemma, in sset8]
FiniteSets.succ_positive [lemma, in sset8]
FiniteSets.succ_of_finite [lemma, in sset8]
FiniteSets.tack_if_succ_card [lemma, in sset8]
FiniteSets.tack_on_finite [lemma, in sset8]
FiniteSets.two_plus_two [lemma, in sset8]
FiniteSets.two_times_n [lemma, in sset8]
FiniteSets.two_times_two [lemma, in sset8]
FiniteSets.zero_le_one [lemma, in sset8]
FiniteSets.zero_lt_one [lemma, in sset8]
_ [notation, in sset8]
_ <=N _ [notation, in sset8]
3 c [notation, in sset8]
4 c [notation, in sset8]
Function [module, in sset1]
Function.alternate_compose [lemma, in sset1]
Function.domain [definition, in sset1]
Function.domain_union2 [lemma, in sset1]
Function.domain_singleton [lemma, in sset1]
Function.domain_union [lemma, in sset1]
Function.domain_rw [lemma, in sset1]
Function.domain_tack_on [lemma, in sset1]
Function.domain0_rw [lemma, in sset1]
Function.double_restr [lemma, in sset1]
Function.fcomposable [definition, in sset1]
Function.fcomposable_domain [lemma, in sset1]
Function.fcompose [definition, in sset1]
Function.fcompose_ev [lemma, in sset1]
Function.fcompose_fgraph [lemma, in sset1]
Function.fcompose_domain [lemma, in sset1]
Function.fcompose_range [lemma, in sset1]
Function.fdomain_pr1 [lemma, in sset1]
Function.fgraph [definition, in sset1]
Function.fgraph_is_graph [lemma, in sset1]
Function.fgraph_pr [lemma, in sset1]
Function.fgraph_sub_V [lemma, in sset1]
Function.fgraph_exten [lemma, in sset1]
Function.fgraph_sub_eq [lemma, in sset1]
Function.fgraph_union2 [lemma, in sset1]
Function.fgraph_sub [lemma, in sset1]
Function.frange_inc_rw [lemma, in sset1]
Function.gcompose [definition, in sset1]
Function.graph_constructor [definition, in sset1]
Function.identity_g [definition, in sset1]
Function.identity_range [lemma, in sset1]
Function.identity_ev [lemma, in sset1]
Function.identity_fgraph [lemma, in sset1]
Function.identity_domain [lemma, in sset1]
Function.inc_V_range [lemma, in sset1]
Function.inc_pr2_range [lemma, in sset1]
Function.inc_pr1_domain [lemma, in sset1]
Function.inverse_image_rw [lemma, in sset1]
Function.inverse_image_pr [lemma, in sset1]
Function.inverse_image_inc [lemma, in sset1]
Function.inverse_image_sub [lemma, in sset1]
Function.inverse_image [definition, in sset1]
Function.in_graph_V [lemma, in sset1]
Function.is_restriction [definition, in sset1]
Function.is_restriction_pr [lemma, in sset1]
Function.is_graph [definition, in sset1]
Function.L [abbreviation, in sset1]
Function.L_recovers [lemma, in sset1]
Function.L_range_rw [lemma, in sset1]
Function.L_V_rw [lemma, in sset1]
Function.L_create [lemma, in sset1]
Function.L_exten1 [lemma, in sset1]
Function.L_range [lemma, in sset1]
Function.L_V_out [lemma, in sset1]
Function.L_domain [lemma, in sset1]
Function.L_inc_rw [lemma, in sset1]
Function.L_fgraph [lemma, in sset1]
Function.pr2_V [lemma, in sset1]
Function.range [definition, in sset1]
Function.range_rw [lemma, in sset1]
Function.range_singleton [lemma, in sset1]
Function.range_tack_on [lemma, in sset1]
Function.range_union [lemma, in sset1]
Function.range_union2 [lemma, in sset1]
Function.range0_rw [lemma, in sset1]
Function.restr [definition, in sset1]
Function.restr_to_domain2 [lemma, in sset1]
Function.restr_graph [lemma, in sset1]
Function.restr_ev [lemma, in sset1]
Function.restr_domain1 [lemma, in sset1]
Function.restr_inc_rw [lemma, in sset1]
Function.restr_ev1 [lemma, in sset1]
Function.restr_sub [lemma, in sset1]
Function.restr_to_domain [lemma, in sset1]
Function.restr_domain [lemma, in sset1]
Function.restr_fgraph [lemma, in sset1]
Function.sub_graph_range [lemma, in sset1]
Function.sub_graph_fgraph [lemma, in sset1]
Function.sub_graph_ev [lemma, in sset1]
Function.sub_graph_domain [lemma, in sset1]
Function.tack_on_fgraph [lemma, in sset1]
Function.V [definition, in sset1]


I

Image [module, in sset1]
Image.fun_image [definition, in sset1]
Image.fun_image_rw [lemma, in sset1]
Image.inc_fun_image [lemma, in sset1]
InfiniteSets [module, in sset10]
InfiniteSets.cardinal_comp_singl_inf [lemma, in sset10]
InfiniteSets.card_bnat_not_zero [lemma, in sset10]
InfiniteSets.countable_finite_or_N [lemma, in sset10]
InfiniteSets.countable_finite_or_N_b [lemma, in sset10]
InfiniteSets.countable_union [lemma, in sset10]
InfiniteSets.countable_finite_or_N_c [lemma, in sset10]
InfiniteSets.countable_product [lemma, in sset10]
InfiniteSets.countable_set [definition, in sset10]
InfiniteSets.countable_inv_image [lemma, in sset10]
InfiniteSets.countable_subset [lemma, in sset10]
InfiniteSets.countable_prop [lemma, in sset10]
InfiniteSets.decreasing_stationary [lemma, in sset10]
InfiniteSets.decreasing_sequence [definition, in sset10]
InfiniteSets.decreasing_prop [lemma, in sset10]
InfiniteSets.equipotent_N2_N [lemma, in sset10]
InfiniteSets.equipotent_inf2_inf [lemma, in sset10]
InfiniteSets.finite_increasing_stationary [lemma, in sset10]
InfiniteSets.finite_family_product [lemma, in sset10]
InfiniteSets.increasing_sequence [definition, in sset10]
InfiniteSets.increasing_prop [lemma, in sset10]
InfiniteSets.increasing_stationary [lemma, in sset10]
InfiniteSets.induction_defined_pr_set1 [lemma, in sset10]
InfiniteSets.induction_defined_pr [lemma, in sset10]
InfiniteSets.induction_defined_pr1 [lemma, in sset10]
InfiniteSets.induction_defined_pr_set0 [lemma, in sset10]
InfiniteSets.induction_defined [definition, in sset10]
InfiniteSets.induction_defined1 [definition, in sset10]
InfiniteSets.induction_defined_set [definition, in sset10]
InfiniteSets.induction_defined1_set [definition, in sset10]
InfiniteSets.induction_defined0_set [definition, in sset10]
InfiniteSets.induction_defined_pr_set [lemma, in sset10]
InfiniteSets.infinite_finite_sequence [lemma, in sset10]
InfiniteSets.infinite_partition [lemma, in sset10]
InfiniteSets.infinite_finite_subsets [lemma, in sset10]
InfiniteSets.infinite_greater_countable1 [lemma, in sset10]
InfiniteSets.infinite_greater_countable [lemma, in sset10]
InfiniteSets.infinite_Bnat [lemma, in sset10]
InfiniteSets.integer_induction_stable1 [lemma, in sset10]
InfiniteSets.integer_induction_stable0 [lemma, in sset10]
InfiniteSets.integer_induction_stable [lemma, in sset10]
InfiniteSets.integer_induction1 [lemma, in sset10]
InfiniteSets.noetherian_induction [lemma, in sset10]
InfiniteSets.notbig_family_sum [lemma, in sset10]
InfiniteSets.notbig_family_sum1 [lemma, in sset10]
InfiniteSets.power_of_infinite [lemma, in sset10]
InfiniteSets.power_of_infinite1 [lemma, in sset10]
InfiniteSets.product2_infinite2 [lemma, in sset10]
InfiniteSets.product2_infinite1 [lemma, in sset10]
InfiniteSets.product2_infinite [lemma, in sset10]
InfiniteSets.square_of_infinite [lemma, in sset10]
InfiniteSets.stationary_sequence [definition, in sset10]
InfiniteSets.sum2_infinite1 [lemma, in sset10]
InfiniteSets.sum2_infinite [lemma, in sset10]
IntegerProps [module, in sset9]
IntegerProps.Base_b_expansion [section, in sset9]
IntegerProps.Base_b_expansion.b [variable, in sset9]
IntegerProps.Base_b_expansion.g [variable, in sset9]
IntegerProps.Base_b_expansion.k' [variable, in sset9]
IntegerProps.Base_b_expansion.Expg [variable, in sset9]
IntegerProps.Base_b_expansion.f [variable, in sset9]
IntegerProps.Base_b_expansion.Exp [variable, in sset9]
IntegerProps.Base_b_expansion.k [variable, in sset9]
IntegerProps.bijective_complement [lemma, in sset9]
IntegerProps.binom [definition, in sset9]
IntegerProps.binomSnSm [lemma, in sset9]
IntegerProps.binomSn0 [lemma, in sset9]
IntegerProps.binom_nn [lemma, in sset9]
IntegerProps.binom_pr0 [lemma, in sset9]
IntegerProps.binom_symmetric [lemma, in sset9]
IntegerProps.binom_bad [lemma, in sset9]
IntegerProps.binom_monotone1 [lemma, in sset9]
IntegerProps.binom_pr3 [lemma, in sset9]
IntegerProps.binom_pr1 [lemma, in sset9]
IntegerProps.binom_good [lemma, in sset9]
IntegerProps.binom_2plus0 [lemma, in sset9]
IntegerProps.binom_alt_pr [lemma, in sset9]
IntegerProps.binom_monotone2 [lemma, in sset9]
IntegerProps.binom_2plus [lemma, in sset9]
IntegerProps.binom0 [lemma, in sset9]
IntegerProps.binom0Sm [lemma, in sset9]
IntegerProps.binom00 [lemma, in sset9]
IntegerProps.binom1 [lemma, in sset9]
IntegerProps.binom2 [lemma, in sset9]
IntegerProps.binom2a [lemma, in sset9]
IntegerProps.Bnat_quorem_pr0 [lemma, in sset9]
IntegerProps.Bnat_le_transitive [lemma, in sset9]
IntegerProps.Bnat_total_order1 [lemma, in sset9]
IntegerProps.Bnat_div_pr [lemma, in sset9]
IntegerProps.Bnat_le_reflexive [lemma, in sset9]
IntegerProps.Bnat_total_order [lemma, in sset9]
IntegerProps.Bnat_rem_pr [lemma, in sset9]
IntegerProps.Bnat_division [lemma, in sset9]
IntegerProps.Bnat_infinite [lemma, in sset9]
IntegerProps.Bnat_zero_smallest1 [lemma, in sset9]
IntegerProps.Bnat_zero_smallest [lemma, in sset9]
IntegerProps.Bnat_quorem_pr [lemma, in sset9]
IntegerProps.Bnat_le_antisymmetric [lemma, in sset9]
IntegerProps.Bnat_total_order2 [lemma, in sset9]
IntegerProps.BNdivides [definition, in sset9]
IntegerProps.BNdivides_one [lemma, in sset9]
IntegerProps.BNdivides_pr1 [lemma, in sset9]
IntegerProps.BNdivides_trans [lemma, in sset9]
IntegerProps.BNdivides_pr [lemma, in sset9]
IntegerProps.BNdivides_pr3 [lemma, in sset9]
IntegerProps.BNdivides_trans2 [lemma, in sset9]
IntegerProps.BNdivides_itself [lemma, in sset9]
IntegerProps.BNdivides_pr4 [lemma, in sset9]
IntegerProps.BNdivides_pr2 [lemma, in sset9]
IntegerProps.BNdivides_trans1 [lemma, in sset9]
IntegerProps.BNdivision_itself [lemma, in sset9]
IntegerProps.BNdivision_of_zero [lemma, in sset9]
IntegerProps.BNquo_itself [lemma, in sset9]
IntegerProps.BN_quo_one [lemma, in sset9]
IntegerProps.Bprod_increasing3 [lemma, in sset9]
IntegerProps.Bsum_increasing3 [lemma, in sset9]
IntegerProps.BS_sub [lemma, in sset9]
IntegerProps.BS_quo [lemma, in sset9]
IntegerProps.BS_factorial [lemma, in sset9]
IntegerProps.BS_binom [lemma, in sset9]
IntegerProps.BS_rem [lemma, in sset9]
IntegerProps.b_power_k_large [lemma, in sset9]
IntegerProps.cardinal_lt_pr [lemma, in sset9]
IntegerProps.cardinal_pairs_lt [lemma, in sset9]
IntegerProps.cardinal_interval [lemma, in sset9]
IntegerProps.cardinal_set_of_increasing_functions1 [lemma, in sset9]
IntegerProps.cardinal_set_of_increasing_functions [lemma, in sset9]
IntegerProps.cardinal_lt20 [lemma, in sset9]
IntegerProps.cardinal_complement1 [lemma, in sset9]
IntegerProps.cardinal_complement_image [lemma, in sset9]
IntegerProps.cardinal_le_a_apowb [lemma, in sset9]
IntegerProps.cardinal_set_of_increasing_functions2 [lemma, in sset9]
IntegerProps.cardinal_interval1a [lemma, in sset9]
IntegerProps.cardinal_pairs_le [lemma, in sset9]
IntegerProps.cardinal_interval0a [lemma, in sset9]
IntegerProps.cardinal_interval_co_0a [lemma, in sset9]
IntegerProps.cardinal_set_of_increasing_functions4 [lemma, in sset9]
IntegerProps.cardinal_complement_image1 [lemma, in sset9]
IntegerProps.cardinal_set_of_increasing_functions3 [lemma, in sset9]
IntegerProps.cardinal_interval_co_0a1 [lemma, in sset9]
IntegerProps.cardinal_c_induction5 [lemma, in sset9]
IntegerProps.card_mult_3_3 [lemma, in sset9]
IntegerProps.card_quo [definition, in sset9]
IntegerProps.card_quo0 [definition, in sset9]
IntegerProps.card_set_of_increasing_functions_int [lemma, in sset9]
IntegerProps.card_sub_pr [lemma, in sset9]
IntegerProps.card_sub_non_zero1 [lemma, in sset9]
IntegerProps.card_sub_pr0 [lemma, in sset9]
IntegerProps.card_sub_pr5 [lemma, in sset9]
IntegerProps.card_rem_zero [lemma, in sset9]
IntegerProps.card_rem0 [definition, in sset9]
IntegerProps.card_sub_wrong [lemma, in sset9]
IntegerProps.card_quo_simplify [lemma, in sset9]
IntegerProps.card_sub_pr6 [lemma, in sset9]
IntegerProps.card_rem [definition, in sset9]
IntegerProps.card_plus_permute24 [lemma, in sset9]
IntegerProps.card_ten [definition, in sset9]
IntegerProps.card_five [definition, in sset9]
IntegerProps.card_plus_3_2 [lemma, in sset9]
IntegerProps.card_rem_mult [lemma, in sset9]
IntegerProps.card_sub_pr2 [lemma, in sset9]
IntegerProps.card_sub [definition, in sset9]
IntegerProps.card_mult_10_3 [lemma, in sset9]
IntegerProps.card_rem_prop [lemma, in sset9]
IntegerProps.card_sub_non_zero [lemma, in sset9]
IntegerProps.card_quo_zero [lemma, in sset9]
IntegerProps.card_sub_pr1 [lemma, in sset9]
IntegerProps.card_sub_rpr [lemma, in sset9]
IntegerProps.card_rem_sum [lemma, in sset9]
IntegerProps.card_sub_associative1 [lemma, in sset9]
IntegerProps.card_sub_associative [lemma, in sset9]
IntegerProps.card_sub_pr4 [lemma, in sset9]
IntegerProps.char_fun_axioms [lemma, in sset9]
IntegerProps.char_fun_W_aa [lemma, in sset9]
IntegerProps.char_fun_W_a [lemma, in sset9]
IntegerProps.char_fun_W_cardinal [lemma, in sset9]
IntegerProps.char_fun_W [lemma, in sset9]
IntegerProps.char_fun_injective [lemma, in sset9]
IntegerProps.char_fun_inter [lemma, in sset9]
IntegerProps.char_fun_W_b [lemma, in sset9]
IntegerProps.char_fun_union [lemma, in sset9]
IntegerProps.char_fun_function [lemma, in sset9]
IntegerProps.char_fun [definition, in sset9]
IntegerProps.char_fun_complement [lemma, in sset9]
IntegerProps.char_fun_constant [lemma, in sset9]
IntegerProps.char_fun_W_bb [lemma, in sset9]
IntegerProps.distrib_prod2_sub [lemma, in sset9]
IntegerProps.divides_and_sum [lemma, in sset9]
IntegerProps.divides_and_difference [lemma, in sset9]
IntegerProps.divisibiliy_by_three [lemma, in sset9]
IntegerProps.division_exists [lemma, in sset9]
IntegerProps.division_prop_alt [lemma, in sset9]
IntegerProps.division_unique [lemma, in sset9]
IntegerProps.division_prop [definition, in sset9]
IntegerProps.double_sub [lemma, in sset9]
IntegerProps.double_restrc [lemma, in sset9]
IntegerProps.emptyset_interval_00 [lemma, in sset9]
IntegerProps.eqmod [definition, in sset9]
IntegerProps.eqmod_plus [lemma, in sset9]
IntegerProps.eqmod_pow1 [lemma, in sset9]
IntegerProps.eqmod_succ [lemma, in sset9]
IntegerProps.eqmod_rem [lemma, in sset9]
IntegerProps.eqmod_pow3 [lemma, in sset9]
IntegerProps.eqmod_mult [lemma, in sset9]
IntegerProps.eqmod_pow2 [lemma, in sset9]
IntegerProps.expansion_value [definition, in sset9]
IntegerProps.factorial [definition, in sset9]
IntegerProps.factorial_nonzero [lemma, in sset9]
IntegerProps.factorial_succ [lemma, in sset9]
IntegerProps.factorial_prop [lemma, in sset9]
IntegerProps.factorial_induction [lemma, in sset9]
IntegerProps.factorial0 [lemma, in sset9]
IntegerProps.factorial1 [lemma, in sset9]
IntegerProps.factorial2 [lemma, in sset9]
IntegerProps.fct_sum_const1 [lemma, in sset9]
IntegerProps.fct_sum_rec0 [lemma, in sset9]
IntegerProps.fct_sum_rec1 [lemma, in sset9]
IntegerProps.fct_sum_rev [lemma, in sset9]
IntegerProps.fif_cardinal [lemma, in sset9]
IntegerProps.finite_int_fam [definition, in sset9]
IntegerProps.finite_sum4_lt [lemma, in sset9]
IntegerProps.finite_power_lt1 [lemma, in sset9]
IntegerProps.finite_sum3_lt [lemma, in sset9]
IntegerProps.finite_sum2_lt [lemma, in sset9]
IntegerProps.finite_set_interval_co [lemma, in sset9]
IntegerProps.finite_lt_a_ab [lemma, in sset9]
IntegerProps.finite_ordered_interval1 [lemma, in sset9]
IntegerProps.finite_sum_finite_aux [lemma, in sset9]
IntegerProps.finite_product_lt [lemma, in sset9]
IntegerProps.finite_product_finite_set [lemma, in sset9]
IntegerProps.finite_power_lt2 [lemma, in sset9]
IntegerProps.finite_union_finite [lemma, in sset9]
IntegerProps.finite_ordered_interval [lemma, in sset9]
IntegerProps.finite_set_interval_Bnat [lemma, in sset9]
IntegerProps.finite_product_finite [lemma, in sset9]
IntegerProps.finite_sum_lt [lemma, in sset9]
IntegerProps.finite_sum_finite [lemma, in sset9]
IntegerProps.finite_prod2_lt [lemma, in sset9]
IntegerProps.finite_product_finite_aux [lemma, in sset9]
IntegerProps.increasing_compose3 [lemma, in sset9]
IntegerProps.increasing_prop [lemma, in sset9]
IntegerProps.increasing_prop0 [lemma, in sset9]
IntegerProps.increasing_compose [lemma, in sset9]
IntegerProps.increasing_prop1 [lemma, in sset9]
IntegerProps.inc_a_interval_co_succ [lemma, in sset9]
IntegerProps.inc10_Bnat [lemma, in sset9]
IntegerProps.inc5_Bnat [lemma, in sset9]
IntegerProps.induction_term0 [lemma, in sset9]
IntegerProps.induction_on_sum3 [lemma, in sset9]
IntegerProps.induction_defined_pr0 [lemma, in sset9]
IntegerProps.induction_term [definition, in sset9]
IntegerProps.induction_sum1 [lemma, in sset9]
IntegerProps.induction_defined0 [definition, in sset9]
IntegerProps.induction_terms [lemma, in sset9]
IntegerProps.induction_prod1 [lemma, in sset9]
IntegerProps.induction_on_sum [lemma, in sset9]
IntegerProps.induction_sum0 [lemma, in sset9]
IntegerProps.induction_prod0 [lemma, in sset9]
IntegerProps.induction_on_prod [lemma, in sset9]
IntegerProps.integer_induction0 [lemma, in sset9]
IntegerProps.integer_induction [lemma, in sset9]
IntegerProps.interval_bn_pr5 [lemma, in sset9]
IntegerProps.interval_Bnato [definition, in sset9]
IntegerProps.interval_int_restr [lemma, in sset9]
IntegerProps.interval_Bnato_related2 [lemma, in sset9]
IntegerProps.interval_co_0a_restr [lemma, in sset9]
IntegerProps.interval_zero_zero [lemma, in sset9]
IntegerProps.interval_Bnato_related1 [lemma, in sset9]
IntegerProps.interval_Bnato_substrate [lemma, in sset9]
IntegerProps.interval_co_0a_pr3 [lemma, in sset9]
IntegerProps.interval_Bnat_pr1 [lemma, in sset9]
IntegerProps.interval_cc_0a [definition, in sset9]
IntegerProps.interval_Bnatco [definition, in sset9]
IntegerProps.interval_Bnato_worder [lemma, in sset9]
IntegerProps.interval_Bnatco_related [lemma, in sset9]
IntegerProps.interval_Bnatco_substrate [lemma, in sset9]
IntegerProps.interval_cc_0a_increasing [lemma, in sset9]
IntegerProps.interval_co_0a_increasing1 [lemma, in sset9]
IntegerProps.interval_Bnat_pr [lemma, in sset9]
IntegerProps.interval_co_cc [lemma, in sset9]
IntegerProps.interval_Bnatco_worder [lemma, in sset9]
IntegerProps.interval_Bnat_pr0 [lemma, in sset9]
IntegerProps.interval_cc_0a_increasing1 [lemma, in sset9]
IntegerProps.interval_co_0a [definition, in sset9]
IntegerProps.interval_co_pr4 [lemma, in sset9]
IntegerProps.interval_Bnat [definition, in sset9]
IntegerProps.interval_co_0a_increasing [lemma, in sset9]
IntegerProps.interval_co_0a_pr2 [lemma, in sset9]
IntegerProps.interval_co_0a_pr1 [lemma, in sset9]
IntegerProps.interval_Bnato_related [lemma, in sset9]
IntegerProps.interval_cc_1a [definition, in sset9]
IntegerProps.interval_Bnat_pr1b [lemma, in sset9]
IntegerProps.isomorphism_worder_finite [lemma, in sset9]
IntegerProps.is_expansion_prop11 [lemma, in sset9]
IntegerProps.is_expansion_prop8 [lemma, in sset9]
IntegerProps.is_expansion_prop14 [lemma, in sset9]
IntegerProps.is_expansion_exists [lemma, in sset9]
IntegerProps.is_expansion_prop13 [lemma, in sset9]
IntegerProps.is_expansion [definition, in sset9]
IntegerProps.is_expansion_prop4 [lemma, in sset9]
IntegerProps.is_expansion_restr2 [lemma, in sset9]
IntegerProps.is_expansion_prop0 [lemma, in sset9]
IntegerProps.is_expansion_prop7 [lemma, in sset9]
IntegerProps.is_expansion_exists1 [lemma, in sset9]
IntegerProps.is_expansion_prop5 [lemma, in sset9]
IntegerProps.is_expansion_prop2 [lemma, in sset9]
IntegerProps.is_expansion_restr1 [lemma, in sset9]
IntegerProps.is_expansion_prop1 [lemma, in sset9]
IntegerProps.is_expansion_prop9 [lemma, in sset9]
IntegerProps.is_expansion_prop12 [lemma, in sset9]
IntegerProps.is_base_ten_expansion [definition, in sset9]
IntegerProps.is_expansion_prop10 [lemma, in sset9]
IntegerProps.is_expansion_prop3 [lemma, in sset9]
IntegerProps.is_expansion_unique [lemma, in sset9]
IntegerProps.is_expansion_prop6 [lemma, in sset9]
IntegerProps.least_int_prop1 [lemma, in sset9]
IntegerProps.least_int_prop [lemma, in sset9]
IntegerProps.lt_a_power_b_a [lemma, in sset9]
IntegerProps.minus_n_nC [lemma, in sset9]
IntegerProps.minus_n_0C [lemma, in sset9]
IntegerProps.mult_lt_simplifiable [lemma, in sset9]
IntegerProps.mult_simplifiable_right [lemma, in sset9]
IntegerProps.mult_le_simplifiable [lemma, in sset9]
IntegerProps.mult_simplifiable_left [lemma, in sset9]
IntegerProps.non_zero_apowb [lemma, in sset9]
IntegerProps.number_of_injections_rec [lemma, in sset9]
IntegerProps.number_of_injections_pr [lemma, in sset9]
IntegerProps.number_of_permutations [lemma, in sset9]
IntegerProps.number_of_partitions3 [lemma, in sset9]
IntegerProps.number_of_injections_prop [lemma, in sset9]
IntegerProps.number_of_partitions5 [lemma, in sset9]
IntegerProps.number_of_injections_base [lemma, in sset9]
IntegerProps.number_of_injections_int [lemma, in sset9]
IntegerProps.number_of_partitions_p4 [lemma, in sset9]
IntegerProps.number_of_partitions1 [lemma, in sset9]
IntegerProps.number_of_partitions_p2 [lemma, in sset9]
IntegerProps.number_of_partitions7 [lemma, in sset9]
IntegerProps.number_of_partitions6 [lemma, in sset9]
IntegerProps.number_of_partitions_p3 [lemma, in sset9]
IntegerProps.number_of_partitions_bis [lemma, in sset9]
IntegerProps.number_of_injections [definition, in sset9]
IntegerProps.number_of_partitions [lemma, in sset9]
IntegerProps.number_of_partitions4 [lemma, in sset9]
IntegerProps.partition_complement [lemma, in sset9]
IntegerProps.partition_with_pi_elements [definition, in sset9]
IntegerProps.partition_tack_on_intco [lemma, in sset9]
IntegerProps.partition_tack_on [lemma, in sset9]
IntegerProps.partition_tack_on_int [lemma, in sset9]
IntegerProps.pip_prop0 [lemma, in sset9]
IntegerProps.plus_le_simplifiable [lemma, in sset9]
IntegerProps.plus_simplifiable_left [lemma, in sset9]
IntegerProps.plus_lt_simplifiable [lemma, in sset9]
IntegerProps.plus_simplifiable_right [lemma, in sset9]
IntegerProps.prec_pr1 [lemma, in sset9]
IntegerProps.prod_increasing6 [lemma, in sset9]
IntegerProps.quotient_of_factorials [lemma, in sset9]
IntegerProps.quotient_of_factorials1 [lemma, in sset9]
IntegerProps.restr_plus_interval_isomorphism [lemma, in sset9]
IntegerProps.rest_plus_interval [definition, in sset9]
IntegerProps.rest_minus_interval [definition, in sset9]
IntegerProps.segment_Bnat_order [lemma, in sset9]
IntegerProps.setof_suml_aux [lemma, in sset9]
IntegerProps.setof_sume_aux [lemma, in sset9]
IntegerProps.set_of_functions_sum_eq [definition, in sset9]
IntegerProps.set_of_functions_sum3 [lemma, in sset9]
IntegerProps.set_of_functions_sum_le [definition, in sset9]
IntegerProps.set_of_increasing_functions_int [definition, in sset9]
IntegerProps.set_of_partitions_aux [definition, in sset9]
IntegerProps.set_of_functions_sum0 [lemma, in sset9]
IntegerProps.set_of_partitions_rw [lemma, in sset9]
IntegerProps.set_of_injections [definition, in sset9]
IntegerProps.set_of_functions_sum4 [lemma, in sset9]
IntegerProps.set_of_graph_sum_le_int [definition, in sset9]
IntegerProps.set_of_functions_sum_pr [lemma, in sset9]
IntegerProps.set_of_graph_sum_le [definition, in sset9]
IntegerProps.set_of_functions_sum1 [lemma, in sset9]
IntegerProps.set_of_partitions [definition, in sset9]
IntegerProps.set_of_graph_sum_eq [definition, in sset9]
IntegerProps.set_of_functions_sum2 [lemma, in sset9]
IntegerProps.set_of_strict_incr_functions [definition, in sset9]
IntegerProps.set_of_incr_functions [definition, in sset9]
IntegerProps.shepherd_principle [lemma, in sset9]
IntegerProps.sof_sum_le_equi [lemma, in sset9]
IntegerProps.sof_sum_eq_equi [lemma, in sset9]
IntegerProps.strict_increasing_prop0 [lemma, in sset9]
IntegerProps.strict_pos_pr1 [lemma, in sset9]
IntegerProps.strict_increasing_prop2 [lemma, in sset9]
IntegerProps.strict_increasing_prop [lemma, in sset9]
IntegerProps.strict_increasing_prop1 [lemma, in sset9]
IntegerProps.strict_pos_pr [lemma, in sset9]
IntegerProps.strict_increasing_prop3 [lemma, in sset9]
IntegerProps.subsets_with_p_elements_pr [lemma, in sset9]
IntegerProps.subsets_with_p_elements [definition, in sset9]
IntegerProps.subsets_with_p_elements_pr0 [lemma, in sset9]
IntegerProps.sub_interval_co_0a_Bnat [lemma, in sset9]
IntegerProps.sub_lt_symmetry [lemma, in sset9]
IntegerProps.sub_le_symmetry [lemma, in sset9]
IntegerProps.sub_interval_Bnat [lemma, in sset9]
IntegerProps.sub_increasing2 [lemma, in sset9]
IntegerProps.succ_sub [lemma, in sset9]
IntegerProps.sum_of_i [lemma, in sset9]
IntegerProps.sum_to_increasing6 [lemma, in sset9]
IntegerProps.sum_of_gen_binom0 [lemma, in sset9]
IntegerProps.sum_to_increasing_fct [definition, in sset9]
IntegerProps.sum_to_increasing4 [lemma, in sset9]
IntegerProps.sum_of_binomial [lemma, in sset9]
IntegerProps.sum_of_gen_binom [lemma, in sset9]
IntegerProps.sum_of_gen_binom2 [lemma, in sset9]
IntegerProps.sum_of_i2 [lemma, in sset9]
IntegerProps.sum_to_increasing1 [lemma, in sset9]
IntegerProps.sum_to_increasing2 [lemma, in sset9]
IntegerProps.sum_to_increasing_fun [definition, in sset9]
IntegerProps.sum_of_binomal2 [lemma, in sset9]
IntegerProps.sum_to_increasing5 [lemma, in sset9]
IntegerProps.sum_increasing6 [lemma, in sset9]
IntegerProps.sum_of_i3 [lemma, in sset9]
IntegerProps.trivial_cardinal_sum3 [lemma, in sset9]
IntegerProps.trivial_cardinal_prod3 [lemma, in sset9]
_ %/c _ [notation, in sset9]
_ %%c _ [notation, in sset9]
_ -c _ [notation, in sset9]
_ %|c _ [notation, in sset9]
10 c [notation, in sset9]
Intersection [module, in sset1]
Intersection.disjoint [definition, in sset1]
Intersection.disjoint_pr [lemma, in sset1]
Intersection.disjoint_symmetric [lemma, in sset1]
Intersection.disjoint_complement [lemma, in sset1]
Intersection.intersection [definition, in sset1]
Intersection.intersection_singleton [lemma, in sset1]
Intersection.intersection_inc [lemma, in sset1]
Intersection.intersection_sub [lemma, in sset1]
Intersection.intersection_empty [lemma, in sset1]
Intersection.intersection_forall [lemma, in sset1]
Intersection.intersection2 [definition, in sset1]
Intersection.intersection2A [lemma, in sset1]
Intersection.intersection2C [lemma, in sset1]
Intersection.intersection2idem [lemma, in sset1]
Intersection.intersection2sub [lemma, in sset1]
Intersection.intersection2sub_first [lemma, in sset1]
Intersection.intersection2sub_second [lemma, in sset1]
Intersection.intersection2_rw [lemma, in sset1]
Intersection.intersection2_first [lemma, in sset1]
Intersection.intersection2_second [lemma, in sset1]
Intersection.intersection2_inc [lemma, in sset1]
Intersection.intersection2_sub [lemma, in sset1]


L

Little [module, in sset1]
Little.doubleton [definition, in sset1]
Little.doubleton_first [lemma, in sset1]
Little.doubleton_or [lemma, in sset1]
Little.doubleton_singleton [lemma, in sset1]
Little.doubleton_rw [lemma, in sset1]
Little.doubleton_inj [lemma, in sset1]
Little.doubleton_symm [lemma, in sset1]
Little.doubleton_second [lemma, in sset1]
Little.emptyset_small [lemma, in sset1]
Little.inc_TPb_two_points [lemma, in sset1]
Little.inc_TPa_two_points [lemma, in sset1]
Little.is_singleton [definition, in sset1]
Little.is_singleton_rw [lemma, in sset1]
Little.is_singleton_pr [lemma, in sset1]
Little.nonempty_singleton [lemma, in sset1]
Little.nonempty_doubleton [lemma, in sset1]
Little.singleton [definition, in sset1]
Little.singleton_inj [lemma, in sset1]
Little.singleton_small [lemma, in sset1]
Little.singleton_eq [lemma, in sset1]
Little.singleton_emptyset_not_empty [lemma, in sset1]
Little.singleton_rw [lemma, in sset1]
Little.singleton_pr1 [lemma, in sset1]
Little.singleton_inc [lemma, in sset1]
Little.small_set [definition, in sset1]
Little.small_set_pr [lemma, in sset1]
Little.sub_doubleton [lemma, in sset1]
Little.sub_singleton [lemma, in sset1]
Little.TPa [definition, in sset1]
Little.TPb [definition, in sset1]
Little.two_points [inductive, in sset1]
Little.two_points_pr2 [lemma, in sset1]
Little.two_points_a [constructor, in sset1]
Little.two_points_b [constructor, in sset1]
Little.two_points_distinctb [lemma, in sset1]
Little.two_points_rw [lemma, in sset1]
Little.two_points_distinct [lemma, in sset1]


O

Ordinals1 [module, in sset11]
Ordinals1.canonical_du2_pr1 [lemma, in sset11]
Ordinals1.canonical_du2_pr2 [lemma, in sset11]
Ordinals1.canonical_du2_rw [lemma, in sset11]
Ordinals1.canonical_du2_prb [lemma, in sset11]
Ordinals1.canonical_du2_pra [lemma, in sset11]
Ordinals1.canonical_du2_pr [lemma, in sset11]
Ordinals1.canonical_du2 [definition, in sset11]
Ordinals1.canonical2_substrate [lemma, in sset11]
Ordinals1.cardinal_ord_sum2 [lemma, in sset11]
Ordinals1.cardinal_ord_sum [lemma, in sset11]
Ordinals1.cardinal_of_ordinal [lemma, in sset11]
Ordinals1.cardinal_Bnat [lemma, in sset11]
Ordinals1.du_index_pr1 [lemma, in sset11]
Ordinals1.emptyset_order [lemma, in sset11]
Ordinals1.emptyset_worder [lemma, in sset11]
Ordinals1.emptyset_substrate [lemma, in sset11]
Ordinals1.empty_substrate_zero [lemma, in sset11]
Ordinals1.finite_ordinal2 [lemma, in sset11]
Ordinals1.finite_ordinal1 [lemma, in sset11]
Ordinals1.inc_disjoint_union1 [lemma, in sset11]
Ordinals1.one_unit_prod_ord2 [lemma, in sset11]
Ordinals1.one_unit_prod_ord1 [lemma, in sset11]
Ordinals1.order_sum_assoc1 [lemma, in sset11]
Ordinals1.order_prod_nc [lemma, in sset11]
Ordinals1.order_prod2 [definition, in sset11]
Ordinals1.order_prod_assoc_iso [lemma, in sset11]
Ordinals1.order_sum_gle2 [lemma, in sset11]
Ordinals1.order_sum [definition, in sset11]
Ordinals1.order_sum_a [definition, in sset11]
Ordinals1.order_le_reflexive [lemma, in sset11]
Ordinals1.order_prod_assoc3 [lemma, in sset11]
Ordinals1.order_prod_gle [lemma, in sset11]
Ordinals1.order_prod_pr [lemma, in sset11]
Ordinals1.order_sum_worder [lemma, in sset11]
Ordinals1.order_sum_assoc3 [lemma, in sset11]
Ordinals1.order_sum2_axioms [lemma, in sset11]
Ordinals1.order_sum_substrate [lemma, in sset11]
Ordinals1.order_prod2_substrate [lemma, in sset11]
Ordinals1.order_sum2_gle_spec [lemma, in sset11]
Ordinals1.order_sum_nc [lemma, in sset11]
Ordinals1.order_prod2_axioms [lemma, in sset11]
Ordinals1.order_prod_order [lemma, in sset11]
Ordinals1.order_sum_assoc_iso [lemma, in sset11]
Ordinals1.order_sum2_substrate [lemma, in sset11]
Ordinals1.order_prod [definition, in sset11]
Ordinals1.order_prod_worder [lemma, in sset11]
Ordinals1.order_prod2_gle [lemma, in sset11]
Ordinals1.order_prod_substrate [lemma, in sset11]
Ordinals1.order_sum_distr4 [lemma, in sset11]
Ordinals1.order_sum_distributive3 [lemma, in sset11]
Ordinals1.order_sum_assoc2 [lemma, in sset11]
Ordinals1.order_sum2_totalorder [lemma, in sset11]
Ordinals1.order_sum2_gle [lemma, in sset11]
Ordinals1.order_prod_pr1 [lemma, in sset11]
Ordinals1.order_prod_assoc2 [lemma, in sset11]
Ordinals1.order_sum_gle [lemma, in sset11]
Ordinals1.order_prod_a [definition, in sset11]
Ordinals1.order_sum_distributive [lemma, in sset11]
Ordinals1.order_sum2_order [lemma, in sset11]
Ordinals1.order_prod2_worder [lemma, in sset11]
Ordinals1.order_sum_r [definition, in sset11]
Ordinals1.order_sum2 [definition, in sset11]
Ordinals1.order_sum_gle1 [lemma, in sset11]
Ordinals1.order_sum_order [lemma, in sset11]
Ordinals1.order_sum_gle_id [lemma, in sset11]
Ordinals1.order_prod2_order [lemma, in sset11]
Ordinals1.order_sum2_worder [lemma, in sset11]
Ordinals1.ordinal_1 [lemma, in sset11]
Ordinals1.ordinal_p11 [lemma, in sset11]
Ordinals1.ordinal_pr51 [lemma, in sset11]
Ordinals1.ordinal_p10 [lemma, in sset11]
Ordinals1.ordinal_a_ne_ab [lemma, in sset11]
Ordinals1.ordinal_p8 [lemma, in sset11]
Ordinals1.ordinal_finite4 [lemma, in sset11]
Ordinals1.ordinal_finite2 [lemma, in sset11]
Ordinals1.ordinal_finite1 [lemma, in sset11]
Ordinals1.ordinal_0 [lemma, in sset11]
Ordinals1.ordinal_finite3 [lemma, in sset11]
Ordinals1.ordinal_o_emptyset [lemma, in sset11]
Ordinals1.ordinal_omega [lemma, in sset11]
Ordinals1.ordinal_pr52 [lemma, in sset11]
Ordinals1.ordinal_p9 [lemma, in sset11]
Ordinals1.ordinal_prod_assoc1 [lemma, in sset11]
Ordinals1.ordinal_2 [lemma, in sset11]
Ordinals1.ordinal0_pr [lemma, in sset11]
Ordinals1.ordinal0_emptyset [lemma, in sset11]
Ordinals1.ordinal0_pr1 [lemma, in sset11]
Ordinals1.ordinal1_pr [lemma, in sset11]
Ordinals1.ord_prod2_nz [lemma, in sset11]
Ordinals1.ord_prod_increasing2 [lemma, in sset11]
Ordinals1.ord_succ_lt2 [lemma, in sset11]
Ordinals1.ord_prod [definition, in sset11]
Ordinals1.ord_double [lemma, in sset11]
Ordinals1.ord_zero [definition, in sset11]
Ordinals1.ord_sum_invariant4 [lemma, in sset11]
Ordinals1.ord_prod_increasing3 [lemma, in sset11]
Ordinals1.ord_prod2_ordinal [lemma, in sset11]
Ordinals1.ord_sum_emptyset [lemma, in sset11]
Ordinals1.ord_sum_invariant2 [lemma, in sset11]
Ordinals1.ord_mult_int_omega [lemma, in sset11]
Ordinals1.ord_zero_absorbing [lemma, in sset11]
Ordinals1.ord_plus_int_omega [lemma, in sset11]
Ordinals1.ord_lt_01 [lemma, in sset11]
Ordinals1.ord_sum [definition, in sset11]
Ordinals1.ord_prod2_increasing3 [lemma, in sset11]
Ordinals1.ord_prod_invariant4 [lemma, in sset11]
Ordinals1.ord_sum_increasing3 [lemma, in sset11]
Ordinals1.ord_lt_12 [lemma, in sset11]
Ordinals1.ord_sum_invariant3 [lemma, in sset11]
Ordinals1.ord_prod_invariant3 [lemma, in sset11]
Ordinals1.ord_two [definition, in sset11]
Ordinals1.ord_0_plus_unit_r [lemma, in sset11]
Ordinals1.ord_1_mult_unit_r [lemma, in sset11]
Ordinals1.ord_prod_increasing4 [lemma, in sset11]
Ordinals1.ord_prod2_increasing4 [lemma, in sset11]
Ordinals1.ord_sum_singleton [lemma, in sset11]
Ordinals1.ord_sum2_pr [lemma, in sset11]
Ordinals1.ord_sum_ordinal [lemma, in sset11]
Ordinals1.ord_prod_ordinal [lemma, in sset11]
Ordinals1.ord_prod_invariant1 [lemma, in sset11]
Ordinals1.ord_prod2_increasing5 [lemma, in sset11]
Ordinals1.ord_sum2_increasing1 [lemma, in sset11]
Ordinals1.ord_prod2_increasing2 [lemma, in sset11]
Ordinals1.ord_sum2_increasing3 [lemma, in sset11]
Ordinals1.ord_sum2_increasing5 [lemma, in sset11]
Ordinals1.ord_sum_increasing2 [lemma, in sset11]
Ordinals1.ord_prod_increasing1 [lemma, in sset11]
Ordinals1.ord_lt_succ [lemma, in sset11]
Ordinals1.ord_sum2 [definition, in sset11]
Ordinals1.ord_0_plus_unit_l [lemma, in sset11]
Ordinals1.ord_sum2_ordinal [lemma, in sset11]
Ordinals1.ord_sum_increasing4 [lemma, in sset11]
Ordinals1.ord_sum2_increasing4 [lemma, in sset11]
Ordinals1.ord_lt_02 [lemma, in sset11]
Ordinals1.ord_prod_emptyset [lemma, in sset11]
Ordinals1.ord_omega [definition, in sset11]
Ordinals1.ord_sum_increasing1 [lemma, in sset11]
Ordinals1.ord_prod2 [definition, in sset11]
Ordinals1.ord_11_2 [lemma, in sset11]
Ordinals1.ord_prod2_increasing1 [lemma, in sset11]
Ordinals1.ord_sum_invariant5 [lemma, in sset11]
Ordinals1.ord_prod2_pr [lemma, in sset11]
Ordinals1.ord_1_mult_unit_l [lemma, in sset11]
Ordinals1.ord_sum2_increasing2 [lemma, in sset11]
Ordinals1.ord_zero_pr1 [lemma, in sset11]
Ordinals1.ord_succ_lt [lemma, in sset11]
Ordinals1.ord_one [definition, in sset11]
Ordinals1.ord_sum_invariant1 [lemma, in sset11]
Ordinals1.ord_succ_pr [lemma, in sset11]
Ordinals1.ord_prod_singleton [lemma, in sset11]
Ordinals1.ord_prod_invariant2 [lemma, in sset11]
Ordinals1.ord_omega_pr [lemma, in sset11]
Ordinals1.ord_omega_non_zero [lemma, in sset11]
Ordinals1.ord_prod_invariant5 [lemma, in sset11]
Ordinals1.ord_succ_inj [lemma, in sset11]
Ordinals1.ord0_prodl [lemma, in sset11]
Ordinals1.ord0_prodr [lemma, in sset11]
Ordinals1.ord2_trichotomy1 [lemma, in sset11]
Ordinals1.ord2_lt_pr [lemma, in sset11]
Ordinals1.ord2_trichotomy [lemma, in sset11]
Ordinals1.prod_of_substrates_pr [lemma, in sset11]
Ordinals1.set_ord_le_prop [lemma, in sset11]
Ordinals1.set_ord_lt_prop3 [lemma, in sset11]
Ordinals1.set_ord_lt_prop [lemma, in sset11]
Ordinals1.singleton_order_isomorphic [lemma, in sset11]
Ordinals1.singleton_ordinal [lemma, in sset11]
Ordinals1.singleton_order_isomorphic2 [lemma, in sset11]
Ordinals1.singleton_worder [lemma, in sset11]
Ordinals1.singleton_order_isomorphic1 [lemma, in sset11]
Ordinals1.succ_ordinal [lemma, in sset11]
Ordinals1.sum_of_substrates [definition, in sset11]
Ordinals1.unit_helper [lemma, in sset11]
Ordinals1.variantLc_comp [lemma, in sset11]
Ordinals1.worder_singleton1 [lemma, in sset11]
Ordinals1.worder_invariance [lemma, in sset11]
Ordinals1.zero_least_ordinal1 [lemma, in sset11]
Ordinals1.zero_least_ordinal [lemma, in sset11]
Ordinals1.zero_least_ordinal3 [lemma, in sset11]
Ordinals1.zero_unit_sum_ord1 [lemma, in sset11]
Ordinals1.zero_least_ordinal5 [lemma, in sset11]
Ordinals1.zero_unit_sum_ord2 [lemma, in sset11]
_ +o _ [notation, in sset11]
_ *o _ [notation, in sset11]
0 o [notation, in sset11]
1 o [notation, in sset11]
2 o [notation, in sset11]
\omega [notation, in sset11]
Ordinals2 [module, in sset12]
Ordinals2.aleph_aux1_pr4 [lemma, in sset12]
Ordinals2.aleph_pr6c [lemma, in sset12]
Ordinals2.aleph_pr3 [lemma, in sset12]
Ordinals2.aleph_pr4 [lemma, in sset12]
Ordinals2.aleph_pr6 [lemma, in sset12]
Ordinals2.aleph_pr5b [lemma, in sset12]
Ordinals2.aleph_pr7 [lemma, in sset12]
Ordinals2.aleph_pr11 [lemma, in sset12]
Ordinals2.aleph_aux2_pr2 [lemma, in sset12]
Ordinals2.aleph_pr10 [lemma, in sset12]
Ordinals2.aleph_aux2_pr1 [lemma, in sset12]
Ordinals2.aleph_aux1_pr2 [lemma, in sset12]
Ordinals2.aleph_aux1_pr3 [lemma, in sset12]
Ordinals2.aleph_pr1 [lemma, in sset12]
Ordinals2.aleph_aux2_pr3 [lemma, in sset12]
Ordinals2.aleph_aux2 [definition, in sset12]
Ordinals2.aleph_pr6d [lemma, in sset12]
Ordinals2.aleph_pr5 [lemma, in sset12]
Ordinals2.aleph_aux1_pr [lemma, in sset12]
Ordinals2.aleph_pr8 [lemma, in sset12]
Ordinals2.aleph_pr6b [lemma, in sset12]
Ordinals2.aleph_pr2 [lemma, in sset12]
Ordinals2.aleph_pr9 [lemma, in sset12]
Ordinals2.aleph_aux1 [definition, in sset12]
Ordinals2.cantor_normal_b [definition, in sset12]
Ordinals2.cantor_normal_a_exists [lemma, in sset12]
Ordinals2.cantor_normal_a [definition, in sset12]
Ordinals2.card_comp_zero_one [lemma, in sset12]
Ordinals2.cofinal_ordinal [definition, in sset12]
Ordinals2.indecomposable_prod2 [lemma, in sset12]
Ordinals2.indecomposable_sup [lemma, in sset12]
Ordinals2.indecomposable_pr [lemma, in sset12]
Ordinals2.indecomposable_prop1 [lemma, in sset12]
Ordinals2.indecomposable_sup [lemma, in sset12]
Ordinals2.indecomposable_prop2 [lemma, in sset12]
Ordinals2.indecomposable_prop3 [lemma, in sset12]
Ordinals2.indecomposable_omega_succ [lemma, in sset12]
Ordinals2.indecomposable_sup1 [lemma, in sset12]
Ordinals2.indecomposable_division [lemma, in sset12]
Ordinals2.indecomposable_prod3 [lemma, in sset12]
Ordinals2.indecomposable_prod [lemma, in sset12]
Ordinals2.indecomposable_prop [lemma, in sset12]
Ordinals2.indecomp_omega [lemma, in sset12]
Ordinals2.indecomp_one [lemma, in sset12]
Ordinals2.indecomp_omega1 [lemma, in sset12]
Ordinals2.indecomp_example [lemma, in sset12]
Ordinals2.limit_ordinal_pr3 [lemma, in sset12]
Ordinals2.normal_ofs2 [definition, in sset12]
Ordinals2.normal_ofs_o [lemma, in sset12]
Ordinals2.normal_ofs1 [definition, in sset12]
Ordinals2.normal_fs_equiv2 [lemma, in sset12]
Ordinals2.normal_fs_equiv1 [lemma, in sset12]
Ordinals2.normal_fs_equiv [lemma, in sset12]
Ordinals2.normal_ofs [definition, in sset12]
Ordinals2.normal_ofs1_o [lemma, in sset12]
Ordinals2.omega_fct [definition, in sset12]
Ordinals2.ordinal_worder3 [lemma, in sset12]
Ordinals2.ordinal_expansion3_pb [lemma, in sset12]
Ordinals2.ordinal_expansion1 [definition, in sset12]
Ordinals2.ordinal_interval_sup [lemma, in sset12]
Ordinals2.ordinal_expansion1_pb [lemma, in sset12]
Ordinals2.ordinal_cardinal_le1 [lemma, in sset12]
Ordinals2.ordinal_expansion1_pa [lemma, in sset12]
Ordinals2.ordinal_expansion3_pc [lemma, in sset12]
Ordinals2.ordinal_interval_pr0 [lemma, in sset12]
Ordinals2.ordinal_interval_pr [lemma, in sset12]
Ordinals2.ordinal_expansion3_pd [lemma, in sset12]
Ordinals2.ordinal_worder5 [lemma, in sset12]
Ordinals2.ordinal_expansion2_pb [lemma, in sset12]
Ordinals2.ordinal_not_collectivizing [lemma, in sset12]
Ordinals2.ordinal_expansion3_pa [lemma, in sset12]
Ordinals2.ordinal_interval [definition, in sset12]
Ordinals2.ordinal_expansion3 [definition, in sset12]
Ordinals2.ordinal_worder4 [lemma, in sset12]
Ordinals2.ordinal_interval_pr1 [lemma, in sset12]
Ordinals2.ordinal_expansion2 [definition, in sset12]
Ordinals2.ordinal_expansion1_pd [lemma, in sset12]
Ordinals2.ordinal_interval_sup1 [lemma, in sset12]
Ordinals2.ordinal_expansion2_pc [lemma, in sset12]
Ordinals2.ordinal_expansion2_pa [lemma, in sset12]
Ordinals2.ordinal_interval_pr2 [lemma, in sset12]
Ordinals2.ordinal_expansion1_pc [lemma, in sset12]
Ordinals2.ordinal_expansion2_pd [lemma, in sset12]
Ordinals2.ord_mult_simp_left [lemma, in sset12]
Ordinals2.ord_division_exists [lemma, in sset12]
Ordinals2.ord_division_unique [lemma, in sset12]
Ordinals2.ord_induction_exists [lemma, in sset12]
Ordinals2.ord_sub_smaller [lemma, in sset12]
Ordinals2.ord_induction_p0 [lemma, in sset12]
Ordinals2.ord_pow_increasing2 [lemma, in sset12]
Ordinals2.ord_sum_pr10 [lemma, in sset12]
Ordinals2.ord_induction_prop [definition, in sset12]
Ordinals2.ord_ext_div_exists [lemma, in sset12]
Ordinals2.ord_powx1 [lemma, in sset12]
Ordinals2.ord_stric_incr_unbounded [lemma, in sset12]
Ordinals2.ord_division_exists1 [lemma, in sset12]
Ordinals2.ord_plus_compat_lt2 [lemma, in sset12]
Ordinals2.ord_pow [definition, in sset12]
Ordinals2.ord_induction_aux [definition, in sset12]
Ordinals2.ord_induction_p9 [lemma, in sset12]
Ordinals2.ord_pow_axioms3 [lemma, in sset12]
Ordinals2.ord_induction_p6 [lemma, in sset12]
Ordinals2.ord_induction_unique [lemma, in sset12]
Ordinals2.ord_induction_p13 [lemma, in sset12]
Ordinals2.ord_ext_div_pr [definition, in sset12]
Ordinals2.ord_sub_pr [lemma, in sset12]
Ordinals2.ord_div_nonzero_b_bis [lemma, in sset12]
Ordinals2.ord_induction_p5 [lemma, in sset12]
Ordinals2.ord_sup_pr6 [lemma, in sset12]
Ordinals2.ord_induction_defined [definition, in sset12]
Ordinals2.ord_pow_ordinal [lemma, in sset12]
Ordinals2.ord_induction_axioms3 [definition, in sset12]
Ordinals2.ord_pow_prod [lemma, in sset12]
Ordinals2.ord_pow_axioms2 [lemma, in sset12]
Ordinals2.ord_pow_increasing1 [lemma, in sset12]
Ordinals2.ord_pow2x [lemma, in sset12]
Ordinals2.ord_powx0 [lemma, in sset12]
Ordinals2.ord_prod_compat_lt1 [lemma, in sset12]
Ordinals2.ord_induction_p41 [lemma, in sset12]
Ordinals2.ord_induction_p3 [lemma, in sset12]
Ordinals2.ord_div_nonzero_b [lemma, in sset12]
Ordinals2.ord_pow1x [lemma, in sset12]
Ordinals2.ord_indecomposable [definition, in sset12]
Ordinals2.ord_induction_p16 [lemma, in sset12]
Ordinals2.ord_prod_normal [lemma, in sset12]
Ordinals2.ord_sum2_succ [lemma, in sset12]
Ordinals2.ord_mult_compat_lt1 [lemma, in sset12]
Ordinals2.ord_pow_axioms [lemma, in sset12]
Ordinals2.ord_pow_succ [lemma, in sset12]
Ordinals2.ord_sup_pr11 [lemma, in sset12]
Ordinals2.ord_sup_pr12 [lemma, in sset12]
Ordinals2.ord_bound_coll [lemma, in sset12]
Ordinals2.ord_mult_succ [lemma, in sset12]
Ordinals2.ord_plus_normal [lemma, in sset12]
Ordinals2.ord_div_pr1 [definition, in sset12]
Ordinals2.ord_sub_pr1 [lemma, in sset12]
Ordinals2.ord_induction_p4 [lemma, in sset12]
Ordinals2.ord_plus_simp_left [lemma, in sset12]
Ordinals2.ord_pow_increasing5 [lemma, in sset12]
Ordinals2.ord_induction_axioms [definition, in sset12]
Ordinals2.ord_induction_p15 [lemma, in sset12]
Ordinals2.ord_induction_p12 [lemma, in sset12]
Ordinals2.ord_sup_pr9 [lemma, in sset12]
Ordinals2.ord_induction_p1 [lemma, in sset12]
Ordinals2.ord_induction_p10 [lemma, in sset12]
Ordinals2.ord_pow_increasing4 [lemma, in sset12]
Ordinals2.ord_induction_axioms2 [definition, in sset12]
Ordinals2.ord_pow_increasing0 [lemma, in sset12]
Ordinals2.ord_induction_p8 [lemma, in sset12]
Ordinals2.ord_plus_compat_lt [lemma, in sset12]
Ordinals2.ord_induction_p7 [lemma, in sset12]
Ordinals2.ord_induction_p17 [lemma, in sset12]
Ordinals2.ord_pow00 [lemma, in sset12]
Ordinals2.ord_ext_div_unique [lemma, in sset12]
Ordinals2.ord_sup_pr7 [lemma, in sset12]
Ordinals2.ord_induction_p19 [lemma, in sset12]
Ordinals2.ord_induction_p14 [lemma, in sset12]
Ordinals2.ord_stric_incr_unbounded1 [lemma, in sset12]
Ordinals2.ord_sub [definition, in sset12]
Ordinals2.ord_induction_p18 [lemma, in sset12]
Ordinals2.ord_prod_compat_lt2 [lemma, in sset12]
Ordinals2.ord_pow_sum [lemma, in sset12]
Ordinals2.ord_sup_pr8 [lemma, in sset12]
Ordinals2.ord_div_pr0 [definition, in sset12]
Ordinals2.ord_plus_compat_lt1 [lemma, in sset12]
Ordinals2.ord_induction_p2 [lemma, in sset12]
Ordinals2.ord_sup_pr13 [lemma, in sset12]
Ordinals2.ord_mult_compat_lt [lemma, in sset12]
Ordinals2.ord_pow0x [lemma, in sset12]
Ordinals2.ord_pow_normal [lemma, in sset12]
Ordinals2.ord_pow_increasing3 [lemma, in sset12]
Ordinals2.ord_induction_p11 [lemma, in sset12]
Ordinals2.ord2_lt_pr [lemma, in sset12]
Ordinals2.set_ordinal_card_le_pr [lemma, in sset12]
Ordinals2.set_ordinal_card_le [definition, in sset12]
Ordinals2.set_ordinal_card_lt_pr [lemma, in sset12]
Ordinals2.substr_opbnat [lemma, in sset12]
Ordinals2.worder_opbnat [lemma, in sset12]
Ordinals2.zero_least_ordinal2 [lemma, in sset12]
_ ^o _ [notation, in sset12]
_ -o _ [notation, in sset12]


P

Pair [module, in sset1]
Pair.is_pair [definition, in sset1]
Pair.J [abbreviation, in sset1]
Pair.kpair [definition, in sset1]
Pair.kpr0_pair [lemma, in sset1]
Pair.kpr1 [definition, in sset1]
Pair.kpr2 [definition, in sset1]
Pair.P [abbreviation, in sset1]
Pair.Pair [module, in sset1]
Pair.PairSig [module, in sset1]
Pair.PairSig.first_proj [axiom, in sset1]
Pair.PairSig.kprE [axiom, in sset1]
Pair.PairSig.kpr1E [axiom, in sset1]
Pair.PairSig.kpr2E [axiom, in sset1]
Pair.PairSig.pair_ctor [axiom, in sset1]
Pair.PairSig.second_proj [axiom, in sset1]
Pair.pair_exten [lemma, in sset1]
Pair.pair_is_pair [lemma, in sset1]
Pair.Pair.first_proj [definition, in sset1]
Pair.Pair.kprE [lemma, in sset1]
Pair.Pair.kpr1E [lemma, in sset1]
Pair.Pair.kpr2E [lemma, in sset1]
Pair.Pair.pair_ctor [definition, in sset1]
Pair.Pair.second_proj [definition, in sset1]
Pair.pr1_pair [lemma, in sset1]
Pair.pr1_def [lemma, in sset1]
Pair.pr2_def [lemma, in sset1]
Pair.pr2_pair [lemma, in sset1]
Pair.Q [abbreviation, in sset1]
Powerset [module, in sset1]
Powerset.inc_x_powerset_x [lemma, in sset1]
Powerset.inc_e_powerset_x [lemma, in sset1]
Powerset.powerset [definition, in sset1]
Powerset.powerset_inc [lemma, in sset1]
Powerset.powerset_emptyset [lemma, in sset1]
Powerset.powerset_monotone [lemma, in sset1]
Powerset.powerset_sub [lemma, in sset1]
Powerset.powerset_inc_rw [lemma, in sset1]


R

Relation [module, in sset4]
Relation.all_equivalence_relations [definition, in sset4]
Relation.all_relations [definition, in sset4]
Relation.canonical_decompositiona [lemma, in sset4]
Relation.canonical_decompositionb [lemma, in sset4]
Relation.canonical_decomposition_surj [lemma, in sset4]
Relation.canonical_foq_induced_rel_bijective [lemma, in sset4]
Relation.canonical_decomposition_surj2 [lemma, in sset4]
Relation.canonical_foq_induced_rel [definition, in sset4]
Relation.canonical_decomposition [lemma, in sset4]
Relation.canon_proj_inc [lemma, in sset4]
Relation.canon_proj_surjective [lemma, in sset4]
Relation.canon_proj_source [lemma, in sset4]
Relation.canon_proj_diagonal_bijective [lemma, in sset4]
Relation.canon_proj_target [lemma, in sset4]
Relation.canon_proj_W [lemma, in sset4]
Relation.canon_proj [definition, in sset4]
Relation.canon_proj_show_surjective [lemma, in sset4]
Relation.canon_proj_function [lemma, in sset4]
Relation.class [definition, in sset4]
Relation.class_rep [lemma, in sset4]
Relation.class_is_inv_direct_value [lemma, in sset4]
Relation.class_dichot [lemma, in sset4]
Relation.class_is_cut [lemma, in sset4]
Relation.class_prod_of_rel2 [lemma, in sset4]
Relation.coarse [definition, in sset4]
Relation.coarsest_equivalence [lemma, in sset4]
Relation.coarse_related [lemma, in sset4]
Relation.coarse_substrate [lemma, in sset4]
Relation.coarse_equivalence [lemma, in sset4]
Relation.coarse_graph [lemma, in sset4]
Relation.compatible_ext_to_prod_inv [lemma, in sset4]
Relation.compatible_with_proj [lemma, in sset4]
Relation.compatible_constant_on_classes [lemma, in sset4]
Relation.compatible_with_equiv [definition, in sset4]
Relation.compatible_with_pr [lemma, in sset4]
Relation.compatible_with_equivs [definition, in sset4]
Relation.compatible_injection_induced_rel [lemma, in sset4]
Relation.compatible_with_equiv_pr [lemma, in sset4]
Relation.compatible_with_pr2 [lemma, in sset4]
Relation.compatible_ext_to_prod [lemma, in sset4]
Relation.compatible_with_equiv_p [definition, in sset4]
Relation.compatible_ea [lemma, in sset4]
Relation.compatible_constant_on_classes2 [lemma, in sset4]
Relation.compatible_with_finer [lemma, in sset4]
Relation.compatible_with_proj3 [lemma, in sset4]
Relation.composable_fun_projs [lemma, in sset4]
Relation.composable_fun_projcs [lemma, in sset4]
Relation.composable_fun_projc [lemma, in sset4]
Relation.composable_fun_proj [lemma, in sset4]
Relation.compose_foq_proj [lemma, in sset4]
Relation.compose_fun_proj_ev [lemma, in sset4]
Relation.compose_fun_proj_eq2 [lemma, in sset4]
Relation.compose_fun_proj_ev2 [lemma, in sset4]
Relation.compose_fun_proj_eq [lemma, in sset4]
Relation.cqr_aux [lemma, in sset4]
Relation.decomposable_ext_to_prod_rel [lemma, in sset4]
Relation.diagonal_equivalence [lemma, in sset4]
Relation.diagonal_equivalence1 [lemma, in sset4]
Relation.diagonal_substrate [lemma, in sset4]
Relation.diagonal_equivalence2 [lemma, in sset4]
Relation.diagonal_class [lemma, in sset4]
Relation.domain_is_substrate [lemma, in sset4]
Relation.ea_related [lemma, in sset4]
Relation.ea_equivalence [lemma, in sset4]
Relation.ea_foq_injective [lemma, in sset4]
Relation.ea_foq_on_im_bijective [lemma, in sset4]
Relation.equipotent_equivalence [lemma, in sset4]
Relation.equivalence_is_graph [lemma, in sset4]
Relation.equivalence_prod_of_rel [lemma, in sset4]
Relation.equivalence_equivalence [lemma, in sset4]
Relation.equivalence_pr [lemma, in sset4]
Relation.equivalence_relation_bourbaki_ex5 [lemma, in sset4]
Relation.equivalence_has_graph [lemma, in sset4]
Relation.equivalence_r [definition, in sset4]
Relation.equivalence_relation_pr1 [lemma, in sset4]
Relation.equivalence_re [definition, in sset4]
Relation.equivalence_has_graph2 [lemma, in sset4]
Relation.equivalence_if_has_graph2 [lemma, in sset4]
Relation.equivalence_if_has_graph [lemma, in sset4]
Relation.equivalence_has_graph0 [lemma, in sset4]
Relation.equivalence_associated [definition, in sset4]
Relation.eq_rel_associated [definition, in sset4]
Relation.exists_fun_on_quotient [lemma, in sset4]
Relation.exists_unique_fun_on_quotient [lemma, in sset4]
Relation.ext_to_prod_rel_W [lemma, in sset4]
Relation.ext_to_prod_rel_function [lemma, in sset4]
Relation.finer_equivalence [definition, in sset4]
Relation.finer_sub_equiv [lemma, in sset4]
Relation.finer_axioms [definition, in sset4]
Relation.finer_sub_equiv3 [lemma, in sset4]
Relation.finer_sub_equiv2 [lemma, in sset4]
Relation.finest_equivalence [lemma, in sset4]
Relation.first_proj_eqr [definition, in sset4]
Relation.first_proj_eq_pr [lemma, in sset4]
Relation.first_proj_graph [lemma, in sset4]
Relation.first_proj_eq [definition, in sset4]
Relation.first_proj_eq_related [lemma, in sset4]
Relation.first_proj_substrate [lemma, in sset4]
Relation.first_proj_equiv_proj [lemma, in sset4]
Relation.first_proj_class [lemma, in sset4]
Relation.first_proj_equivalence [lemma, in sset4]
Relation.foqcs_axioms [lemma, in sset4]
Relation.foqcs_function [lemma, in sset4]
Relation.foqcs_W [lemma, in sset4]
Relation.foqc_axioms [lemma, in sset4]
Relation.foqc_function [lemma, in sset4]
Relation.foqc_W [lemma, in sset4]
Relation.foqs_axioms [lemma, in sset4]
Relation.foqs_function [lemma, in sset4]
Relation.foqs_W [lemma, in sset4]
Relation.foq_axioms [lemma, in sset4]
Relation.foq_finer_surjective [lemma, in sset4]
Relation.foq_finer_function [lemma, in sset4]
Relation.foq_finer_W [lemma, in sset4]
Relation.foq_W [lemma, in sset4]
Relation.foq_function [lemma, in sset4]
Relation.foq_induced_rel_image [lemma, in sset4]
Relation.foq_induced_rel_injective [lemma, in sset4]
Relation.function_on_quotient [definition, in sset4]
Relation.function_on_quotients [definition, in sset4]
Relation.fun_on_reps [definition, in sset4]
Relation.fun_on_rep [definition, in sset4]
Relation.fun_on_quotient [definition, in sset4]
Relation.fun_on_quotient_pr [lemma, in sset4]
Relation.fun_on_quotients [definition, in sset4]
Relation.fun_on_quotient_pr2 [lemma, in sset4]
Relation.fun_on_quotient_pr4 [lemma, in sset4]
Relation.fun_on_quotient_pr3 [lemma, in sset4]
Relation.fun_on_quotient_pr5 [lemma, in sset4]
Relation.graph_on [definition, in sset4]
Relation.graph_on_graph [lemma, in sset4]
Relation.graph_on_rw1 [lemma, in sset4]
Relation.graph_ea_equivalence [lemma, in sset4]
Relation.graph_on_substrate [lemma, in sset4]
Relation.graph_ea_substrate [lemma, in sset4]
Relation.graph_of_ea [lemma, in sset4]
Relation.graph_on_rw2 [lemma, in sset4]
Relation.graph_on_rw0 [lemma, in sset4]
Relation.idempotent_graph_transitive [lemma, in sset4]
Relation.iirel_function [lemma, in sset4]
Relation.iirel_substrate [lemma, in sset4]
Relation.iirel_relation [lemma, in sset4]
Relation.iirel_axioms [definition, in sset4]
Relation.iirel_related [lemma, in sset4]
Relation.iirel_class [lemma, in sset4]
Relation.inc_arg1_substrate [lemma, in sset4]
Relation.inc_arg2_substrate [lemma, in sset4]
Relation.inc_rep_substrate [lemma, in sset4]
Relation.inc_class_quotient [lemma, in sset4]
Relation.inc_rep_itself [lemma, in sset4]
Relation.inc_class [lemma, in sset4]
Relation.inc_itself_class [lemma, in sset4]
Relation.inc_coarse_all_equivalence_relations [lemma, in sset4]
Relation.inc_all_relations [lemma, in sset4]
Relation.inc_quotient [lemma, in sset4]
Relation.inc_pr1_substrate [lemma, in sset4]
Relation.inc_in_quotient_substrate [lemma, in sset4]
Relation.inc_substrate [lemma, in sset4]
Relation.inc_substrate_rw [lemma, in sset4]
Relation.inc_pr2_substrate [lemma, in sset4]
Relation.inc_all_equivalence_relations [lemma, in sset4]
Relation.induced_rel_axioms [definition, in sset4]
Relation.induced_rel_class [lemma, in sset4]
Relation.induced_rel_equivalence [lemma, in sset4]
Relation.induced_rel_substrate [lemma, in sset4]
Relation.induced_rel_related [lemma, in sset4]
Relation.induced_rel_iirel_axioms [lemma, in sset4]
Relation.induced_relation [definition, in sset4]
Relation.inter_rel_symmetric [lemma, in sset4]
Relation.inter_rel_rw [lemma, in sset4]
Relation.inter_rel_equivalence [lemma, in sset4]
Relation.inter_rel_graph [lemma, in sset4]
Relation.inter_rel_transitive [lemma, in sset4]
Relation.inter_rel_substrate [lemma, in sset4]
Relation.inter_rel_reflexive [lemma, in sset4]
Relation.inter2_is_graph1 [lemma, in sset4]
Relation.inter2_is_graph2 [lemma, in sset4]
Relation.inverse_direct_value [definition, in sset4]
Relation.inv_image_relation [definition, in sset4]
Relation.in_class_related [lemma, in sset4]
Relation.in_same_coset [definition, in sset4]
Relation.isc_transitive [lemma, in sset4]
Relation.isc_equivalence [lemma, in sset4]
Relation.isc_reflexive [lemma, in sset4]
Relation.isc_symmetric [lemma, in sset4]
Relation.is_class [definition, in sset4]
Relation.is_equivalence [definition, in sset4]
Relation.is_transitive [definition, in sset4]
Relation.is_graph_of [definition, in sset4]
Relation.is_class_class [lemma, in sset4]
Relation.is_symmetric [definition, in sset4]
Relation.is_class_pr [lemma, in sset4]
Relation.is_reflexive [definition, in sset4]
Relation.is_class_rw [lemma, in sset4]
Relation.nonempty_class_symmetric [lemma, in sset4]
Relation.nonempty_image [lemma, in sset4]
Relation.non_empty_in_quotient [lemma, in sset4]
Relation.partition_fun_bijective [lemma, in sset4]
Relation.partition_is_equivalence [lemma, in sset4]
Relation.partition_relation_class [lemma, in sset4]
Relation.partition_relation_pr [lemma, in sset4]
Relation.partition_rel_graph [lemma, in sset4]
Relation.partition_relation [definition, in sset4]
Relation.partition_from_equivalence [lemma, in sset4]
Relation.partition_relation_class2 [lemma, in sset4]
Relation.partition_inc_unique1 [lemma, in sset4]
Relation.partition_class_inc [lemma, in sset4]
Relation.partition_relation_substrate [lemma, in sset4]
Relation.prod_of_rel_refl [lemma, in sset4]
Relation.prod_of_rel_trans [lemma, in sset4]
Relation.prod_of_rel_pr [lemma, in sset4]
Relation.prod_of_relation [definition, in sset4]
Relation.prod_of_rel_is_rel [lemma, in sset4]
Relation.prod_of_rel_sym [lemma, in sset4]
Relation.quotient [definition, in sset4]
Relation.quotient_of_relations_related [lemma, in sset4]
Relation.quotient_of_relations_substrate [lemma, in sset4]
Relation.quotient_canonical_decomposition [lemma, in sset4]
Relation.quotient_of_relations_pr [lemma, in sset4]
Relation.quotient_of_relations_class_bis [lemma, in sset4]
Relation.quotient_of_relations_related_bis [lemma, in sset4]
Relation.quotient_of_relations_equivalence [lemma, in sset4]
Relation.quotient_of_relations [definition, in sset4]
Relation.reflexive_inc_substrate [lemma, in sset4]
Relation.reflexive_reflexive [lemma, in sset4]
Relation.reflexive_r [definition, in sset4]
Relation.reflexive_ap2 [lemma, in sset4]
Relation.reflexive_ap [lemma, in sset4]
Relation.reflexivity_e [lemma, in sset4]
Relation.related_e_rw [lemma, in sset4]
Relation.related_class_eq [lemma, in sset4]
Relation.related_ext_to_prod_rel [lemma, in sset4]
Relation.related_class_eq1 [lemma, in sset4]
Relation.related_rep_rep [lemma, in sset4]
Relation.related_rw [lemma, in sset4]
Relation.related_rep_in_class [lemma, in sset4]
Relation.related_rep_class [lemma, in sset4]
Relation.related_graph_canon_proj [lemma, in sset4]
Relation.related_prod_of_rel1 [lemma, in sset4]
Relation.related_prod_of_rel2 [lemma, in sset4]
Relation.relation_on_quotient [definition, in sset4]
Relation.rel_on_quo_pr [lemma, in sset4]
Relation.rel_on_quo_pr2 [lemma, in sset4]
Relation.representative_system [definition, in sset4]
Relation.representative_system_function [definition, in sset4]
Relation.rep_sys_function_pr [lemma, in sset4]
Relation.rep_sys_function_pr2 [lemma, in sset4]
Relation.restricted_eq [definition, in sset4]
Relation.right_inv_canon_proj [lemma, in sset4]
Relation.saturated [definition, in sset4]
Relation.saturated_complement [lemma, in sset4]
Relation.saturated_pr [lemma, in sset4]
Relation.saturated_union [lemma, in sset4]
Relation.saturated_pr4 [lemma, in sset4]
Relation.saturated_intersection [lemma, in sset4]
Relation.saturated_pr3 [lemma, in sset4]
Relation.saturated_pr2 [lemma, in sset4]
Relation.saturation_of [definition, in sset4]
Relation.saturation_of_smallest [lemma, in sset4]
Relation.saturation_of_union [lemma, in sset4]
Relation.saturation_of_pr [lemma, in sset4]
Relation.section_is_representative_system_function [lemma, in sset4]
Relation.section_canon_proj_function [lemma, in sset4]
Relation.section_canon_proj_W [lemma, in sset4]
Relation.section_canon_proj_pr [lemma, in sset4]
Relation.section_canon_proj_axioms [lemma, in sset4]
Relation.section_canon_proj [definition, in sset4]
Relation.selfinverse_graph_symmetric [lemma, in sset4]
Relation.substrate [definition, in sset4]
Relation.substrate_for_prod [definition, in sset4]
Relation.substrate_prod_of_rel [lemma, in sset4]
Relation.substrate_prod_of_rel2 [lemma, in sset4]
Relation.substrate_smallest [lemma, in sset4]
Relation.substrate_prod_of_rel1 [lemma, in sset4]
Relation.substrate_sub [lemma, in sset4]
Relation.sub_graph_coarse_substrate [lemma, in sset4]
Relation.sub_im_canon_proj_quotient [lemma, in sset4]
Relation.sub_class_substrate [lemma, in sset4]
Relation.sub_quotient_powerset [lemma, in sset4]
Relation.surjective_pr7 [lemma, in sset4]
Relation.symmetricity_e [lemma, in sset4]
Relation.symmetric_symmetric [lemma, in sset4]
Relation.symmetric_transitive_reflexive [lemma, in sset4]
Relation.symmetric_ap [lemma, in sset4]
Relation.symmetric_transitive_equivalence [lemma, in sset4]
Relation.symmetric_r [definition, in sset4]
Relation.transitive_ap [lemma, in sset4]
Relation.transitive_transitive [lemma, in sset4]
Relation.transitive_r [definition, in sset4]
Relation.transitivity_e [lemma, in sset4]
Relation.trivial_equiv [lemma, in sset4]
Relation.union_image [definition, in sset4]
Relation.union_quotient [lemma, in sset4]
Relation.union2_is_graph [lemma, in sset4]


S

sset1 [library]
sset10 [library]
sset11 [library]
sset12 [library]
sset2 [library]
sset3 [library]
sset4 [library]
sset5 [library]
sset6 [library]
sset7 [library]
sset8 [library]
sset9 [library]


T

Tactics1 [module, in sset1]
_ & _ [notation, in sset1]


U

Union [module, in sset1]
Union.inc_tack_on_x [lemma, in sset1]
Union.inc_tack_on_y [lemma, in sset1]
Union.inc_tack_on_sub [lemma, in sset1]
Union.sub_union [lemma, in sset1]
Union.tack_on_complement [lemma, in sset1]
Union.tack_on [definition, in sset1]
Union.tack_on_when_inc [lemma, in sset1]
Union.tack_on_rw [lemma, in sset1]
Union.tack_on_or [lemma, in sset1]
Union.tack_on_sub [lemma, in sset1]
Union.union [definition, in sset1]
Union.union_empty [lemma, in sset1]
Union.union_doubleton [lemma, in sset1]
Union.union_rw [lemma, in sset1]
Union.union_exists [lemma, in sset1]
Union.Union_integral [record, in sset1]
Union.Union_elt [projection, in sset1]
Union.Union_param [projection, in sset1]
Union.union_singleton [lemma, in sset1]
Union.union_inc [lemma, in sset1]
Union.union_sub [lemma, in sset1]
Union.union2 [definition, in sset1]
Union.union2A [lemma, in sset1]
Union.union2C [lemma, in sset1]
Union.union2idem [lemma, in sset1]
Union.union2sub [lemma, in sset1]
Union.union2sub_first [lemma, in sset1]
Union.union2sub_second [lemma, in sset1]
Union.union2_first [lemma, in sset1]
Union.union2_second [lemma, in sset1]
Union.union2_rw [lemma, in sset1]
Union.union2_or [lemma, in sset1]


W

Worder [module, in sset6]
Worder.bij_pair_isomorphism_onto_segment [lemma, in sset6]
Worder.canonical_doubleton_order [definition, in sset6]
Worder.canonical_doubleton_order_pr [lemma, in sset6]
Worder.coarse_segment_monotone [lemma, in sset6]
Worder.common_extension_order [definition, in sset6]
Worder.common_worder_axiom [definition, in sset6]
Worder.common_ordering_set [definition, in sset6]
Worder.common_extension_order_axiom [definition, in sset6]
Worder.compose_order_morphism [lemma, in sset6]
Worder.compose_order_isomorphism [lemma, in sset6]
Worder.disjoint_union2_rw1 [lemma, in sset6]
Worder.disjoint_union2_rw [lemma, in sset6]
Worder.empty_is_segment [lemma, in sset6]
Worder.identity_isomorphism [lemma, in sset6]
Worder.identity_morphism [lemma, in sset6]
Worder.increasing_function_segments [lemma, in sset6]
Worder.inc_lt1_substrate [lemma, in sset6]
Worder.inc_segment [lemma, in sset6]
Worder.inc_bound_segmentc [lemma, in sset6]
Worder.inc_lt2_substrate [lemma, in sset6]
Worder.inc_set_of_segments [lemma, in sset6]
Worder.induced_order_trans [lemma, in sset6]
Worder.induced_trans [lemma, in sset6]
Worder.inductive_max_greater [lemma, in sset6]
Worder.inductive_graphs [lemma, in sset6]
Worder.inductive_set [definition, in sset6]
Worder.inductive_powerset [lemma, in sset6]
Worder.intersection_is_segment [lemma, in sset6]
Worder.inverse_order_isomorphism [lemma, in sset6]
Worder.isomorphic_subset_segment [lemma, in sset6]
Worder.isomorphism_worder_unique [lemma, in sset6]
Worder.isomorphism_worder [lemma, in sset6]
Worder.is_segment [definition, in sset6]
Worder.lexicographic_order_axioms [definition, in sset6]
Worder.lexicographic_order [definition, in sset6]
Worder.lexicographic_order_r [definition, in sset6]
Worder.lexorder_order [lemma, in sset6]
Worder.lexorder_total [lemma, in sset6]
Worder.lexorder_substrate [lemma, in sset6]
Worder.lexorder_gle [lemma, in sset6]
Worder.lexorder_substrate_aux [lemma, in sset6]
Worder.le_in_segment [lemma, in sset6]
Worder.lt_in_segment [lemma, in sset6]
Worder.maximal_in_powerset [lemma, in sset6]
Worder.minimal_in_powerset [lemma, in sset6]
Worder.not_in_segment [lemma, in sset6]
Worder.not_lt_self [lemma, in sset6]
Worder.order_merge3 [lemma, in sset6]
Worder.order_merge1 [lemma, in sset6]
Worder.order_merge2 [lemma, in sset6]
Worder.order_morphism_pr1 [lemma, in sset6]
Worder.order_merge5 [lemma, in sset6]
Worder.order_merge4 [lemma, in sset6]
Worder.restriction_to_segment_axiom [definition, in sset6]
Worder.restriction_to_segment [definition, in sset6]
Worder.rts_extensionality [lemma, in sset6]
Worder.rts_function [lemma, in sset6]
Worder.rts_surjective [lemma, in sset6]
Worder.rts_W [lemma, in sset6]
Worder.segment [definition, in sset6]
Worder.segmentc_rw [lemma, in sset6]
Worder.segmentc_insetof [lemma, in sset6]
Worder.segment_injective1 [lemma, in sset6]
Worder.segment_insetof [lemma, in sset6]
Worder.segment_induced_a [lemma, in sset6]
Worder.segment_monotone [lemma, in sset6]
Worder.segment_injective [lemma, in sset6]
Worder.segment_inc [lemma, in sset6]
Worder.segment_alt [lemma, in sset6]
Worder.segment_alt1 [lemma, in sset6]
Worder.segment_c [definition, in sset6]
Worder.segment_c_pr [lemma, in sset6]
Worder.segment_induced1 [lemma, in sset6]
Worder.segment_rw [lemma, in sset6]
Worder.segment_dichot_sub [lemma, in sset6]
Worder.segment_monotone1 [lemma, in sset6]
Worder.segment_is_segment [lemma, in sset6]
Worder.segment_induced [lemma, in sset6]
Worder.set_of_segments [definition, in sset6]
Worder.set_of_segments_iso_isomorphism [lemma, in sset6]
Worder.set_of_segments_strict [definition, in sset6]
Worder.set_of_segments_worder [lemma, in sset6]
Worder.set_of_segments_iso_bijective [lemma, in sset6]
Worder.set_of_segments_axiom [lemma, in sset6]
Worder.set_of_segments_iso [definition, in sset6]
Worder.strict_increasing_extens [lemma, in sset6]
Worder.subsegment_is_segment [lemma, in sset6]
Worder.substrate_is_segment [lemma, in sset6]
Worder.substrate_canonical_doubleton_order [lemma, in sset6]
Worder.sub_segment [lemma, in sset6]
Worder.sub_segmentc [lemma, in sset6]
Worder.sub_segment1 [lemma, in sset6]
Worder.sub_segment2 [lemma, in sset6]
Worder.sub_set_of_segments [lemma, in sset6]
Worder.tack_on_segment [lemma, in sset6]
Worder.transfinite_principle [lemma, in sset6]
Worder.transfinite_pr [lemma, in sset6]
Worder.transfinite_unique1 [lemma, in sset6]
Worder.transfinite_aux1 [lemma, in sset6]
Worder.transfinite_principle1 [lemma, in sset6]
Worder.transfinite_aux2 [lemma, in sset6]
Worder.transfinite_defined_pr [lemma, in sset6]
Worder.transfinite_principle_bis [lemma, in sset6]
Worder.transfinite_unique [lemma, in sset6]
Worder.transfinite_principle2 [lemma, in sset6]
Worder.transfinite_def [definition, in sset6]
Worder.transfinite_definition [lemma, in sset6]
Worder.transfinite_aux3 [lemma, in sset6]
Worder.transfinite_definition_stable [lemma, in sset6]
Worder.transfinite_defined [definition, in sset6]
Worder.unionf_is_segment [lemma, in sset6]
Worder.union_segments [lemma, in sset6]
Worder.union_is_segment [lemma, in sset6]
Worder.unique_isomorphism_onto_segment [lemma, in sset6]
Worder.well_ordered_segment [lemma, in sset6]
Worder.worder [definition, in sset6]
Worder.wordering_pr [lemma, in sset6]
Worder.worder_r [definition, in sset6]
Worder.worder_adjoin_greatest [lemma, in sset6]
Worder.worder_merge [lemma, in sset6]
Worder.worder_is_order [lemma, in sset6]
Worder.worder_canonical_doubleton_order [lemma, in sset6]
Worder.worder_total [lemma, in sset6]
Worder.worder_restriction [lemma, in sset6]
Worder.worder_hassup [lemma, in sset6]
Worder.worder_least [lemma, in sset6]
Worder.Zermelo [lemma, in sset6]
Worder.Zermelo_bis [lemma, in sset6]
Worder.Zermelo_aux [lemma, in sset6]
Worder.Zermelo_aux4 [lemma, in sset6]
Worder.Zermelo_axioms [definition, in sset6]
Worder.Zermelo_aux1 [lemma, in sset6]
Worder.Zermelo_aux2 [lemma, in sset6]
Worder.Zermelo_aux0 [lemma, in sset6]
Worder.Zermelo_aux3 [lemma, in sset6]
Worder.Zorn_aux [lemma, in sset6]
Worder.Zorn_lemma [lemma, in sset6]



Projection Index

B

Bunion.UI_z [in sset3]
Bunion.UI_elt [in sset3]


U

Union.Union_elt [in sset1]
Union.Union_param [in sset1]



Record Index

B

Bunion.Uintegral [in sset3]


U

Union.Union_integral [in sset1]



Lemma Index

A

Axioms.equal_or_not [in sset1]
Axioms.inc_or_not [in sset1]
Axioms.p_or_not_p [in sset1]


B

Bfunction.acreate_bijective [in sset2]
Bfunction.acreate_target [in sset2]
Bfunction.acreate_injective [in sset2]
Bfunction.acreate_surjective [in sset2]
Bfunction.acreate_W [in sset2]
Bfunction.acreate_function [in sset2]
Bfunction.acreate_exten [in sset2]
Bfunction.acreate_source [in sset2]
Bfunction.agrees_same_restrictionC [in sset2]
Bfunction.agrees_same_restriction [in sset2]
Bfunction.bcreate_eq [in sset2]
Bfunction.bcreate_inv2 [in sset2]
Bfunction.bcreate_inv1 [in sset2]
Bfunction.bcreate_inv3 [in sset2]
Bfunction.bcreate_bijective [in sset2]
Bfunction.bcreate_injective [in sset2]
Bfunction.bcreate_surjective [in sset2]
Bfunction.bcreate1_bijective [in sset2]
Bfunction.bcreate1_surjective [in sset2]
Bfunction.bcreate1_injective [in sset2]
Bfunction.bijectiveC_pr [in sset2]
Bfunction.bijective_ext_to_prod2C [in sset2]
Bfunction.bijective_double_inverseC [in sset2]
Bfunction.bijective_pr [in sset2]
Bfunction.bijective_inv_function [in sset2]
Bfunction.bijective_double_inverseC1 [in sset2]
Bfunction.bijective_from_compose [in sset2]
Bfunction.bijective_target_aux [in sset2]
Bfunction.bijective_inv_aux [in sset2]
Bfunction.bijective_source_aux [in sset2]
Bfunction.bijective_inverseC [in sset2]
Bfunction.bij_left_compose [in sset2]
Bfunction.bij_right_inverseC [in sset2]
Bfunction.bij_is_function [in sset2]
Bfunction.bij_left_inverse [in sset2]
Bfunction.bij_left_inverseC [in sset2]
Bfunction.bij_right_inverse [in sset2]
Bfunction.bij_right_compose [in sset2]
Bfunction.bl_graph1 [in sset2]
Bfunction.bl_function [in sset2]
Bfunction.bl_graph2 [in sset2]
Bfunction.bl_graph4 [in sset2]
Bfunction.bl_target [in sset2]
Bfunction.bl_injective [in sset2]
Bfunction.bl_W [in sset2]
Bfunction.bl_bijective [in sset2]
Bfunction.bl_graph3 [in sset2]
Bfunction.bl_source [in sset2]
Bfunction.bl_surjective [in sset2]
Bfunction.bl_recovers [in sset2]
Bfunction.bourbaki_ex5_17 [in sset2]
Bfunction.canonical_decomposition1C [in sset2]
Bfunction.canonical_decomposition1 [in sset2]
Bfunction.ci_injective [in sset2]
Bfunction.ci_W [in sset2]
Bfunction.ci_range [in sset2]
Bfunction.ci_function [in sset2]
Bfunction.composable_f_inv [in sset2]
Bfunction.composable_pr1 [in sset2]
Bfunction.composable_acreate [in sset2]
Bfunction.composable_inv_f [in sset2]
Bfunction.composable_ext_to_prod2 [in sset2]
Bfunction.composable_pr [in sset2]
Bfunction.composeC_ev [in sset2]
Bfunction.composeC_surj [in sset2]
Bfunction.composeC_inj [in sset2]
Bfunction.composeC_bij [in sset2]
Bfunction.compose_bijective [in sset2]
Bfunction.compose_surjective [in sset2]
Bfunction.compose_source [in sset2]
Bfunction.compose_acreate [in sset2]
Bfunction.compose_W [in sset2]
Bfunction.compose_id_left [in sset2]
Bfunction.compose_ext_to_prod2C [in sset2]
Bfunction.compose_id_right [in sset2]
Bfunction.compose_id_leftC [in sset2]
Bfunction.compose_id_rightC [in sset2]
Bfunction.compose_target [in sset2]
Bfunction.compose_domain [in sset2]
Bfunction.compose_injective [in sset2]
Bfunction.compose_function [in sset2]
Bfunction.compose_ext_to_prod2 [in sset2]
Bfunction.compose_assoc [in sset2]
Bfunction.compositionC_associative [in sset2]
Bfunction.constant_target [in sset2]
Bfunction.constant_source [in sset2]
Bfunction.constant_fun_prC [in sset2]
Bfunction.constant_function_fun [in sset2]
Bfunction.constant_W [in sset2]
Bfunction.constant_function_pr [in sset2]
Bfunction.constant_function_prop2 [in sset2]
Bfunction.constant_fun_pr [in sset2]
Bfunction.constant_fun_constantC [in sset2]
Bfunction.constant_graph [in sset2]
Bfunction.constant_constant_fun [in sset2]
Bfunction.diag_app_injective [in sset2]
Bfunction.diag_app_W [in sset2]
Bfunction.diag_app_range [in sset2]
Bfunction.diag_app_function [in sset2]
Bfunction.direct_inv_im [in sset2]
Bfunction.direct_inv_im_surjective [in sset2]
Bfunction.empty_function_prop [in sset2]
Bfunction.empty_function_graph [in sset2]
Bfunction.empty_function_function [in sset2]
Bfunction.equipotentC [in sset2]
Bfunction.equipotent_aux [in sset2]
Bfunction.equipotent_symmetric [in sset2]
Bfunction.equipotent_reflexive [in sset2]
Bfunction.equipotent_transitive [in sset2]
Bfunction.equipotent_prod_singleton [in sset2]
Bfunction.exists_right_inv_from_surjC [in sset2]
Bfunction.exists_unique_left_composable [in sset2]
Bfunction.exists_left_composable [in sset2]
Bfunction.exists_left_composable_aux [in sset2]
Bfunction.exists_left_composable_auxC [in sset2]
Bfunction.exists_right_composable [in sset2]
Bfunction.exists_left_inv_from_injC [in sset2]
Bfunction.exists_right_composableC [in sset2]
Bfunction.exists_right_composable_aux [in sset2]
Bfunction.exists_unique_left_composableC [in sset2]
Bfunction.exists_left_inv_from_inj [in sset2]
Bfunction.exists_right_composable_uniqueC [in sset2]
Bfunction.exists_left_composableC [in sset2]
Bfunction.exists_right_composable_unique [in sset2]
Bfunction.exists_right_inv_from_surj [in sset2]
Bfunction.exists_right_composable_auxC [in sset2]
Bfunction.extendsC_pr [in sset2]
Bfunction.ext_to_prod_surjective [in sset2]
Bfunction.ext_to_prod_propQ [in sset2]
Bfunction.ext_to_prod_prop [in sset2]
Bfunction.ext_to_prod_propJ [in sset2]
Bfunction.ext_to_prod_function [in sset2]
Bfunction.ext_to_prod_W2 [in sset2]
Bfunction.ext_to_prod_range [in sset2]
Bfunction.ext_to_prod_bijective [in sset2]
Bfunction.ext_to_prod_injective [in sset2]
Bfunction.ext_to_prod_inverse [in sset2]
Bfunction.ext_to_prod_W [in sset2]
Bfunction.ext_to_prod_propP [in sset2]
Bfunction.first_proj_W [in sset2]
Bfunction.first_proj_injective [in sset2]
Bfunction.first_proj_surjective [in sset2]
Bfunction.first_proj_function [in sset2]
Bfunction.function_exten3 [in sset2]
Bfunction.function_exten [in sset2]
Bfunction.function_extends_restr [in sset2]
Bfunction.function_rest_of_prolongation [in sset2]
Bfunction.function_extends_restC [in sset2]
Bfunction.function_graph [in sset2]
Bfunction.function_exten4 [in sset2]
Bfunction.function_exten2 [in sset2]
Bfunction.function_fgraph [in sset2]
Bfunction.function_exten1 [in sset2]
Bfunction.f_range_graph [in sset2]
Bfunction.f_domain_graph [in sset2]
Bfunction.identityC_bijective [in sset2]
Bfunction.identity_function [in sset2]
Bfunction.identity_prop2 [in sset2]
Bfunction.identity_W [in sset2]
Bfunction.identity_bijective [in sset2]
Bfunction.identity_prop [in sset2]
Bfunction.imageC_inc [in sset2]
Bfunction.imageC_exists [in sset2]
Bfunction.image_of_fun_range [in sset2]
Bfunction.image_singleton [in sset2]
Bfunction.image_by_fun_source [in sset2]
Bfunction.image_of_fun_pr [in sset2]
Bfunction.inclusionC_injective [in sset2]
Bfunction.inclusionC_compose [in sset2]
Bfunction.inclusionC_pr [in sset2]
Bfunction.inclusionC_identity [in sset2]
Bfunction.inc_W_range_graph [in sset2]
Bfunction.inc_pr1graph_source [in sset2]
Bfunction.inc_W_target [in sset2]
Bfunction.inc_pr2graph_target1 [in sset2]
Bfunction.inc_pr2graph_target [in sset2]
Bfunction.inc_graph_restriction2 [in sset2]
Bfunction.inc_pr1graph_source1 [in sset2]
Bfunction.injective_pr3 [in sset2]
Bfunction.injective_ext_to_prod2C [in sset2]
Bfunction.injective_pr [in sset2]
Bfunction.injective_pr_bis [in sset2]
Bfunction.inj_left_compose2 [in sset2]
Bfunction.inj_if_exists_left_invC [in sset2]
Bfunction.inj_right_composeC [in sset2]
Bfunction.inj_is_function [in sset2]
Bfunction.inj_right_compose [in sset2]
Bfunction.inj_left_compose2C [in sset2]
Bfunction.inj_if_exists_left_inv [in sset2]
Bfunction.inverseC_pra [in sset2]
Bfunction.inverseC_prc [in sset2]
Bfunction.inverseC_prb [in sset2]
Bfunction.inverse_direct_image_inj [in sset2]
Bfunction.inverse_direct_image [in sset2]
Bfunction.inverse_ext_to_prod2C [in sset2]
Bfunction.inverse_fun_involutiveC [in sset2]
Bfunction.inverse_bij_is_bij [in sset2]
Bfunction.inv_function_bijective [in sset2]
Bfunction.inv_graph_canon_bijective [in sset2]
Bfunction.inv_graph_canon_function [in sset2]
Bfunction.inv_graph_canon_W [in sset2]
Bfunction.inv_image_complement [in sset2]
Bfunction.in_graph_W [in sset2]
Bfunction.is_functional [in sset2]
Bfunction.is_function_functional [in sset2]
Bfunction.is_function_pr [in sset2]
Bfunction.left_inverse_from_rightC [in sset2]
Bfunction.left_inverse_composeC [in sset2]
Bfunction.left_inverse_compose [in sset2]
Bfunction.left_inverse_surjectiveC [in sset2]
Bfunction.left_inv_compose_rf2 [in sset2]
Bfunction.left_inverseC_pr [in sset2]
Bfunction.left_inv_compose_rf2C [in sset2]
Bfunction.left_inverse_composable [in sset2]
Bfunction.left_composable_value [in sset2]
Bfunction.left_composable_valueC [in sset2]
Bfunction.left_inverse_comp_id [in sset2]
Bfunction.left_inverse_from_right [in sset2]
Bfunction.left_inverse_surjective [in sset2]
Bfunction.left_inv_compose_rfC [in sset2]
Bfunction.left_inv_compose_rf [in sset2]
Bfunction.partial_fun1_function [in sset2]
Bfunction.partial_fun2_function [in sset2]
Bfunction.partial_fun1_W [in sset2]
Bfunction.partial_fun2_W [in sset2]
Bfunction.partial_fun2_axioms [in sset2]
Bfunction.partial_fun1_axioms [in sset2]
Bfunction.prC_prop [in sset2]
Bfunction.prJ_recov [in sset2]
Bfunction.prJ_prop [in sset2]
Bfunction.prop_acreate [in sset2]
Bfunction.prop_bcreate1 [in sset2]
Bfunction.prop_bcreate2 [in sset2]
Bfunction.pr1C_prop [in sset2]
Bfunction.pr2C_prop [in sset2]
Bfunction.range_inc_rw [in sset2]
Bfunction.related_inc_source [in sset2]
Bfunction.restriction_recovers [in sset2]
Bfunction.restriction_function [in sset2]
Bfunction.restriction_graph1 [in sset2]
Bfunction.restriction_to_image_pr [in sset2]
Bfunction.restriction_W [in sset2]
Bfunction.restriction1_function [in sset2]
Bfunction.restriction1_W [in sset2]
Bfunction.restriction1_bijective [in sset2]
Bfunction.restriction1_pr [in sset2]
Bfunction.restriction1_surjective [in sset2]
Bfunction.restriction2C_pr [in sset2]
Bfunction.restriction2C_pr1 [in sset2]
Bfunction.restriction2_injective [in sset2]
Bfunction.restriction2_surjective [in sset2]
Bfunction.restriction2_graph [in sset2]
Bfunction.restriction2_props [in sset2]
Bfunction.restriction2_function [in sset2]
Bfunction.restriction2_W [in sset2]
Bfunction.restr_domain2 [in sset2]
Bfunction.restr_range [in sset2]
Bfunction.restr_tack_on [in sset2]
Bfunction.right_inv_compose_rfC [in sset2]
Bfunction.right_inv_compose_rf2 [in sset2]
Bfunction.right_inverse_pr [in sset2]
Bfunction.right_composable_valueC [in sset2]
Bfunction.right_composable_value [in sset2]
Bfunction.right_inverse_injectiveC [in sset2]
Bfunction.right_inverse_compose [in sset2]
Bfunction.right_inverse_injective [in sset2]
Bfunction.right_inverse_composeC [in sset2]
Bfunction.right_inverse_from_left [in sset2]
Bfunction.right_inverse_composable [in sset2]
Bfunction.right_inv_compose_rf2C [in sset2]
Bfunction.right_inverse_from_leftC [in sset2]
Bfunction.right_inv_compose_rf [in sset2]
Bfunction.right_inverse_comp_id [in sset2]
Bfunction.same_graph_agrees [in sset2]
Bfunction.second_proj_W [in sset2]
Bfunction.second_proj_surjective [in sset2]
Bfunction.second_proj_function [in sset2]
Bfunction.section_uniqueC [in sset2]
Bfunction.section_unique [in sset2]
Bfunction.source_right_inverse [in sset2]
Bfunction.source_extends [in sset2]
Bfunction.special_empty_function [in sset2]
Bfunction.sub_inv_im_source [in sset2]
Bfunction.sub_image_targetC [in sset2]
Bfunction.sub_image_target1 [in sset2]
Bfunction.sub_function [in sset2]
Bfunction.sub_image_target [in sset2]
Bfunction.surjective_pr4 [in sset2]
Bfunction.surjective_pr6 [in sset2]
Bfunction.surjective_pr5 [in sset2]
Bfunction.surjective_pr2 [in sset2]
Bfunction.surjective_pr3 [in sset2]
Bfunction.surjective_pr [in sset2]
Bfunction.surjective_ext_to_prod2C [in sset2]
Bfunction.surj_left_composeC [in sset2]
Bfunction.surj_if_exists_right_invC [in sset2]
Bfunction.surj_if_exists_right_inv [in sset2]
Bfunction.surj_left_compose2 [in sset2]
Bfunction.surj_left_compose2C [in sset2]
Bfunction.surj_is_function [in sset2]
Bfunction.surj_left_compose [in sset2]
Bfunction.tack_on_W_out [in sset2]
Bfunction.tack_on_g_injective [in sset2]
Bfunction.tack_on_V_in [in sset2]
Bfunction.tack_on_f_injective [in sset2]
Bfunction.tack_on_function [in sset2]
Bfunction.tack_on_V_out [in sset2]
Bfunction.tack_on_surjective [in sset2]
Bfunction.tack_on_restr [in sset2]
Bfunction.tack_on_W_in [in sset2]
Bfunction.tack_on_corresp [in sset2]
Bfunction.target_left_inverse [in sset2]
Bfunction.W_pr3 [in sset2]
Bfunction.W_inverse [in sset2]
Bfunction.W_inverse3 [in sset2]
Bfunction.w_left_inverse [in sset2]
Bfunction.W_mapping [in sset2]
Bfunction.W_left_inverse [in sset2]
Bfunction.W_image [in sset2]
Bfunction.w_right_inverse [in sset2]
Bfunction.W_pr [in sset2]
Bfunction.W_pr2 [in sset2]
Bfunction.W_right_inverse [in sset2]
Bfunction.W_inverse2 [in sset2]
Bfunction.W_extends [in sset2]
Border.adjoin_greatest [in sset5]
Border.axioms_of_order [in sset5]
Border.bounded_above_sub [in sset5]
Border.bounded_both_sub [in sset5]
Border.bounded_below_sub [in sset5]
Border.coarser_preorder_related [in sset5]
Border.coarser_related [in sset5]
Border.coarser_preorder_substrate [in sset5]
Border.coarser_preorder_related1 [in sset5]
Border.coarser_preorder_order [in sset5]
Border.coarser_substrate [in sset5]
Border.coarser_related_bis [in sset5]
Border.coarser_order [in sset5]
Border.cofinal_right_directed [in sset5]
Border.coinitial_left_directed [in sset5]
Border.compare_inf_sup1 [in sset5]
Border.compare_inf_sup2 [in sset5]
Border.compatible_equivalence_preorder [in sset5]
Border.compatible_equivalence_preorder1 [in sset5]
Border.complementary_decreasing [in sset5]
Border.compose3_related [in sset5]
Border.constant_fun_decreasing [in sset5]
Border.constant_fun_increasing [in sset5]
Border.decreasing_composition [in sset5]
Border.decreasing_fun_revb [in sset5]
Border.decreasing_fun_reva [in sset5]
Border.decreasing_fun_from_strict [in sset5]
Border.diagonal_order [in sset5]
Border.eao_related [in sset5]
Border.emptyset_is_least [in sset5]
Border.empty_function_tg_function [in sset5]
Border.empty_interval [in sset5]
Border.equality_is_order [in sset5]
Border.equivalence_preorder1 [in sset5]
Border.equivalence_preorder [in sset5]
Border.exists_greatest_cofinal [in sset5]
Border.exists_least_coinitial [in sset5]
Border.extends_in_prop [in sset5]
Border.extension_order_pr1 [in sset5]
Border.extension_order_pr2 [in sset5]
Border.extension_order_pr [in sset5]
Border.extension_order_rw [in sset5]
Border.extension_is_order [in sset5]
Border.function_order_order [in sset5]
Border.function_order_pr [in sset5]
Border.function_order_reflexive [in sset5]
Border.function_order_isomorphism [in sset5]
Border.function_order_substrate [in sset5]
Border.function_order_isomorphic [in sset5]
Border.ggt_inva [in sset5]
Border.ggt_invb [in sset5]
Border.glt_inva [in sset5]
Border.gop_axioms [in sset5]
Border.gop_W [in sset5]
Border.gop_morphism [in sset5]
Border.graph_of_function_isomorphism [in sset5]
Border.graph_order_pr1 [in sset5]
Border.graph_of_function_bijective [in sset5]
Border.graph_of_function_fonction [in sset5]
Border.graph_order_substrate [in sset5]
Border.graph_of_function_axioms [in sset5]
Border.graph_on_rw3 [in sset5]
Border.graph_of_function_W [in sset5]
Border.graph_order_r_pr [in sset5]
Border.graph_of_function_sub [in sset5]
Border.graph_order_pr [in sset5]
Border.graph_order_order [in sset5]
Border.greater_upper_bound [in sset5]
Border.greatest_lower_bound_emptyset [in sset5]
Border.greatest_prolongation [in sset5]
Border.greatest_is_sup [in sset5]
Border.greatest_lower_bound_doubleton [in sset5]
Border.greatest_right_directed [in sset5]
Border.greatest_maximal [in sset5]
Border.greatest_induced [in sset5]
Border.greatest_lower_bound_pr [in sset5]
Border.greatest_reverse [in sset5]
Border.greatest_is_union [in sset5]
Border.greatest_element_pr [in sset5]
Border.greatest_unique_maximal [in sset5]
Border.identity_increasing_decreasing [in sset5]
Border.inclusion_order_rw [in sset5]
Border.inclusion_is_order [in sset5]
Border.increasing_fun_reva [in sset5]
Border.increasing_fun_from_strict [in sset5]
Border.increasing_fun_revb [in sset5]
Border.inc_supremum_substrate [in sset5]
Border.inc_infimum_substrate [in sset5]
Border.induced_order_substrate [in sset5]
Border.infimum_pr2 [in sset5]
Border.infimum_unique [in sset5]
Border.infimum_pr [in sset5]
Border.infimum_pr1 [in sset5]
Border.inf_inclusion [in sset5]
Border.inf_distributive2 [in sset5]
Border.inf_distributive [in sset5]
Border.inf_induced1 [in sset5]
Border.inf_pr [in sset5]
Border.inf_comparable [in sset5]
Border.inf_decreasing1 [in sset5]
Border.inf_induced2 [in sset5]
Border.inf_comparable1 [in sset5]
Border.inf_in_total_order [in sset5]
Border.inf_sup_opp [in sset5]
Border.inf_distributive1 [in sset5]
Border.inf_decreasing [in sset5]
Border.inf_in_product [in sset5]
Border.inf_distributive3 [in sset5]
Border.inf_increasing2 [in sset5]
Border.intersection_is_inf1 [in sset5]
Border.intersection_interval [in sset5]
Border.intersection_is_inf [in sset5]
Border.intersection_i1 [in sset5]
Border.intersection_i2 [in sset5]
Border.intersection_i3 [in sset5]
Border.intersection_is_least [in sset5]
Border.intersection4 [in sset5]
Border.inter_rel_order [in sset5]
Border.iorder_gle6 [in sset5]
Border.iorder_gle5 [in sset5]
Border.iorder_gle3 [in sset5]
Border.iorder_gle [in sset5]
Border.iorder_gle1 [in sset5]
Border.iorder_gle2 [in sset5]
Border.iorder_gle4 [in sset5]
Border.is_inf_graph_pr [in sset5]
Border.is_inf_fun_pr [in sset5]
Border.is_sup_graph_pr1 [in sset5]
Border.is_sup_graph_pr [in sset5]
Border.is_sup_fun_pr [in sset5]
Border.is_inf_graph_pr1 [in sset5]
Border.largest_partition_is_largest [in sset5]
Border.lattice_inf_pr [in sset5]
Border.lattice_directed [in sset5]
Border.lattice_sup_pr [in sset5]
Border.lattice_inverse [in sset5]
Border.least_left_directed [in sset5]
Border.least_induced [in sset5]
Border.least_unique_minimal [in sset5]
Border.least_element_pr [in sset5]
Border.least_upper_bound_emptyset [in sset5]
Border.least_equivalence [in sset5]
Border.least_not_greatest [in sset5]
Border.least_upper_bound_doubleton [in sset5]
Border.least_is_inf [in sset5]
Border.least_minimal [in sset5]
Border.least_reverse [in sset5]
Border.least_prolongation [in sset5]
Border.least_is_intersection [in sset5]
Border.least_upper_bound_pr [in sset5]
Border.left_directed_pr [in sset5]
Border.left_directed_mimimal [in sset5]
Border.leq_lt_trans [in sset5]
Border.le_pr [in sset5]
Border.le_antisym [in sset5]
Border.lt_leq_trans [in sset5]
Border.lt_lt_trans [in sset5]
Border.maximal_opposite [in sset5]
Border.maximal_prolongation [in sset5]
Border.maximal_element_opp [in sset5]
Border.minimal_inclusion [in sset5]
Border.minimal_element_opp [in sset5]
Border.monotone_fun_reva [in sset5]
Border.monotone_fun_revb [in sset5]
Border.nondisjoint [in sset5]
Border.nonempty_closed_interval [in sset5]
Border.not_le_gt [in sset5]
Border.opposite_upper_bound [in sset5]
Border.opposite_is_order [in sset5]
Border.opposite_gle [in sset5]
Border.opposite_right_directed [in sset5]
Border.opposite_is_order_r [in sset5]
Border.opposite_lower_bound [in sset5]
Border.opposite_induced [in sset5]
Border.opposite_gge [in sset5]
Border.opposite_is_preorder_r [in sset5]
Border.opposite_left_directed [in sset5]
Border.opposite_is_preorder1 [in sset5]
Border.order_associated_pr [in sset5]
Border.order_has_graph [in sset5]
Border.order_associated_related2 [in sset5]
Border.order_is_graph [in sset5]
Border.order_is_order [in sset5]
Border.order_associated_order [in sset5]
Border.order_isomorphism_increasing [in sset5]
Border.order_has_graph2 [in sset5]
Border.order_pr [in sset5]
Border.order_with_greatest_pr [in sset5]
Border.order_isomorphism_pr [in sset5]
Border.order_if_has_graph2 [in sset5]
Border.order_transitivity [in sset5]
Border.order_transportation [in sset5]
Border.order_isomorphism_opposite [in sset5]
Border.order_morphism_increasing [in sset5]
Border.order_reflexivity_pr [in sset5]
Border.order_from_rel [in sset5]
Border.order_associated_substrate [in sset5]
Border.order_reflexivity [in sset5]
Border.order_associated_related1 [in sset5]
Border.order_symmetricity_pr [in sset5]
Border.order_if_has_graph [in sset5]
Border.order_associated_graph [in sset5]
Border.order_induced_order [in sset5]
Border.order_has_graph0 [in sset5]
Border.order_antisymmetry [in sset5]
Border.order_from_rel1 [in sset5]
Border.order_preorder [in sset5]
Border.partition_relation_set_pr [in sset5]
Border.partition_relation_set_order [in sset5]
Border.partition_set_in_double_powerset [in sset5]
Border.partition_relation_set_pr1 [in sset5]
Border.partition_relation_set_order_antisymmetric [in sset5]
Border.pfs_partition [in sset5]
Border.pfs_function [in sset5]
Border.pfs_W [in sset5]
Border.powerset_lattice [in sset5]
Border.preorder_graph [in sset5]
Border.preorder_prop1 [in sset5]
Border.preorder_induced_order [in sset5]
Border.preorder_is_preorder [in sset5]
Border.preorder_reflexivity [in sset5]
Border.preorder_from_rel [in sset5]
Border.preorder_prop2 [in sset5]
Border.preorder_prop [in sset5]
Border.product_right_directed [in sset5]
Border.product_lattice [in sset5]
Border.product_order_order [in sset5]
Border.product_order_substrate [in sset5]
Border.product_left_directed [in sset5]
Border.product_order_axioms_x [in sset5]
Border.product_order_def [in sset5]
Border.product_order_related [in sset5]
Border.product2_order_preorder_substrate [in sset5]
Border.product2_order_preorder [in sset5]
Border.product2_order_order [in sset5]
Border.product2_order_pr [in sset5]
Border.product2_order_substrate [in sset5]
Border.prod_of_substrates_rw [in sset5]
Border.prs_is_equivalence [in sset5]
Border.reflexive_induced_order [in sset5]
Border.relation_induced_order [in sset5]
Border.right_directed_pr [in sset5]
Border.right_directed_maximal [in sset5]
Border.set_of_upper_bounds_emptyset [in sset5]
Border.set_of_graphs_pr [in sset5]
Border.set_of_preorders_rw [in sset5]
Border.set_of_majorants1_decreasing [in sset5]
Border.set_of_majorants1_pr [in sset5]
Border.set_of_partition_rw [in sset5]
Border.set_of_lower_bounds_emptyset [in sset5]
Border.singleton_bounded [in sset5]
Border.singleton_interval [in sset5]
Border.smaller_lower_bound [in sset5]
Border.smallest_partition_is_smallest [in sset5]
Border.strict_increasing_fun_revb [in sset5]
Border.strict_decreasing_from_injective [in sset5]
Border.strict_monotone_from_injective [in sset5]
Border.strict_increasing_from_injective [in sset5]
Border.strict_decreasing_fun_revb [in sset5]
Border.strict_monotone_fun_reva [in sset5]
Border.strict_monotone_fun_revb [in sset5]
Border.strict_decreasing_fun_reva [in sset5]
Border.strict_increasing_fun_reva [in sset5]
Border.subinclusion_is_order [in sset5]
Border.subinclusion_order_rw [in sset5]
Border.substrate_graph_on [in sset5]
Border.substrate_extension_order [in sset5]
Border.substrate_subinclusion_order [in sset5]
Border.substrate_inclusion_order [in sset5]
Border.substrate_induced_order [in sset5]
Border.substrate_domain_order [in sset5]
Border.substrate_opposite_order [in sset5]
Border.substrate_induced_order1 [in sset5]
Border.substrate_equivalence_associated_o [in sset5]
Border.sub_is_order [in sset5]
Border.sub_upper_bound [in sset5]
Border.sub_lower_bound [in sset5]
Border.sub_partition_relation_set_coarse [in sset5]
Border.supremum_unique [in sset5]
Border.supremum_pr1 [in sset5]
Border.supremum_pr [in sset5]
Border.supremum_pr2 [in sset5]
Border.sup_pr [in sset5]
Border.sup_distributive1 [in sset5]
Border.sup_comparable [in sset5]
Border.sup_induced2 [in sset5]
Border.sup_induced1 [in sset5]
Border.sup_extension_order1 [in sset5]
Border.sup_comparable1 [in sset5]
Border.sup_increasing2 [in sset5]
Border.sup_in_product [in sset5]
Border.sup_inf_opp [in sset5]
Border.sup_in_total_order [in sset5]
Border.sup_increasing [in sset5]
Border.sup_distributive3 [in sset5]
Border.sup_distributive2 [in sset5]
Border.sup_increasing1 [in sset5]
Border.sup_extension_order2 [in sset5]
Border.sup_distributive [in sset5]
Border.sup_inclusion [in sset5]
Border.the_least_interval [in sset5]
Border.the_least_reverse [in sset5]
Border.the_greatest_element_pr [in sset5]
Border.the_greatest_element_pr2 [in sset5]
Border.the_least_element_pr [in sset5]
Border.the_least_element_pr2 [in sset5]
Border.the_greatest_interval [in sset5]
Border.total_order_monotone_injective [in sset5]
Border.total_order_opposite [in sset5]
Border.total_order_lattice [in sset5]
Border.total_order_increasing_morphism [in sset5]
Border.total_order_conterexample [in sset5]
Border.total_order_directed [in sset5]
Border.total_order_sub [in sset5]
Border.total_order_pr2 [in sset5]
Border.total_order_pr1 [in sset5]
Border.total_order_pr [in sset5]
Border.total_order_small [in sset5]
Border.transitive_induced_order [in sset5]
Border.union_is_greatest [in sset5]
Border.union_is_sup1 [in sset5]
Border.union_is_sup [in sset5]
Border.unique_least [in sset5]
Border.unique_greatest [in sset5]
Border.wholeset_is_greatest [in sset5]
Bordinal.CantorBernstein [in sset7]
Bordinal.Cantor_Bernstein1 [in sset7]
Bordinal.cardinalV_unique [in sset7]
Bordinal.cardinalV_exists [in sset7]
Bordinal.cardinalV_pr [in sset7]
Bordinal.cardinal_succ_pr [in sset7]
Bordinal.cardinal_ordinal [in sset7]
Bordinal.cardinal_irreflexive [in sset7]
Bordinal.cardinal_cardinal [in sset7]
Bordinal.cardinal_pr [in sset7]
Bordinal.cardinal_equipotent [in sset7]
Bordinal.cardinal_succ_pr2 [in sset7]
Bordinal.cardinal_pr0 [in sset7]
Bordinal.cardinal_of_cardinal [in sset7]
Bordinal.cardinal_succ_pr1 [in sset7]
Bordinal.Cardinal.cardinalE [in sset7]
Bordinal.cardinal0 [in sset7]
Bordinal.cardinal1 [in sset7]
Bordinal.cardinal2 [in sset7]
Bordinal.decent_union [in sset7]
Bordinal.decent_succ [in sset7]
Bordinal.decent_intersection [in sset7]
Bordinal.double_cardinal [in sset7]
Bordinal.elt_of_ordinal [in sset7]
Bordinal.equipotent_restriction1 [in sset7]
Bordinal.equipotent_to_emptyset [in sset7]
Bordinal.equipotent_range [in sset7]
Bordinal.finite_o_pr [in sset7]
Bordinal.finite_cardinal_pr1 [in sset7]
Bordinal.finite_one [in sset7]
Bordinal.finite_o_increasing [in sset7]
Bordinal.finite_cardinal_pr [in sset7]
Bordinal.finite_cardinal_pr2 [in sset7]
Bordinal.finite_zero [in sset7]
Bordinal.finite_two [in sset7]
Bordinal.finite_succ [in sset7]
Bordinal.infinite_set_pr1 [in sset7]
Bordinal.infinite_dichot1 [in sset7]
Bordinal.infinite_o_pr [in sset7]
Bordinal.infinite_set_pr2 [in sset7]
Bordinal.infinite_dichot2 [in sset7]
Bordinal.infinite_set_pr [in sset7]
Bordinal.infinite_o_increasing [in sset7]
Bordinal.infinite_nonempty [in sset7]
Bordinal.infinite_pr1 [in sset7]
Bordinal.infinite_card_limit2 [in sset7]
Bordinal.infinite_card_limit1 [in sset7]
Bordinal.isomorphism_worder2 [in sset7]
Bordinal.is_cardinal_pr [in sset7]
Bordinal.limit_ordinal_pr2 [in sset7]
Bordinal.limit_ordinal_pr1 [in sset7]
Bordinal.limit_infinite [in sset7]
Bordinal.limit_ordinal_pr0 [in sset7]
Bordinal.nat_infinite_set [in sset7]
Bordinal.non_collectivizing_ordinal [in sset7]
Bordinal.omega_limit3 [in sset7]
Bordinal.omega0_pr2 [in sset7]
Bordinal.omega0_pr [in sset7]
Bordinal.omega0_cardinal [in sset7]
Bordinal.omega0_limit2 [in sset7]
Bordinal.omega0_pr1 [in sset7]
Bordinal.omega0_limit [in sset7]
Bordinal.omega0_limit1 [in sset7]
Bordinal.omega0_infinite [in sset7]
Bordinal.omega0_ordinal [in sset7]
Bordinal.orderIR [in sset7]
Bordinal.orderIS [in sset7]
Bordinal.orderIT [in sset7]
Bordinal.order_isomorphism_pr2 [in sset7]
Bordinal.order_morphism_pr0 [in sset7]
Bordinal.order_le_alt [in sset7]
Bordinal.order_le_alt2 [in sset7]
Bordinal.order_isomorphism_morphism [in sset7]
Bordinal.order_le_compatible1 [in sset7]
Bordinal.order_isomorphism_pr0 [in sset7]
Bordinal.order_isomorphism_pr1 [in sset7]
Bordinal.order_morphism_pr1 [in sset7]
Bordinal.order_morphism_pr2 [in sset7]
Bordinal.order_le_compatible [in sset7]
Bordinal.ordinal_irreflexive [in sset7]
Bordinal.ordinal_p3 [in sset7]
Bordinal.ordinal_segment1 [in sset7]
Bordinal.ordinal_le_antisymmetric [in sset7]
Bordinal.ordinal_le_total_order2 [in sset7]
Bordinal.ordinal_le_lt_trans [in sset7]
Bordinal.ordinal_isomorphism_unique [in sset7]
Bordinal.ordinal_le_order_r [in sset7]
Bordinal.ordinal_succ_pr [in sset7]
Bordinal.ordinal_p1 [in sset7]
Bordinal.ordinal_sub4 [in sset7]
Bordinal.ordinal_p7 [in sset7]
Bordinal.ordinal_p4 [in sset7]
Bordinal.ordinal_p5 [in sset7]
Bordinal.ordinal_isomorphism_exists [in sset7]
Bordinal.ordinal_lt_le_trans [in sset7]
Bordinal.ordinal_one [in sset7]
Bordinal.ordinal_o_lt [in sset7]
Bordinal.ordinal_segment [in sset7]
Bordinal.ordinal_transitive_decent [in sset7]
Bordinal.ordinal_le_reflexive [in sset7]
Bordinal.ordinal_sub2 [in sset7]
Bordinal.ordinal_two [in sset7]
Bordinal.ordinal_worder2 [in sset7]
Bordinal.ordinal_lt_pr2 [in sset7]
Bordinal.ordinal_zero [in sset7]
Bordinal.ordinal_asymmetric [in sset7]
Bordinal.ordinal_le_pr [in sset7]
Bordinal.ordinal_pr [in sset7]
Bordinal.ordinal_lt_pr0 [in sset7]
Bordinal.ordinal_least [in sset7]
Bordinal.ordinal_worder [in sset7]
Bordinal.ordinal_le_pr1 [in sset7]
Bordinal.ordinal_lt_pr1 [in sset7]
Bordinal.ordinal_succ [in sset7]
Bordinal.ordinal_predecessor1 [in sset7]
Bordinal.ordinal_trichotomy [in sset7]
Bordinal.ordinal_le_pr0 [in sset7]
Bordinal.ordinal_predecessor [in sset7]
Bordinal.ordinal_le_antisymmetry1 [in sset7]
Bordinal.ordinal_sub3 [in sset7]
Bordinal.ordinal_pr1 [in sset7]
Bordinal.ordinal_le_total_order1 [in sset7]
Bordinal.ordinal_intersection [in sset7]
Bordinal.ordinal_decent [in sset7]
Bordinal.ordinal_p2 [in sset7]
Bordinal.ordinal_le_transitive [in sset7]
Bordinal.ordinal_sub [in sset7]
Bordinal.ordinal_transitive [in sset7]
Bordinal.ordinal_le_total_order [in sset7]
Bordinal.ordinal_worder1 [in sset7]
Bordinal.ordinal_same_wo [in sset7]
Bordinal.ordinal_le_pr3 [in sset7]
Bordinal.ordinal_le_pr2 [in sset7]
Bordinal.ord_sup_pr4 [in sset7]
Bordinal.ord_sup_pr1 [in sset7]
Bordinal.ord_sup_pr3 [in sset7]
Bordinal.ord_sup_pr2 [in sset7]
Bordinal.ord_sup_unique [in sset7]
Bordinal.segments_iso1 [in sset7]
Bordinal.segments_iso2 [in sset7]
Bordinal.succ_injective_o [in sset7]
Bordinal.succ_o_one [in sset7]
Bordinal.succ_o_zero [in sset7]
Bordinal.succ_injective1 [in sset7]
Bordinal.tack_on_injective_card3 [in sset7]
Bordinal.tack_on_injective_card2 [in sset7]
Bordinal.tack_on_injective_card1 [in sset7]
Bordinal.total_order_isomorphism [in sset7]
Bordinal.total_order_morphism [in sset7]
Bordinal.transitive_intersection [in sset7]
Bordinal.transitive_succ [in sset7]
Bordinal.transitive_union [in sset7]
Bordinal.wordering_ordinal_le [in sset7]
Bordinal.Zermelo_ter [in sset7]
Bproduct.cf_injective [in sset3]
Bproduct.compose_V [in sset3]
Bproduct.constant_graph_function [in sset3]
Bproduct.constant_graph_V [in sset3]
Bproduct.constant_graph_is_constant [in sset3]
Bproduct.constant_graph_small_range [in sset3]
Bproduct.cst_graph_pr [in sset3]
Bproduct.diagonal_graph_rw [in sset3]
Bproduct.distrib_prod_inter2_prod [in sset3]
Bproduct.distrib_prod2_inter [in sset3]
Bproduct.distrib_inter_union [in sset3]
Bproduct.distrib_product2_inter [in sset3]
Bproduct.distrib_product2_union [in sset3]
Bproduct.distrib_union2_inter [in sset3]
Bproduct.distrib_inter2_union [in sset3]
Bproduct.distrib_inter_prod [in sset3]
Bproduct.distrib_union_inter [in sset3]
Bproduct.distrib_prod_intersection [in sset3]
Bproduct.distrib_prod_union [in sset3]
Bproduct.distrib_prod2_union [in sset3]
Bproduct.distrib_inter_prod_inter [in sset3]
Bproduct.extension_partial_product [in sset3]
Bproduct.ext_map_prod_WV [in sset3]
Bproduct.ext_map_prod_W [in sset3]
Bproduct.ext_map_prod_surjective [in sset3]
Bproduct.ext_map_prod_injective [in sset3]
Bproduct.ext_map_prod_compose [in sset3]
Bproduct.ext_map_prod_function [in sset3]
Bproduct.ext_map_prod_taxioms [in sset3]
Bproduct.ext_map_prod_composable [in sset3]
Bproduct.first_proj_bijective [in sset3]
Bproduct.fun_set_to_prod4 [in sset3]
Bproduct.fun_set_to_prod8 [in sset3]
Bproduct.fun_set_to_prod7 [in sset3]
Bproduct.fun_set_to_prod2 [in sset3]
Bproduct.fun_set_to_prod3 [in sset3]
Bproduct.fun_set_to_prod6 [in sset3]
Bproduct.fun_set_to_prod1 [in sset3]
Bproduct.gbcreate_domain [in sset3]
Bproduct.gbcreate_fgraph [in sset3]
Bproduct.gbcreate_graph [in sset3]
Bproduct.gbcreate_rw [in sset3]
Bproduct.gbcreate_V [in sset3]
Bproduct.graphset_pr1 [in sset3]
Bproduct.graphset_pr2 [in sset3]
Bproduct.graph_exten [in sset3]
Bproduct.nonempty_product3 [in sset3]
Bproduct.pam_W [in sset3]
Bproduct.pam_bijective [in sset3]
Bproduct.pam_function [in sset3]
Bproduct.pam_injective [in sset3]
Bproduct.pam_axioms [in sset3]
Bproduct.partition_product [in sset3]
Bproduct.pc_W [in sset3]
Bproduct.pc_bijective [in sset3]
Bproduct.pc_WV [in sset3]
Bproduct.pc_axioms0 [in sset3]
Bproduct.pc_function [in sset3]
Bproduct.pc_axioms [in sset3]
Bproduct.popc_target [in sset3]
Bproduct.popc_W [in sset3]
Bproduct.popc_target_aux [in sset3]
Bproduct.popc_bijection [in sset3]
Bproduct.popc_axioms [in sset3]
Bproduct.pri_surjective [in sset3]
Bproduct.pri_axioms [in sset3]
Bproduct.pri_function [in sset3]
Bproduct.pri_W [in sset3]
Bproduct.prj_surjective [in sset3]
Bproduct.prj_axioms [in sset3]
Bproduct.prj_W [in sset3]
Bproduct.prj_bijective [in sset3]
Bproduct.prj_function [in sset3]
Bproduct.prj_WV [in sset3]
Bproduct.productb_monotone2 [in sset3]
Bproduct.productb_exten [in sset3]
Bproduct.productb_monotone1 [in sset3]
Bproduct.productb_rw [in sset3]
Bproduct.productf_extension [in sset3]
Bproduct.productf_rw [in sset3]
Bproduct.productf_exten [in sset3]
Bproduct.productt_nonempty2 [in sset3]
Bproduct.productt_rw [in sset3]
Bproduct.productt_nonempty [in sset3]
Bproduct.productt_exten [in sset3]
Bproduct.product_singleton [in sset3]
Bproduct.product_eq_graphset [in sset3]
Bproduct.product_trivial [in sset3]
Bproduct.product_sub_graphset [in sset3]
Bproduct.product_nonempty2 [in sset3]
Bproduct.product_nonempty [in sset3]
Bproduct.product1_canon_axioms [in sset3]
Bproduct.product1_pr [in sset3]
Bproduct.product1_canon_bijective [in sset3]
Bproduct.product1_rw [in sset3]
Bproduct.product1_canon_function [in sset3]
Bproduct.product1_pr2 [in sset3]
Bproduct.product1_canon_W [in sset3]
Bproduct.product2_rw [in sset3]
Bproduct.product2_canon_W [in sset3]
Bproduct.product2_trivial [in sset3]
Bproduct.product2_canon_function [in sset3]
Bproduct.product2_canon_bijective [in sset3]
Bproduct.product2_canon_axioms [in sset3]
Bproduct.prod_of_products_fam_pr [in sset3]
Bproduct.prod_of_function_axioms [in sset3]
Bproduct.prod_of_function_function [in sset3]
Bproduct.prod_assoc_map2 [in sset3]
Bproduct.prod_of_products_W [in sset3]
Bproduct.prod_of_products_target [in sset3]
Bproduct.prod_of_prod_inc_target [in sset3]
Bproduct.prod_of_products_function [in sset3]
Bproduct.prod_of_products_source [in sset3]
Bproduct.prod_of_function_W [in sset3]
Bproduct.restriction_graph2 [in sset3]
Bproduct.trivial_fgraph [in sset3]
Bproduct.trivial_product1 [in sset3]
Bproduct.unionf_emptyset [in sset3]
Bproduct.variantLc_prop [in sset3]
Bproduct.variant_if_rw1 [in sset3]
Bproduct.variant_if_not_rw1 [in sset3]
Bunion.agrees_on_covering [in sset3]
Bunion.coarser_reflexive [in sset3]
Bunion.coarser_transitive [in sset3]
Bunion.coarser_same [in sset3]
Bunion.coarser_antisymmetric [in sset3]
Bunion.complementary_union1 [in sset3]
Bunion.complementary_intersection [in sset3]
Bunion.complementary_union [in sset3]
Bunion.complementary_intersection1 [in sset3]
Bunion.composable_for_function [in sset3]
Bunion.constant_function_pr3 [in sset3]
Bunion.constant_function_pr2 [in sset3]
Bunion.covering_pr [in sset3]
Bunion.covering_f_pr [in sset3]
Bunion.c3f_W [in sset3]
Bunion.c3f_bijective [in sset3]
Bunion.c3f_axioms [in sset3]
Bunion.c3f_surjective [in sset3]
Bunion.c3f_injective [in sset3]
Bunion.c3f_function [in sset3]
Bunion.disjoint_union_pr [in sset3]
Bunion.disjoint_union_disjoint [in sset3]
Bunion.disjoint_union_lemma [in sset3]
Bunion.du_index_pr [in sset3]
Bunion.empty_target_graph [in sset3]
Bunion.empty_unionf [in sset3]
Bunion.empty_uniont1 [in sset3]
Bunion.empty_unionf1 [in sset3]
Bunion.empty_set_of_functions_target [in sset3]
Bunion.empty_source_graph [in sset3]
Bunion.etp_injective [in sset3]
Bunion.etp_surjective [in sset3]
Bunion.etp_identity [in sset3]
Bunion.etp_axioms [in sset3]
Bunion.etp_W [in sset3]
Bunion.etp_compose [in sset3]
Bunion.etp_function [in sset3]
Bunion.etp_composable [in sset3]
Bunion.extension_covering1 [in sset3]
Bunion.extension_covering [in sset3]
Bunion.extension_partition1 [in sset3]
Bunion.extension_partition [in sset3]
Bunion.fpfa_bijective [in sset3]
Bunion.fpfa_axioms [in sset3]
Bunion.fpfa_W [in sset3]
Bunion.fpfa_function [in sset3]
Bunion.fpfb_WW [in sset3]
Bunion.fpfb_function [in sset3]
Bunion.fpfb_axioms [in sset3]
Bunion.fpfb_W [in sset3]
Bunion.fpf_W [in sset3]
Bunion.fpf_axioms [in sset3]
Bunion.fpf_function [in sset3]
Bunion.graph_axioms [in sset3]
Bunion.graph_bijective [in sset3]
Bunion.image_of_covering [in sset3]
Bunion.image_of_intersection [in sset3]
Bunion.image_of_union [in sset3]
Bunion.image_of_intersection2 [in sset3]
Bunion.image_of_union2 [in sset3]
Bunion.inc_set_of_gfunctions [in sset3]
Bunion.inc_disjoint_union [in sset3]
Bunion.injective_partition [in sset3]
Bunion.inj_image_of_intersection [in sset3]
Bunion.inj_image_of_intersection2 [in sset3]
Bunion.inj_image_of_comp [in sset3]
Bunion.intersectionb_rewrite [in sset3]
Bunion.intersectionb_empty [in sset3]
Bunion.intersectionb_rw [in sset3]
Bunion.intersectionb_exten [in sset3]
Bunion.intersectionb_forall [in sset3]
Bunion.intersectionb_inc [in sset3]
Bunion.intersectionf_rw [in sset3]
Bunion.intersectionf_forall [in sset3]
Bunion.intersectionf_exten [in sset3]
Bunion.intersectionf_singleton [in sset3]
Bunion.intersectionf_inc [in sset3]
Bunion.intersectionf_empty [in sset3]
Bunion.intersectiont_constant [in sset3]
Bunion.intersectiont_sub [in sset3]
Bunion.intersectiont_empty [in sset3]
Bunion.intersectiont_rw [in sset3]
Bunion.intersectiont_exten [in sset3]
Bunion.intersectiont_forall [in sset3]
Bunion.intersectiont_sub2 [in sset3]
Bunion.intersectiont_inc [in sset3]
Bunion.intersectiont_singleton [in sset3]
Bunion.intersectiont_rewrite [in sset3]
Bunion.intersection_union_distrib1 [in sset3]
Bunion.intersection_of_twosets_aux [in sset3]
Bunion.intersection_assoc [in sset3]
Bunion.intersection_of_twosets [in sset3]
Bunion.intersection_rw [in sset3]
Bunion.intersection_covering_coarser1 [in sset3]
Bunion.intersection_monotone2 [in sset3]
Bunion.intersection_is_covering [in sset3]
Bunion.intersection_monotone [in sset3]
Bunion.intersection_union_distrib2 [in sset3]
Bunion.intersection_covering_coarser3 [in sset3]
Bunion.intersection_covering2_pr [in sset3]
Bunion.intersection_cov_coarser1 [in sset3]
Bunion.intersection_cov_coarser3 [in sset3]
Bunion.intersection_cov_coarser2 [in sset3]
Bunion.intersection_prop [in sset3]
Bunion.intersection_covering_coarser2 [in sset3]
Bunion.intersection2_comp [in sset3]
Bunion.intersection2_complement [in sset3]
Bunion.inv_image_of_covering [in sset3]
Bunion.inv_image_disjoint [in sset3]
Bunion.inv_image_of_comp [in sset3]
Bunion.inv_image_of_intersection [in sset3]
Bunion.inv_image_of_intersection2 [in sset3]
Bunion.is_partition_with_complement [in sset3]
Bunion.largest_partition_pr [in sset3]
Bunion.mutually_disjoint_prop1 [in sset3]
Bunion.mutually_disjoint_prop [in sset3]
Bunion.mutually_disjoint_prop2 [in sset3]
Bunion.nonempty_domain [in sset3]
Bunion.nonempty_aux [in sset3]
Bunion.partial_fun_axioms_pr [in sset3]
Bunion.partion_union_disjoint [in sset3]
Bunion.partitionset_pr [in sset3]
Bunion.partitions_is_covering [in sset3]
Bunion.partition_inc_unique [in sset3]
Bunion.partition_fam_partition [in sset3]
Bunion.partition_smallest [in sset3]
Bunion.partition_inc_exists [in sset3]
Bunion.partition_largest [in sset3]
Bunion.partition_same [in sset3]
Bunion.partition_fam_is_covering [in sset3]
Bunion.partition_same2 [in sset3]
Bunion.product_of_covering [in sset3]
Bunion.product_is_covering2 [in sset3]
Bunion.set_of_gfunctions_inc [in sset3]
Bunion.set_of_functions_equipotent [in sset3]
Bunion.set_of_sub_functions_rw [in sset3]
Bunion.set_of_functions_extens [in sset3]
Bunion.set_of_functions_rw [in sset3]
Bunion.singleton_type_inj [in sset3]
Bunion.small_set_of_functions_source [in sset3]
Bunion.small_set_of_functions_target [in sset3]
Bunion.spfa_axioms [in sset3]
Bunion.spfa_W [in sset3]
Bunion.spfa_function [in sset3]
Bunion.spfa_bijective [in sset3]
Bunion.spfb_W [in sset3]
Bunion.spfb_function [in sset3]
Bunion.spfb_axioms [in sset3]
Bunion.spfb_WW [in sset3]
Bunion.spf_axioms [in sset3]
Bunion.spf_function [in sset3]
Bunion.spf_W [in sset3]
Bunion.sub_uniont2 [in sset3]
Bunion.sub_intersectiont [in sset3]
Bunion.sub_uniont [in sset3]
Bunion.sub_covering [in sset3]
Bunion.unionb_exists [in sset3]
Bunion.unionb_rewrite1 [in sset3]
Bunion.unionb_alt [in sset3]
Bunion.unionb_rewrite [in sset3]
Bunion.unionb_identity [in sset3]
Bunion.unionb_exten [in sset3]
Bunion.unionb_rw [in sset3]
Bunion.unionb_inc [in sset3]
Bunion.unionf_singleton [in sset3]
Bunion.unionf_exten [in sset3]
Bunion.unionf_inc [in sset3]
Bunion.unionf_rw [in sset3]
Bunion.unionf_exists [in sset3]
Bunion.uniont_rewrite [in sset3]
Bunion.uniont_inc [in sset3]
Bunion.uniont_sub [in sset3]
Bunion.uniont_singleton [in sset3]
Bunion.uniont_exten [in sset3]
Bunion.uniont_constant [in sset3]
Bunion.uniont_rw [in sset3]
Bunion.union_monotone [in sset3]
Bunion.union_monotone2 [in sset3]
Bunion.union_prop [in sset3]
Bunion.union_of_twosets_aux [in sset3]
Bunion.union_assoc [in sset3]
Bunion.union_of_twosets [in sset3]
Bunion.union2_complement [in sset3]
Bunion.union2_comp [in sset3]
Bunion.varianti_out [in sset3]
Bunion.varianti_in [in sset3]
Bunion.variantLc_domain [in sset3]
Bunion.variantLc_fgraph [in sset3]
Bunion.variantLc_domain_nonempty [in sset3]
Bunion.variant_fgraph [in sset3]
Bunion.variant_V_cb [in sset3]
Bunion.variant_V_ca [in sset3]
Bunion.variant_if_not_rw [in sset3]
Bunion.variant_V_b [in sset3]
Bunion.variant_V_a [in sset3]
Bunion.variant_if_rw [in sset3]
Bunion.variant_domain [in sset3]


C

Cardinal.cantor [in sset7]
Cardinal.cantor_bis [in sset7]
Cardinal.cardinal_singleton [in sset7]
Cardinal.cardinal_nonemptyset1 [in sset7]
Cardinal.cardinal_sum_pr3 [in sset7]
Cardinal.cardinal_sum_commutative2 [in sset7]
Cardinal.cardinal_emptyset [in sset7]
Cardinal.cardinal_le_when_complement [in sset7]
Cardinal.cardinal_supremum2 [in sset7]
Cardinal.cardinal_sum_pr1 [in sset7]
Cardinal.cardinal_doubleton [in sset7]
Cardinal.cardinal_antisymmetry1 [in sset7]
Cardinal.cardinal_prod_commutative [in sset7]
Cardinal.cardinal_le_total_order2 [in sset7]
Cardinal.cardinal_two_is_doubleton [in sset7]
Cardinal.cardinal_le_aux1 [in sset7]
Cardinal.cardinal_distrib_prod_sum3 [in sset7]
Cardinal.cardinal_commutativity_aux [in sset7]
Cardinal.cardinal_sum_assoc [in sset7]
Cardinal.cardinal_sum_pr [in sset7]
Cardinal.cardinal_distrib_prod2_sum [in sset7]
Cardinal.cardinal_le_transitive [in sset7]
Cardinal.cardinal_supremum [in sset7]
Cardinal.cardinal_equipotent1 [in sset7]
Cardinal.cardinal_le_lt_trans [in sset7]
Cardinal.cardinal_supremum1 [in sset7]
Cardinal.cardinal_distrib_prod_sum2 [in sset7]
Cardinal.cardinal_prod_pr [in sset7]
Cardinal.cardinal_complement1 [in sset7]
Cardinal.cardinal_le_total_order1 [in sset7]
Cardinal.cardinal_prod_assoc [in sset7]
Cardinal.cardinal_complement [in sset7]
Cardinal.cardinal_lt_le_trans [in sset7]
Cardinal.cardinal_prod_commutative2 [in sset7]
Cardinal.cardinal_nonemptyset [in sset7]
Cardinal.cardinal_le_total_order3 [in sset7]
Cardinal.cardinal_distrib_prod_sum [in sset7]
Cardinal.cardinal_sum_commutative [in sset7]
Cardinal.cardinal_le_aux2 [in sset7]
Cardinal.cardinal_sum_pr2 [in sset7]
Cardinal.cardinal_le_reflexive [in sset7]
Cardinal.card_commutative_aux [in sset7]
Cardinal.card_mult_pr2 [in sset7]
Cardinal.card_mult_pr [in sset7]
Cardinal.card_multC [in sset7]
Cardinal.card_mult_pr2b [in sset7]
Cardinal.card_powerset [in sset7]
Cardinal.card_mult_pr1 [in sset7]
Cardinal.card_one_not_two [in sset7]
Cardinal.card_le_two_prop [in sset7]
Cardinal.card_multA [in sset7]
Cardinal.card_plus_pr [in sset7]
Cardinal.card_plus_pr2 [in sset7]
Cardinal.card_pow_pr2 [in sset7]
Cardinal.card_plusC [in sset7]
Cardinal.card_two_pr [in sset7]
Cardinal.card_mult_pr0 [in sset7]
Cardinal.card_plus_pr1 [in sset7]
Cardinal.card_pow_pr3 [in sset7]
Cardinal.card_one_not_zero [in sset7]
Cardinal.card_plus_pr0 [in sset7]
Cardinal.card_plusA [in sset7]
Cardinal.card_pow_pr [in sset7]
Cardinal.card_mult_is_cardinal [in sset7]
Cardinal.card_two_not_zero [in sset7]
Cardinal.card_pow_pr1 [in sset7]
Cardinal.card_le_two_prop1 [in sset7]
Cardinal.card_plus_is_cardinal [in sset7]
Cardinal.card_le_one_prop1 [in sset7]
Cardinal.card_le_one_prop [in sset7]
Cardinal.card_plus_pr2b [in sset7]
Cardinal.disjointLv [in sset7]
Cardinal.disjoint_union2_pr1 [in sset7]
Cardinal.disjoint_union2_pr0 [in sset7]
Cardinal.disjoint_union2_pr4 [in sset7]
Cardinal.disjoint_union2_pr [in sset7]
Cardinal.disjoint_with_singleton [in sset7]
Cardinal.disjoint_union2_pr3 [in sset7]
Cardinal.distrib_inter_prod3 [in sset7]
Cardinal.distrib_inter_prod2 [in sset7]
Cardinal.distrib_prod2_sum [in sset7]
Cardinal.doubleton_fam_canon [in sset7]
Cardinal.doubleton_equipotent1 [in sset7]
Cardinal.equipotent_ex_pr [in sset7]
Cardinal.equipotent_productb [in sset7]
Cardinal.equipotent_product1 [in sset7]
Cardinal.equipotent_a_times_singl [in sset7]
Cardinal.equipotent_disjoint_union2 [in sset7]
Cardinal.equipotent_disjoint_union [in sset7]
Cardinal.equipotent_disjoint_union1 [in sset7]
Cardinal.equipotent_product [in sset7]
Cardinal.equipotent_product_sym [in sset7]
Cardinal.equipotent_singl_times_a [in sset7]
Cardinal.equipotent_productf [in sset7]
Cardinal.eq_subset_card1 [in sset7]
Cardinal.eq_subset_ex_inj [in sset7]
Cardinal.eq_subset_card [in sset7]
Cardinal.eq_subset_pr2 [in sset7]
Cardinal.image_smaller_cardinal [in sset7]
Cardinal.incr_fun_morph [in sset7]
Cardinal.inj_compose1 [in sset7]
Cardinal.not_card_le_lt [in sset7]
Cardinal.one_unit_prodl [in sset7]
Cardinal.one_small_cardinal [in sset7]
Cardinal.one_unit_prod [in sset7]
Cardinal.one_unit_prodr [in sset7]
Cardinal.one_small_cardinal1 [in sset7]
Cardinal.ordinal_cardinal_le [in sset7]
Cardinal.ord_non_zero_prop [in sset7]
Cardinal.power_of_sum2 [in sset7]
Cardinal.power_x_1 [in sset7]
Cardinal.power_of_prod3 [in sset7]
Cardinal.power_0_x [in sset7]
Cardinal.power_0_0 [in sset7]
Cardinal.power_of_prod2 [in sset7]
Cardinal.power_x_2 [in sset7]
Cardinal.power_of_sum [in sset7]
Cardinal.power_of_prod [in sset7]
Cardinal.power_x_0 [in sset7]
Cardinal.power_increasing1 [in sset7]
Cardinal.power_1_x [in sset7]
Cardinal.power_x_1c [in sset7]
Cardinal.product_increasing3 [in sset7]
Cardinal.product_increasing1 [in sset7]
Cardinal.product_increasing [in sset7]
Cardinal.product_increasing2 [in sset7]
Cardinal.product2associative [in sset7]
Cardinal.restriction_to_image_axioms [in sset7]
Cardinal.restriction_to_image_surjective [in sset7]
Cardinal.restriction_to_image_bijective [in sset7]
Cardinal.set_of_card_one [in sset7]
Cardinal.set_of_card_two [in sset7]
Cardinal.set_of_cardinals_pr [in sset7]
Cardinal.singletons_equipotent [in sset7]
Cardinal.sub_smaller [in sset7]
Cardinal.succ_injective [in sset7]
Cardinal.sum_of_same [in sset7]
Cardinal.sum_increasing1 [in sset7]
Cardinal.sum_increasing2 [in sset7]
Cardinal.sum_of_same1 [in sset7]
Cardinal.sum_of_ones [in sset7]
Cardinal.sum_increasing [in sset7]
Cardinal.sum_of_sums [in sset7]
Cardinal.sum_increasing3 [in sset7]
Cardinal.sum_of_ones1 [in sset7]
Cardinal.surjective_cardinal_le [in sset7]
Cardinal.trivial_cardinal_prod2 [in sset7]
Cardinal.trivial_card_plus [in sset7]
Cardinal.trivial_cardinal_sum [in sset7]
Cardinal.trivial_cardinal_prod [in sset7]
Cardinal.trivial_cardinal_sum1 [in sset7]
Cardinal.trivial_cardinal_prod1 [in sset7]
Cardinal.trivial_cardinal_sum2 [in sset7]
Cardinal.two_terms_bij [in sset7]
Cardinal.union2Lv [in sset7]
Cardinal.wordering_cardinal_le_pr [in sset7]
Cardinal.wordering_cardinal_le [in sset7]
Cardinal.zero_unit_sumr [in sset7]
Cardinal.zero_unit_suml [in sset7]
Cardinal.zero_cardinal_product2 [in sset7]
Cardinal.zero_smallest [in sset7]
Cardinal.zero_unit_sum [in sset7]
Cardinal.zero_cardinal_product [in sset7]
Cardinal.zero_product_absorbing [in sset7]
Cardinal.zero_prod_absorbing [in sset7]
Cardinal.zero_smallest2 [in sset7]
Cardinal.zero_smallest1 [in sset7]
Cartesian.empty_product_pr [in sset1]
Cartesian.empty_product1 [in sset1]
Cartesian.empty_product2 [in sset1]
Cartesian.pair_in_product [in sset1]
Cartesian.product_monotone_left2 [in sset1]
Cartesian.product_pr [in sset1]
Cartesian.product_inc [in sset1]
Cartesian.product_pair_rw [in sset1]
Cartesian.product_pair_pr [in sset1]
Cartesian.product_pair_inc [in sset1]
Cartesian.product_monotone [in sset1]
Cartesian.product_monotone_right [in sset1]
Cartesian.product_monotone_right2 [in sset1]
Cartesian.product_inc_rw [in sset1]
Cartesian.product_monotone_left [in sset1]
Complement.complement_itself [in sset1]
Complement.complement_emptyset [in sset1]
Complement.complement_monotone [in sset1]
Complement.complement_rw [in sset1]
Complement.double_complement [in sset1]
Complement.empty_complement [in sset1]
Complement.not_inc_complement_singleton [in sset1]
Complement.strict_sub_nonempty_complement [in sset1]
Complement.sub_complement [in sset1]
Complement.use_complement [in sset1]
Constructions.by_cases_if [in sset1]
Constructions.by_cases_if_not [in sset1]
Constructions.by_cases_nonempty [in sset1]
Constructions.B_eq [in sset1]
Constructions.B_back [in sset1]
Constructions.choose_not [in sset1]
Constructions.choose_pr [in sset1]
Constructions.emptyset_dichot [in sset1]
Constructions.emptyset_pr [in sset1]
Constructions.emptyset_sub_any [in sset1]
Constructions.exists_proof2 [in sset1]
Constructions.exists_proof [in sset1]
Constructions.IM_rw [in sset1]
Constructions.inc_nonempty [in sset1]
Constructions.is_emptyset [in sset1]
Constructions.nonemptyT_not_empty0 [in sset1]
Constructions.nonemptyT_not_empty [in sset1]
Constructions.nonempty_or_empty [in sset1]
Constructions.nonempty_rep [in sset1]
Constructions.not_exists_pr [in sset1]
Constructions.not_nonempty_empty [in sset1]
Constructions.R_inc [in sset1]
Constructions.strict_sub_trans2 [in sset1]
Constructions.strict_sub_trans1 [in sset1]
Constructions.sub_trans [in sset1]
Constructions.sub_refl [in sset1]
Constructions.Y_if_rw [in sset1]
Constructions.Y_if_not_rw [in sset1]
Constructions.Y_if_not [in sset1]
Constructions.Y_if [in sset1]
Constructions.Z_inc [in sset1]
Constructions.Z_sub [in sset1]
Constructions.Z_rw [in sset1]
Correspondence.acreate_corresp [in sset2]
Correspondence.compose_related [in sset2]
Correspondence.compose_of_sets [in sset2]
Correspondence.compose_range1 [in sset2]
Correspondence.compose_identity_left [in sset2]
Correspondence.compose_range [in sset2]
Correspondence.compose_correspondence [in sset2]
Correspondence.compose_domain [in sset2]
Correspondence.compose_identity_right [in sset2]
Correspondence.compose_domain1 [in sset2]
Correspondence.compose_identity_identity [in sset2]
Correspondence.composition_increasing [in sset2]
Correspondence.composition_is_graph [in sset2]
Correspondence.composition_associative [in sset2]
Correspondence.constant_function_p1 [in sset2]
Correspondence.corresp_source [in sset2]
Correspondence.corresp_target [in sset2]
Correspondence.corresp_sub_range [in sset2]
Correspondence.corresp_create [in sset2]
Correspondence.corresp_is_graph [in sset2]
Correspondence.corresp_sub_domain [in sset2]
Correspondence.corresp_recov [in sset2]
Correspondence.corresp_recov1 [in sset2]
Correspondence.corresp_graph [in sset2]
Correspondence.corr_propc [in sset2]
Correspondence.corr_propcc [in sset2]
Correspondence.diagonal_is_identity [in sset2]
Correspondence.domain_inverse [in sset2]
Correspondence.emptyset_domain [in sset2]
Correspondence.emptyset_graph [in sset2]
Correspondence.emptyset_fgraph [in sset2]
Correspondence.emptyset_range [in sset2]
Correspondence.empty_graph1 [in sset2]
Correspondence.empty_graph2 [in sset2]
Correspondence.identity_graph0 [in sset2]
Correspondence.identity_target [in sset2]
Correspondence.identity_source [in sset2]
Correspondence.identity_corresp [in sset2]
Correspondence.identity_graph [in sset2]
Correspondence.identity_self_inverse [in sset2]
Correspondence.image_by_increasing [in sset2]
Correspondence.image_by_graph_domain [in sset2]
Correspondence.image_by_graph_rw [in sset2]
Correspondence.image_composition [in sset2]
Correspondence.image_by_nonemptyset [in sset2]
Correspondence.image_of_large [in sset2]
Correspondence.image_by_emptyset [in sset2]
Correspondence.im_singleton_pr [in sset2]
Correspondence.im_singleton_inclusion [in sset2]
Correspondence.inc_pair_diagonal [in sset2]
Correspondence.inc_diagonal_rw [in sset2]
Correspondence.inc_compose_rw [in sset2]
Correspondence.inverse_graph_involutive [in sset2]
Correspondence.inverse_compose_cor [in sset2]
Correspondence.inverse_direct_image [in sset2]
Correspondence.inverse_target [in sset2]
Correspondence.inverse_correspondence [in sset2]
Correspondence.inverse_fun_involutive [in sset2]
Correspondence.inverse_graph_rw [in sset2]
Correspondence.inverse_graph_pr2 [in sset2]
Correspondence.inverse_graph_is_graph [in sset2]
Correspondence.inverse_compose [in sset2]
Correspondence.inverse_graph_emptyset [in sset2]
Correspondence.inverse_graph_alt [in sset2]
Correspondence.inverse_identity_g [in sset2]
Correspondence.inverse_graph_pair [in sset2]
Correspondence.inverse_product [in sset2]
Correspondence.inverse_source [in sset2]
Correspondence.inv_image_fun_rw [in sset2]
Correspondence.inv_image_graph_rw [in sset2]
Correspondence.inv_image_by_fun_pr [in sset2]
Correspondence.is_triple_corr [in sset2]
Correspondence.product_is_graph [in sset2]
Correspondence.product_domain [in sset2]
Correspondence.product_related [in sset2]
Correspondence.product_range [in sset2]
Correspondence.range_domain_exists [in sset2]
Correspondence.range_inverse [in sset2]
Correspondence.set_of_correspondences_propa [in sset2]
Correspondence.set_of_correspondences_rw [in sset2]
Correspondence.sub_graph_prod [in sset2]
Correspondence.sub_image_by_graph [in sset2]
Correspondence.sub_emptyset [in sset2]
Correspondence.sub_product_is_graph [in sset2]


F

FiniteSets.bijective_if_same_finite_c_surj [in sset8]
FiniteSets.bijective_if_same_finite_c_inj [in sset8]
FiniteSets.Bnat_in_product [in sset8]
FiniteSets.Bnat_interval_cc_pr1 [in sset8]
FiniteSets.Bnat_order_substrate [in sset8]
FiniteSets.Bnat_is_cardinal [in sset8]
FiniteSets.Bnat_in_sum [in sset8]
FiniteSets.Bnat_cardinal [in sset8]
FiniteSets.Bnat_in_sum2 [in sset8]
FiniteSets.Bnat_interval_co_pr1 [in sset8]
FiniteSets.Bnat_interval_co_pr [in sset8]
FiniteSets.Bnat_wordered [in sset8]
FiniteSets.Bnat_order_worder [in sset8]
FiniteSets.Bnat_interval_cc_pr [in sset8]
FiniteSets.Bnat_order_le [in sset8]
FiniteSets.Bnat0_unit_sumr [in sset8]
FiniteSets.Bnat0_unit_suml [in sset8]
FiniteSets.Bsucc_rw [in sset8]
FiniteSets.BS_nsucc [in sset8]
FiniteSets.BS_succ [in sset8]
FiniteSets.BS_plus [in sset8]
FiniteSets.BS_mult [in sset8]
FiniteSets.BS_pow [in sset8]
FiniteSets.cardinal_c_induction4_v [in sset8]
FiniteSets.cardinal_c_induction4 [in sset8]
FiniteSets.cardinal_lt20 [in sset8]
FiniteSets.cardinal_succ_pr4 [in sset8]
FiniteSets.cardinal_succ [in sset8]
FiniteSets.cardinal_complement2 [in sset8]
FiniteSets.cardinal_succ_pr3 [in sset8]
FiniteSets.cardinal_c_induction2 [in sset8]
FiniteSets.cardinal_c_induction [in sset8]
FiniteSets.cardinal_c_induction3_v [in sset8]
FiniteSets.cardinal_complement3 [in sset8]
FiniteSets.cardinal_c_induction3 [in sset8]
FiniteSets.cardinal_c_induction1 [in sset8]
FiniteSets.doubleton_finite [in sset8]
FiniteSets.emptyset_finite [in sset8]
FiniteSets.finite_set_maximal [in sset8]
FiniteSets.finite_graph_range [in sset8]
FiniteSets.finite_set_torder_worder [in sset8]
FiniteSets.finite_lt_infinite [in sset8]
FiniteSets.finite_dichot [in sset8]
FiniteSets.finite_image_by [in sset8]
FiniteSets.finite_set_induction2 [in sset8]
FiniteSets.finite_set_torder_greatest [in sset8]
FiniteSets.finite_subset_lattice_sup [in sset8]
FiniteSets.finite_image [in sset8]
FiniteSets.finite_subset_torder_least [in sset8]
FiniteSets.finite_le_infinite [in sset8]
FiniteSets.finite_subset_directed_bounded [in sset8]
FiniteSets.finite_set_induction1 [in sset8]
FiniteSets.finite_c_pr [in sset8]
FiniteSets.finite_set_induction0 [in sset8]
FiniteSets.finite_fun_image [in sset8]
FiniteSets.finite_set_induction3 [in sset8]
FiniteSets.finite_dichot1 [in sset8]
FiniteSets.finite_subset_torder_greatest [in sset8]
FiniteSets.finite_set_induction [in sset8]
FiniteSets.finite_range [in sset8]
FiniteSets.finite_graph_domain [in sset8]
FiniteSets.finite_domain_graph [in sset8]
FiniteSets.finite_subset_lattice_inf [in sset8]
FiniteSets.inc_Bnat [in sset8]
FiniteSets.inc0_Bnat [in sset8]
FiniteSets.inc1_Bnat [in sset8]
FiniteSets.inc2_Bnat [in sset8]
FiniteSets.inc3_Bnat [in sset8]
FiniteSets.inc4_Bnat [in sset8]
FiniteSets.infinite_c_pr [in sset8]
FiniteSets.infinite_set_rw [in sset8]
FiniteSets.is_lt_succ [in sset8]
FiniteSets.is_finite_in_sum [in sset8]
FiniteSets.is_le_succ [in sset8]
FiniteSets.is_finite_in_sum2 [in sset8]
FiniteSets.is_le_succ0 [in sset8]
FiniteSets.is_finite_succ [in sset8]
FiniteSets.le_int_is_int [in sset8]
FiniteSets.le_int_in_Bnat [in sset8]
FiniteSets.lt_n_succ_le1 [in sset8]
FiniteSets.lt_is_le_succ [in sset8]
FiniteSets.lt_is_le_succ1 [in sset8]
FiniteSets.lt_n_succ_le [in sset8]
FiniteSets.lt_n_succ_le0 [in sset8]
FiniteSets.maximal_inclusion [in sset8]
FiniteSets.maximal_inclusion_aux [in sset8]
FiniteSets.mult_via_plus [in sset8]
FiniteSets.of_finite_character_example [in sset8]
FiniteSets.one_small_cardinal2 [in sset8]
FiniteSets.plus_via_succ [in sset8]
FiniteSets.plus_via_succ1 [in sset8]
FiniteSets.power_2_4 [in sset8]
FiniteSets.pow_succ [in sset8]
FiniteSets.predc_pr3 [in sset8]
FiniteSets.predc_pr [in sset8]
FiniteSets.predc_pr1 [in sset8]
FiniteSets.predc_pr2 [in sset8]
FiniteSets.singleton_finite [in sset8]
FiniteSets.strict_sub_smaller [in sset8]
FiniteSets.strict_sub_smaller1 [in sset8]
FiniteSets.sub_finite_set [in sset8]
FiniteSets.sub_image_of_fun [in sset8]
FiniteSets.succ_nonzero [in sset8]
FiniteSets.succ_is_cardinal [in sset8]
FiniteSets.succ_one [in sset8]
FiniteSets.succ_zero [in sset8]
FiniteSets.succ_positive [in sset8]
FiniteSets.succ_of_finite [in sset8]
FiniteSets.tack_if_succ_card [in sset8]
FiniteSets.tack_on_finite [in sset8]
FiniteSets.two_plus_two [in sset8]
FiniteSets.two_times_n [in sset8]
FiniteSets.two_times_two [in sset8]
FiniteSets.zero_le_one [in sset8]
FiniteSets.zero_lt_one [in sset8]
Function.alternate_compose [in sset1]
Function.domain_union2 [in sset1]
Function.domain_singleton [in sset1]
Function.domain_union [in sset1]
Function.domain_rw [in sset1]
Function.domain_tack_on [in sset1]
Function.domain0_rw [in sset1]
Function.double_restr [in sset1]
Function.fcomposable_domain [in sset1]
Function.fcompose_ev [in sset1]
Function.fcompose_fgraph [in sset1]
Function.fcompose_domain [in sset1]
Function.fcompose_range [in sset1]
Function.fdomain_pr1 [in sset1]
Function.fgraph_is_graph [in sset1]
Function.fgraph_pr [in sset1]
Function.fgraph_sub_V [in sset1]
Function.fgraph_exten [in sset1]
Function.fgraph_sub_eq [in sset1]
Function.fgraph_union2 [in sset1]
Function.fgraph_sub [in sset1]
Function.frange_inc_rw [in sset1]
Function.identity_range [in sset1]
Function.identity_ev [in sset1]
Function.identity_fgraph [in sset1]
Function.identity_domain [in sset1]
Function.inc_V_range [in sset1]
Function.inc_pr2_range [in sset1]
Function.inc_pr1_domain [in sset1]
Function.inverse_image_rw [in sset1]
Function.inverse_image_pr [in sset1]
Function.inverse_image_inc [in sset1]
Function.inverse_image_sub [in sset1]
Function.in_graph_V [in sset1]
Function.is_restriction_pr [in sset1]
Function.L_recovers [in sset1]
Function.L_range_rw [in sset1]
Function.L_V_rw [in sset1]
Function.L_create [in sset1]
Function.L_exten1 [in sset1]
Function.L_range [in sset1]
Function.L_V_out [in sset1]
Function.L_domain [in sset1]
Function.L_inc_rw [in sset1]
Function.L_fgraph [in sset1]
Function.pr2_V [in sset1]
Function.range_rw [in sset1]
Function.range_singleton [in sset1]
Function.range_tack_on [in sset1]
Function.range_union [in sset1]
Function.range_union2 [in sset1]
Function.range0_rw [in sset1]
Function.restr_to_domain2 [in sset1]
Function.restr_graph [in sset1]
Function.restr_ev [in sset1]
Function.restr_domain1 [in sset1]
Function.restr_inc_rw [in sset1]
Function.restr_ev1 [in sset1]
Function.restr_sub [in sset1]
Function.restr_to_domain [in sset1]
Function.restr_domain [in sset1]
Function.restr_fgraph [in sset1]
Function.sub_graph_range [in sset1]
Function.sub_graph_fgraph [in sset1]
Function.sub_graph_ev [in sset1]
Function.sub_graph_domain [in sset1]
Function.tack_on_fgraph [in sset1]


I

Image.fun_image_rw [in sset1]
Image.inc_fun_image [in sset1]
InfiniteSets.cardinal_comp_singl_inf [in sset10]
InfiniteSets.card_bnat_not_zero [in sset10]
InfiniteSets.countable_finite_or_N [in sset10]
InfiniteSets.countable_finite_or_N_b [in sset10]
InfiniteSets.countable_union [in sset10]
InfiniteSets.countable_finite_or_N_c [in sset10]
InfiniteSets.countable_product [in sset10]
InfiniteSets.countable_inv_image [in sset10]
InfiniteSets.countable_subset [in sset10]
InfiniteSets.countable_prop [in sset10]
InfiniteSets.decreasing_stationary [in sset10]
InfiniteSets.decreasing_prop [in sset10]
InfiniteSets.equipotent_N2_N [in sset10]
InfiniteSets.equipotent_inf2_inf [in sset10]
InfiniteSets.finite_increasing_stationary [in sset10]
InfiniteSets.finite_family_product [in sset10]
InfiniteSets.increasing_prop [in sset10]
InfiniteSets.increasing_stationary [in sset10]
InfiniteSets.induction_defined_pr_set1 [in sset10]
InfiniteSets.induction_defined_pr [in sset10]
InfiniteSets.induction_defined_pr1 [in sset10]
InfiniteSets.induction_defined_pr_set0 [in sset10]
InfiniteSets.induction_defined_pr_set [in sset10]
InfiniteSets.infinite_finite_sequence [in sset10]
InfiniteSets.infinite_partition [in sset10]
InfiniteSets.infinite_finite_subsets [in sset10]
InfiniteSets.infinite_greater_countable1 [in sset10]
InfiniteSets.infinite_greater_countable [in sset10]
InfiniteSets.infinite_Bnat [in sset10]
InfiniteSets.integer_induction_stable1 [in sset10]
InfiniteSets.integer_induction_stable0 [in sset10]
InfiniteSets.integer_induction_stable [in sset10]
InfiniteSets.integer_induction1 [in sset10]
InfiniteSets.noetherian_induction [in sset10]
InfiniteSets.notbig_family_sum [in sset10]
InfiniteSets.notbig_family_sum1 [in sset10]
InfiniteSets.power_of_infinite [in sset10]
InfiniteSets.power_of_infinite1 [in sset10]
InfiniteSets.product2_infinite2 [in sset10]
InfiniteSets.product2_infinite1 [in sset10]
InfiniteSets.product2_infinite [in sset10]
InfiniteSets.square_of_infinite [in sset10]
InfiniteSets.sum2_infinite1 [in sset10]
InfiniteSets.sum2_infinite [in sset10]
IntegerProps.bijective_complement [in sset9]
IntegerProps.binomSnSm [in sset9]
IntegerProps.binomSn0 [in sset9]
IntegerProps.binom_nn [in sset9]
IntegerProps.binom_pr0 [in sset9]
IntegerProps.binom_symmetric [in sset9]
IntegerProps.binom_bad [in sset9]
IntegerProps.binom_monotone1 [in sset9]
IntegerProps.binom_pr3 [in sset9]
IntegerProps.binom_pr1 [in sset9]
IntegerProps.binom_good [in sset9]
IntegerProps.binom_2plus0 [in sset9]
IntegerProps.binom_alt_pr [in sset9]
IntegerProps.binom_monotone2 [in sset9]
IntegerProps.binom_2plus [in sset9]
IntegerProps.binom0 [in sset9]
IntegerProps.binom0Sm [in sset9]
IntegerProps.binom00 [in sset9]
IntegerProps.binom1 [in sset9]
IntegerProps.binom2 [in sset9]
IntegerProps.binom2a [in sset9]
IntegerProps.Bnat_quorem_pr0 [in sset9]
IntegerProps.Bnat_le_transitive [in sset9]
IntegerProps.Bnat_total_order1 [in sset9]
IntegerProps.Bnat_div_pr [in sset9]
IntegerProps.Bnat_le_reflexive [in sset9]
IntegerProps.Bnat_total_order [in sset9]
IntegerProps.Bnat_rem_pr [in sset9]
IntegerProps.Bnat_division [in sset9]
IntegerProps.Bnat_infinite [in sset9]
IntegerProps.Bnat_zero_smallest1 [in sset9]
IntegerProps.Bnat_zero_smallest [in sset9]
IntegerProps.Bnat_quorem_pr [in sset9]
IntegerProps.Bnat_le_antisymmetric [in sset9]
IntegerProps.Bnat_total_order2 [in sset9]
IntegerProps.BNdivides_one [in sset9]
IntegerProps.BNdivides_pr1 [in sset9]
IntegerProps.BNdivides_trans [in sset9]
IntegerProps.BNdivides_pr [in sset9]
IntegerProps.BNdivides_pr3 [in sset9]
IntegerProps.BNdivides_trans2 [in sset9]
IntegerProps.BNdivides_itself [in sset9]
IntegerProps.BNdivides_pr4 [in sset9]
IntegerProps.BNdivides_pr2 [in sset9]
IntegerProps.BNdivides_trans1 [in sset9]
IntegerProps.BNdivision_itself [in sset9]
IntegerProps.BNdivision_of_zero [in sset9]
IntegerProps.BNquo_itself [in sset9]
IntegerProps.BN_quo_one [in sset9]
IntegerProps.Bprod_increasing3 [in sset9]
IntegerProps.Bsum_increasing3 [in sset9]
IntegerProps.BS_sub [in sset9]
IntegerProps.BS_quo [in sset9]
IntegerProps.BS_factorial [in sset9]
IntegerProps.BS_binom [in sset9]
IntegerProps.BS_rem [in sset9]
IntegerProps.b_power_k_large [in sset9]
IntegerProps.cardinal_lt_pr [in sset9]
IntegerProps.cardinal_pairs_lt [in sset9]
IntegerProps.cardinal_interval [in sset9]
IntegerProps.cardinal_set_of_increasing_functions1 [in sset9]
IntegerProps.cardinal_set_of_increasing_functions [in sset9]
IntegerProps.cardinal_lt20 [in sset9]
IntegerProps.cardinal_complement1 [in sset9]
IntegerProps.cardinal_complement_image [in sset9]
IntegerProps.cardinal_le_a_apowb [in sset9]
IntegerProps.cardinal_set_of_increasing_functions2 [in sset9]
IntegerProps.cardinal_interval1a [in sset9]
IntegerProps.cardinal_pairs_le [in sset9]
IntegerProps.cardinal_interval0a [in sset9]
IntegerProps.cardinal_interval_co_0a [in sset9]
IntegerProps.cardinal_set_of_increasing_functions4 [in sset9]
IntegerProps.cardinal_complement_image1 [in sset9]
IntegerProps.cardinal_set_of_increasing_functions3 [in sset9]
IntegerProps.cardinal_interval_co_0a1 [in sset9]
IntegerProps.cardinal_c_induction5 [in sset9]
IntegerProps.card_mult_3_3 [in sset9]
IntegerProps.card_set_of_increasing_functions_int [in sset9]
IntegerProps.card_sub_pr [in sset9]
IntegerProps.card_sub_non_zero1 [in sset9]
IntegerProps.card_sub_pr0 [in sset9]
IntegerProps.card_sub_pr5 [in sset9]
IntegerProps.card_rem_zero [in sset9]
IntegerProps.card_sub_wrong [in sset9]
IntegerProps.card_quo_simplify [in sset9]
IntegerProps.card_sub_pr6 [in sset9]
IntegerProps.card_plus_permute24 [in sset9]
IntegerProps.card_plus_3_2 [in sset9]
IntegerProps.card_rem_mult [in sset9]
IntegerProps.card_sub_pr2 [in sset9]
IntegerProps.card_mult_10_3 [in sset9]
IntegerProps.card_rem_prop [in sset9]
IntegerProps.card_sub_non_zero [in sset9]
IntegerProps.card_quo_zero [in sset9]
IntegerProps.card_sub_pr1 [in sset9]
IntegerProps.card_sub_rpr [in sset9]
IntegerProps.card_rem_sum [in sset9]
IntegerProps.card_sub_associative1 [in sset9]
IntegerProps.card_sub_associative [in sset9]
IntegerProps.card_sub_pr4 [in sset9]
IntegerProps.char_fun_axioms [in sset9]
IntegerProps.char_fun_W_aa [in sset9]
IntegerProps.char_fun_W_a [in sset9]
IntegerProps.char_fun_W_cardinal [in sset9]
IntegerProps.char_fun_W [in sset9]
IntegerProps.char_fun_injective [in sset9]
IntegerProps.char_fun_inter [in sset9]
IntegerProps.char_fun_W_b [in sset9]
IntegerProps.char_fun_union [in sset9]
IntegerProps.char_fun_function [in sset9]
IntegerProps.char_fun_complement [in sset9]
IntegerProps.char_fun_constant [in sset9]
IntegerProps.char_fun_W_bb [in sset9]
IntegerProps.distrib_prod2_sub [in sset9]
IntegerProps.divides_and_sum [in sset9]
IntegerProps.divides_and_difference [in sset9]
IntegerProps.divisibiliy_by_three [in sset9]
IntegerProps.division_exists [in sset9]
IntegerProps.division_prop_alt [in sset9]
IntegerProps.division_unique [in sset9]
IntegerProps.double_sub [in sset9]
IntegerProps.double_restrc [in sset9]
IntegerProps.emptyset_interval_00 [in sset9]
IntegerProps.eqmod_plus [in sset9]
IntegerProps.eqmod_pow1 [in sset9]
IntegerProps.eqmod_succ [in sset9]
IntegerProps.eqmod_rem [in sset9]
IntegerProps.eqmod_pow3 [in sset9]
IntegerProps.eqmod_mult [in sset9]
IntegerProps.eqmod_pow2 [in sset9]
IntegerProps.factorial_nonzero [in sset9]
IntegerProps.factorial_succ [in sset9]
IntegerProps.factorial_prop [in sset9]
IntegerProps.factorial_induction [in sset9]
IntegerProps.factorial0 [in sset9]
IntegerProps.factorial1 [in sset9]
IntegerProps.factorial2 [in sset9]
IntegerProps.fct_sum_const1 [in sset9]
IntegerProps.fct_sum_rec0 [in sset9]
IntegerProps.fct_sum_rec1 [in sset9]
IntegerProps.fct_sum_rev [in sset9]
IntegerProps.fif_cardinal [in sset9]
IntegerProps.finite_sum4_lt [in sset9]
IntegerProps.finite_power_lt1 [in sset9]
IntegerProps.finite_sum3_lt [in sset9]
IntegerProps.finite_sum2_lt [in sset9]
IntegerProps.finite_set_interval_co [in sset9]
IntegerProps.finite_lt_a_ab [in sset9]
IntegerProps.finite_ordered_interval1 [in sset9]
IntegerProps.finite_sum_finite_aux [in sset9]
IntegerProps.finite_product_lt [in sset9]
IntegerProps.finite_product_finite_set [in sset9]
IntegerProps.finite_power_lt2 [in sset9]
IntegerProps.finite_union_finite [in sset9]
IntegerProps.finite_ordered_interval [in sset9]
IntegerProps.finite_set_interval_Bnat [in sset9]
IntegerProps.finite_product_finite [in sset9]
IntegerProps.finite_sum_lt [in sset9]
IntegerProps.finite_sum_finite [in sset9]
IntegerProps.finite_prod2_lt [in sset9]
IntegerProps.finite_product_finite_aux [in sset9]
IntegerProps.increasing_compose3 [in sset9]
IntegerProps.increasing_prop [in sset9]
IntegerProps.increasing_prop0 [in sset9]
IntegerProps.increasing_compose [in sset9]
IntegerProps.increasing_prop1 [in sset9]
IntegerProps.inc_a_interval_co_succ [in sset9]
IntegerProps.inc10_Bnat [in sset9]
IntegerProps.inc5_Bnat [in sset9]
IntegerProps.induction_term0 [in sset9]
IntegerProps.induction_on_sum3 [in sset9]
IntegerProps.induction_defined_pr0 [in sset9]
IntegerProps.induction_sum1 [in sset9]
IntegerProps.induction_terms [in sset9]
IntegerProps.induction_prod1 [in sset9]
IntegerProps.induction_on_sum [in sset9]
IntegerProps.induction_sum0 [in sset9]
IntegerProps.induction_prod0 [in sset9]
IntegerProps.induction_on_prod [in sset9]
IntegerProps.integer_induction0 [in sset9]
IntegerProps.integer_induction [in sset9]
IntegerProps.interval_bn_pr5 [in sset9]
IntegerProps.interval_int_restr [in sset9]
IntegerProps.interval_Bnato_related2 [in sset9]
IntegerProps.interval_co_0a_restr [in sset9]
IntegerProps.interval_zero_zero [in sset9]
IntegerProps.interval_Bnato_related1 [in sset9]
IntegerProps.interval_Bnato_substrate [in sset9]
IntegerProps.interval_co_0a_pr3 [in sset9]
IntegerProps.interval_Bnat_pr1 [in sset9]
IntegerProps.interval_Bnato_worder [in sset9]
IntegerProps.interval_Bnatco_related [in sset9]
IntegerProps.interval_Bnatco_substrate [in sset9]
IntegerProps.interval_cc_0a_increasing [in sset9]
IntegerProps.interval_co_0a_increasing1 [in sset9]
IntegerProps.interval_Bnat_pr [in sset9]
IntegerProps.interval_co_cc [in sset9]
IntegerProps.interval_Bnatco_worder [in sset9]
IntegerProps.interval_Bnat_pr0 [in sset9]
IntegerProps.interval_cc_0a_increasing1 [in sset9]
IntegerProps.interval_co_pr4 [in sset9]
IntegerProps.interval_co_0a_increasing [in sset9]
IntegerProps.interval_co_0a_pr2 [in sset9]
IntegerProps.interval_co_0a_pr1 [in sset9]
IntegerProps.interval_Bnato_related [in sset9]
IntegerProps.interval_Bnat_pr1b [in sset9]
IntegerProps.isomorphism_worder_finite [in sset9]
IntegerProps.is_expansion_prop11 [in sset9]
IntegerProps.is_expansion_prop8 [in sset9]
IntegerProps.is_expansion_prop14 [in sset9]
IntegerProps.is_expansion_exists [in sset9]
IntegerProps.is_expansion_prop13 [in sset9]
IntegerProps.is_expansion_prop4 [in sset9]
IntegerProps.is_expansion_restr2 [in sset9]
IntegerProps.is_expansion_prop0 [in sset9]
IntegerProps.is_expansion_prop7 [in sset9]
IntegerProps.is_expansion_exists1 [in sset9]
IntegerProps.is_expansion_prop5 [in sset9]
IntegerProps.is_expansion_prop2 [in sset9]
IntegerProps.is_expansion_restr1 [in sset9]
IntegerProps.is_expansion_prop1 [in sset9]
IntegerProps.is_expansion_prop9 [in sset9]
IntegerProps.is_expansion_prop12 [in sset9]
IntegerProps.is_expansion_prop10 [in sset9]
IntegerProps.is_expansion_prop3 [in sset9]
IntegerProps.is_expansion_unique [in sset9]
IntegerProps.is_expansion_prop6 [in sset9]
IntegerProps.least_int_prop1 [in sset9]
IntegerProps.least_int_prop [in sset9]
IntegerProps.lt_a_power_b_a [in sset9]
IntegerProps.minus_n_nC [in sset9]
IntegerProps.minus_n_0C [in sset9]
IntegerProps.mult_lt_simplifiable [in sset9]
IntegerProps.mult_simplifiable_right [in sset9]
IntegerProps.mult_le_simplifiable [in sset9]
IntegerProps.mult_simplifiable_left [in sset9]
IntegerProps.non_zero_apowb [in sset9]
IntegerProps.number_of_injections_rec [in sset9]
IntegerProps.number_of_injections_pr [in sset9]
IntegerProps.number_of_permutations [in sset9]
IntegerProps.number_of_partitions3 [in sset9]
IntegerProps.number_of_injections_prop [in sset9]
IntegerProps.number_of_partitions5 [in sset9]
IntegerProps.number_of_injections_base [in sset9]
IntegerProps.number_of_injections_int [in sset9]
IntegerProps.number_of_partitions_p4 [in sset9]
IntegerProps.number_of_partitions1 [in sset9]
IntegerProps.number_of_partitions_p2 [in sset9]
IntegerProps.number_of_partitions7 [in sset9]
IntegerProps.number_of_partitions6 [in sset9]
IntegerProps.number_of_partitions_p3 [in sset9]
IntegerProps.number_of_partitions_bis [in sset9]
IntegerProps.number_of_partitions [in sset9]
IntegerProps.number_of_partitions4 [in sset9]
IntegerProps.partition_complement [in sset9]
IntegerProps.partition_tack_on_intco [in sset9]
IntegerProps.partition_tack_on [in sset9]
IntegerProps.partition_tack_on_int [in sset9]
IntegerProps.pip_prop0 [in sset9]
IntegerProps.plus_le_simplifiable [in sset9]
IntegerProps.plus_simplifiable_left [in sset9]
IntegerProps.plus_lt_simplifiable [in sset9]
IntegerProps.plus_simplifiable_right [in sset9]
IntegerProps.prec_pr1 [in sset9]
IntegerProps.prod_increasing6 [in sset9]
IntegerProps.quotient_of_factorials [in sset9]
IntegerProps.quotient_of_factorials1 [in sset9]
IntegerProps.restr_plus_interval_isomorphism [in sset9]
IntegerProps.segment_Bnat_order [in sset9]
IntegerProps.setof_suml_aux [in sset9]
IntegerProps.setof_sume_aux [in sset9]
IntegerProps.set_of_functions_sum3 [in sset9]
IntegerProps.set_of_functions_sum0 [in sset9]
IntegerProps.set_of_partitions_rw [in sset9]
IntegerProps.set_of_functions_sum4 [in sset9]
IntegerProps.set_of_functions_sum_pr [in sset9]
IntegerProps.set_of_functions_sum1 [in sset9]
IntegerProps.set_of_functions_sum2 [in sset9]
IntegerProps.shepherd_principle [in sset9]
IntegerProps.sof_sum_le_equi [in sset9]
IntegerProps.sof_sum_eq_equi [in sset9]
IntegerProps.strict_increasing_prop0 [in sset9]
IntegerProps.strict_pos_pr1 [in sset9]
IntegerProps.strict_increasing_prop2 [in sset9]
IntegerProps.strict_increasing_prop [in sset9]
IntegerProps.strict_increasing_prop1 [in sset9]
IntegerProps.strict_pos_pr [in sset9]
IntegerProps.strict_increasing_prop3 [in sset9]
IntegerProps.subsets_with_p_elements_pr [in sset9]
IntegerProps.subsets_with_p_elements_pr0 [in sset9]
IntegerProps.sub_interval_co_0a_Bnat [in sset9]
IntegerProps.sub_lt_symmetry [in sset9]
IntegerProps.sub_le_symmetry [in sset9]
IntegerProps.sub_interval_Bnat [in sset9]
IntegerProps.sub_increasing2 [in sset9]
IntegerProps.succ_sub [in sset9]
IntegerProps.sum_of_i [in sset9]
IntegerProps.sum_to_increasing6 [in sset9]
IntegerProps.sum_of_gen_binom0 [in sset9]
IntegerProps.sum_to_increasing4 [in sset9]
IntegerProps.sum_of_binomial [in sset9]
IntegerProps.sum_of_gen_binom [in sset9]
IntegerProps.sum_of_gen_binom2 [in sset9]
IntegerProps.sum_of_i2 [in sset9]
IntegerProps.sum_to_increasing1 [in sset9]
IntegerProps.sum_to_increasing2 [in sset9]
IntegerProps.sum_of_binomal2 [in sset9]
IntegerProps.sum_to_increasing5 [in sset9]
IntegerProps.sum_increasing6 [in sset9]
IntegerProps.sum_of_i3 [in sset9]
IntegerProps.trivial_cardinal_sum3 [in sset9]
IntegerProps.trivial_cardinal_prod3 [in sset9]
Intersection.disjoint_pr [in sset1]
Intersection.disjoint_symmetric [in sset1]
Intersection.disjoint_complement [in sset1]
Intersection.intersection_singleton [in sset1]
Intersection.intersection_inc [in sset1]
Intersection.intersection_sub [in sset1]
Intersection.intersection_empty [in sset1]
Intersection.intersection_forall [in sset1]
Intersection.intersection2A [in sset1]
Intersection.intersection2C [in sset1]
Intersection.intersection2idem [in sset1]
Intersection.intersection2sub [in sset1]
Intersection.intersection2sub_first [in sset1]
Intersection.intersection2sub_second [in sset1]
Intersection.intersection2_rw [in sset1]
Intersection.intersection2_first [in sset1]
Intersection.intersection2_second [in sset1]
Intersection.intersection2_inc [in sset1]
Intersection.intersection2_sub [in sset1]


L

Little.doubleton_first [in sset1]
Little.doubleton_or [in sset1]
Little.doubleton_singleton [in sset1]
Little.doubleton_rw [in sset1]
Little.doubleton_inj [in sset1]
Little.doubleton_symm [in sset1]
Little.doubleton_second [in sset1]
Little.emptyset_small [in sset1]
Little.inc_TPb_two_points [in sset1]
Little.inc_TPa_two_points [in sset1]
Little.is_singleton_rw [in sset1]
Little.is_singleton_pr [in sset1]
Little.nonempty_singleton [in sset1]
Little.nonempty_doubleton [in sset1]
Little.singleton_inj [in sset1]
Little.singleton_small [in sset1]
Little.singleton_eq [in sset1]
Little.singleton_emptyset_not_empty [in sset1]
Little.singleton_rw [in sset1]
Little.singleton_pr1 [in sset1]
Little.singleton_inc [in sset1]
Little.small_set_pr [in sset1]
Little.sub_doubleton [in sset1]
Little.sub_singleton [in sset1]
Little.two_points_pr2 [in sset1]
Little.two_points_distinctb [in sset1]
Little.two_points_rw [in sset1]
Little.two_points_distinct [in sset1]


O

Ordinals1.canonical_du2_pr1 [in sset11]
Ordinals1.canonical_du2_pr2 [in sset11]
Ordinals1.canonical_du2_rw [in sset11]
Ordinals1.canonical_du2_prb [in sset11]
Ordinals1.canonical_du2_pra [in sset11]
Ordinals1.canonical_du2_pr [in sset11]
Ordinals1.canonical2_substrate [in sset11]
Ordinals1.cardinal_ord_sum2 [in sset11]
Ordinals1.cardinal_ord_sum [in sset11]
Ordinals1.cardinal_of_ordinal [in sset11]
Ordinals1.cardinal_Bnat [in sset11]
Ordinals1.du_index_pr1 [in sset11]
Ordinals1.emptyset_order [in sset11]
Ordinals1.emptyset_worder [in sset11]
Ordinals1.emptyset_substrate [in sset11]
Ordinals1.empty_substrate_zero [in sset11]
Ordinals1.finite_ordinal2 [in sset11]
Ordinals1.finite_ordinal1 [in sset11]
Ordinals1.inc_disjoint_union1 [in sset11]
Ordinals1.one_unit_prod_ord2 [in sset11]
Ordinals1.one_unit_prod_ord1 [in sset11]
Ordinals1.order_sum_assoc1 [in sset11]
Ordinals1.order_prod_nc [in sset11]
Ordinals1.order_prod_assoc_iso [in sset11]
Ordinals1.order_sum_gle2 [in sset11]
Ordinals1.order_le_reflexive [in sset11]
Ordinals1.order_prod_assoc3 [in sset11]
Ordinals1.order_prod_gle [in sset11]
Ordinals1.order_prod_pr [in sset11]
Ordinals1.order_sum_worder [in sset11]
Ordinals1.order_sum_assoc3 [in sset11]
Ordinals1.order_sum2_axioms [in sset11]
Ordinals1.order_sum_substrate [in sset11]
Ordinals1.order_prod2_substrate [in sset11]
Ordinals1.order_sum2_gle_spec [in sset11]
Ordinals1.order_sum_nc [in sset11]
Ordinals1.order_prod2_axioms [in sset11]
Ordinals1.order_prod_order [in sset11]
Ordinals1.order_sum_assoc_iso [in sset11]
Ordinals1.order_sum2_substrate [in sset11]
Ordinals1.order_prod_worder [in sset11]
Ordinals1.order_prod2_gle [in sset11]
Ordinals1.order_prod_substrate [in sset11]
Ordinals1.order_sum_distr4 [in sset11]
Ordinals1.order_sum_distributive3 [in sset11]
Ordinals1.order_sum_assoc2 [in sset11]
Ordinals1.order_sum2_totalorder [in sset11]
Ordinals1.order_sum2_gle [in sset11]
Ordinals1.order_prod_pr1 [in sset11]
Ordinals1.order_prod_assoc2 [in sset11]
Ordinals1.order_sum_gle [in sset11]
Ordinals1.order_sum_distributive [in sset11]
Ordinals1.order_sum2_order [in sset11]
Ordinals1.order_prod2_worder [in sset11]
Ordinals1.order_sum_gle1 [in sset11]
Ordinals1.order_sum_order [in sset11]
Ordinals1.order_sum_gle_id [in sset11]
Ordinals1.order_prod2_order [in sset11]
Ordinals1.order_sum2_worder [in sset11]
Ordinals1.ordinal_1 [in sset11]
Ordinals1.ordinal_p11 [in sset11]
Ordinals1.ordinal_pr51 [in sset11]
Ordinals1.ordinal_p10 [in sset11]
Ordinals1.ordinal_a_ne_ab [in sset11]
Ordinals1.ordinal_p8 [in sset11]
Ordinals1.ordinal_finite4 [in sset11]
Ordinals1.ordinal_finite2 [in sset11]
Ordinals1.ordinal_finite1 [in sset11]
Ordinals1.ordinal_0 [in sset11]
Ordinals1.ordinal_finite3 [in sset11]
Ordinals1.ordinal_o_emptyset [in sset11]
Ordinals1.ordinal_omega [in sset11]
Ordinals1.ordinal_pr52 [in sset11]
Ordinals1.ordinal_p9 [in sset11]
Ordinals1.ordinal_prod_assoc1 [in sset11]
Ordinals1.ordinal_2 [in sset11]
Ordinals1.ordinal0_pr [in sset11]
Ordinals1.ordinal0_emptyset [in sset11]
Ordinals1.ordinal0_pr1 [in sset11]
Ordinals1.ordinal1_pr [in sset11]
Ordinals1.ord_prod2_nz [in sset11]
Ordinals1.ord_prod_increasing2 [in sset11]
Ordinals1.ord_succ_lt2 [in sset11]
Ordinals1.ord_double [in sset11]
Ordinals1.ord_sum_invariant4 [in sset11]
Ordinals1.ord_prod_increasing3 [in sset11]
Ordinals1.ord_prod2_ordinal [in sset11]
Ordinals1.ord_sum_emptyset [in sset11]
Ordinals1.ord_sum_invariant2 [in sset11]
Ordinals1.ord_mult_int_omega [in sset11]
Ordinals1.ord_zero_absorbing [in sset11]
Ordinals1.ord_plus_int_omega [in sset11]
Ordinals1.ord_lt_01 [in sset11]
Ordinals1.ord_prod2_increasing3 [in sset11]
Ordinals1.ord_prod_invariant4 [in sset11]
Ordinals1.ord_sum_increasing3 [in sset11]
Ordinals1.ord_lt_12 [in sset11]
Ordinals1.ord_sum_invariant3 [in sset11]
Ordinals1.ord_prod_invariant3 [in sset11]
Ordinals1.ord_0_plus_unit_r [in sset11]
Ordinals1.ord_1_mult_unit_r [in sset11]
Ordinals1.ord_prod_increasing4 [in sset11]
Ordinals1.ord_prod2_increasing4 [in sset11]
Ordinals1.ord_sum_singleton [in sset11]
Ordinals1.ord_sum2_pr [in sset11]
Ordinals1.ord_sum_ordinal [in sset11]
Ordinals1.ord_prod_ordinal [in sset11]
Ordinals1.ord_prod_invariant1 [in sset11]
Ordinals1.ord_prod2_increasing5 [in sset11]
Ordinals1.ord_sum2_increasing1 [in sset11]
Ordinals1.ord_prod2_increasing2 [in sset11]
Ordinals1.ord_sum2_increasing3 [in sset11]
Ordinals1.ord_sum2_increasing5 [in sset11]
Ordinals1.ord_sum_increasing2 [in sset11]
Ordinals1.ord_prod_increasing1 [in sset11]
Ordinals1.ord_lt_succ [in sset11]
Ordinals1.ord_0_plus_unit_l [in sset11]
Ordinals1.ord_sum2_ordinal [in sset11]
Ordinals1.ord_sum_increasing4 [in sset11]
Ordinals1.ord_sum2_increasing4 [in sset11]
Ordinals1.ord_lt_02 [in sset11]
Ordinals1.ord_prod_emptyset [in sset11]
Ordinals1.ord_sum_increasing1 [in sset11]
Ordinals1.ord_11_2 [in sset11]
Ordinals1.ord_prod2_increasing1 [in sset11]
Ordinals1.ord_sum_invariant5 [in sset11]
Ordinals1.ord_prod2_pr [in sset11]
Ordinals1.ord_1_mult_unit_l [in sset11]
Ordinals1.ord_sum2_increasing2 [in sset11]
Ordinals1.ord_zero_pr1 [in sset11]
Ordinals1.ord_succ_lt [in sset11]
Ordinals1.ord_sum_invariant1 [in sset11]
Ordinals1.ord_succ_pr [in sset11]
Ordinals1.ord_prod_singleton [in sset11]
Ordinals1.ord_prod_invariant2 [in sset11]
Ordinals1.ord_omega_pr [in sset11]
Ordinals1.ord_omega_non_zero [in sset11]
Ordinals1.ord_prod_invariant5 [in sset11]
Ordinals1.ord_succ_inj [in sset11]
Ordinals1.ord0_prodl [in sset11]
Ordinals1.ord0_prodr [in sset11]
Ordinals1.ord2_trichotomy1 [in sset11]
Ordinals1.ord2_lt_pr [in sset11]
Ordinals1.ord2_trichotomy [in sset11]
Ordinals1.prod_of_substrates_pr [in sset11]
Ordinals1.set_ord_le_prop [in sset11]
Ordinals1.set_ord_lt_prop3 [in sset11]
Ordinals1.set_ord_lt_prop [in sset11]
Ordinals1.singleton_order_isomorphic [in sset11]
Ordinals1.singleton_ordinal [in sset11]
Ordinals1.singleton_order_isomorphic2 [in sset11]
Ordinals1.singleton_worder [in sset11]
Ordinals1.singleton_order_isomorphic1 [in sset11]
Ordinals1.succ_ordinal [in sset11]
Ordinals1.unit_helper [in sset11]
Ordinals1.variantLc_comp [in sset11]
Ordinals1.worder_singleton1 [in sset11]
Ordinals1.worder_invariance [in sset11]
Ordinals1.zero_least_ordinal1 [in sset11]
Ordinals1.zero_least_ordinal [in sset11]
Ordinals1.zero_least_ordinal3 [in sset11]
Ordinals1.zero_unit_sum_ord1 [in sset11]
Ordinals1.zero_least_ordinal5 [in sset11]
Ordinals1.zero_unit_sum_ord2 [in sset11]
Ordinals2.aleph_aux1_pr4 [in sset12]
Ordinals2.aleph_pr6c [in sset12]
Ordinals2.aleph_pr3 [in sset12]
Ordinals2.aleph_pr4 [in sset12]
Ordinals2.aleph_pr6 [in sset12]
Ordinals2.aleph_pr5b [in sset12]
Ordinals2.aleph_pr7 [in sset12]
Ordinals2.aleph_pr11 [in sset12]
Ordinals2.aleph_aux2_pr2 [in sset12]
Ordinals2.aleph_pr10 [in sset12]
Ordinals2.aleph_aux2_pr1 [in sset12]
Ordinals2.aleph_aux1_pr2 [in sset12]
Ordinals2.aleph_aux1_pr3 [in sset12]
Ordinals2.aleph_pr1 [in sset12]
Ordinals2.aleph_aux2_pr3 [in sset12]
Ordinals2.aleph_pr6d [in sset12]
Ordinals2.aleph_pr5 [in sset12]
Ordinals2.aleph_aux1_pr [in sset12]
Ordinals2.aleph_pr8 [in sset12]
Ordinals2.aleph_pr6b [in sset12]
Ordinals2.aleph_pr2 [in sset12]
Ordinals2.aleph_pr9 [in sset12]
Ordinals2.cantor_normal_a_exists [in sset12]
Ordinals2.card_comp_zero_one [in sset12]
Ordinals2.indecomposable_prod2 [in sset12]
Ordinals2.indecomposable_sup [in sset12]
Ordinals2.indecomposable_pr [in sset12]
Ordinals2.indecomposable_prop1 [in sset12]
Ordinals2.indecomposable_sup [in sset12]
Ordinals2.indecomposable_prop2 [in sset12]
Ordinals2.indecomposable_prop3 [in sset12]
Ordinals2.indecomposable_omega_succ [in sset12]
Ordinals2.indecomposable_sup1 [in sset12]
Ordinals2.indecomposable_division [in sset12]
Ordinals2.indecomposable_prod3 [in sset12]
Ordinals2.indecomposable_prod [in sset12]
Ordinals2.indecomposable_prop [in sset12]
Ordinals2.indecomp_omega [in sset12]
Ordinals2.indecomp_one [in sset12]
Ordinals2.indecomp_omega1 [in sset12]
Ordinals2.indecomp_example [in sset12]
Ordinals2.limit_ordinal_pr3 [in sset12]
Ordinals2.normal_ofs_o [in sset12]
Ordinals2.normal_fs_equiv2 [in sset12]
Ordinals2.normal_fs_equiv1 [in sset12]
Ordinals2.normal_fs_equiv [in sset12]
Ordinals2.normal_ofs1_o [in sset12]
Ordinals2.ordinal_worder3 [in sset12]
Ordinals2.ordinal_expansion3_pb [in sset12]
Ordinals2.ordinal_interval_sup [in sset12]
Ordinals2.ordinal_expansion1_pb [in sset12]
Ordinals2.ordinal_cardinal_le1 [in sset12]
Ordinals2.ordinal_expansion1_pa [in sset12]
Ordinals2.ordinal_expansion3_pc [in sset12]
Ordinals2.ordinal_interval_pr0 [in sset12]
Ordinals2.ordinal_interval_pr [in sset12]
Ordinals2.ordinal_expansion3_pd [in sset12]
Ordinals2.ordinal_worder5 [in sset12]
Ordinals2.ordinal_expansion2_pb [in sset12]
Ordinals2.ordinal_not_collectivizing [in sset12]
Ordinals2.ordinal_expansion3_pa [in sset12]
Ordinals2.ordinal_worder4 [in sset12]
Ordinals2.ordinal_interval_pr1 [in sset12]
Ordinals2.ordinal_expansion1_pd [in sset12]
Ordinals2.ordinal_interval_sup1 [in sset12]
Ordinals2.ordinal_expansion2_pc [in sset12]
Ordinals2.ordinal_expansion2_pa [in sset12]
Ordinals2.ordinal_interval_pr2 [in sset12]
Ordinals2.ordinal_expansion1_pc [in sset12]
Ordinals2.ordinal_expansion2_pd [in sset12]
Ordinals2.ord_mult_simp_left [in sset12]
Ordinals2.ord_division_exists [in sset12]
Ordinals2.ord_division_unique [in sset12]
Ordinals2.ord_induction_exists [in sset12]
Ordinals2.ord_sub_smaller [in sset12]
Ordinals2.ord_induction_p0 [in sset12]
Ordinals2.ord_pow_increasing2 [in sset12]
Ordinals2.ord_sum_pr10 [in sset12]
Ordinals2.ord_ext_div_exists [in sset12]
Ordinals2.ord_powx1 [in sset12]
Ordinals2.ord_stric_incr_unbounded [in sset12]
Ordinals2.ord_division_exists1 [in sset12]
Ordinals2.ord_plus_compat_lt2 [in sset12]
Ordinals2.ord_induction_p9 [in sset12]
Ordinals2.ord_pow_axioms3 [in sset12]
Ordinals2.ord_induction_p6 [in sset12]
Ordinals2.ord_induction_unique [in sset12]
Ordinals2.ord_induction_p13 [in sset12]
Ordinals2.ord_sub_pr [in sset12]
Ordinals2.ord_div_nonzero_b_bis [in sset12]
Ordinals2.ord_induction_p5 [in sset12]
Ordinals2.ord_sup_pr6 [in sset12]
Ordinals2.ord_pow_ordinal [in sset12]
Ordinals2.ord_pow_prod [in sset12]
Ordinals2.ord_pow_axioms2 [in sset12]
Ordinals2.ord_pow_increasing1 [in sset12]
Ordinals2.ord_pow2x [in sset12]
Ordinals2.ord_powx0 [in sset12]
Ordinals2.ord_prod_compat_lt1 [in sset12]
Ordinals2.ord_induction_p41 [in sset12]
Ordinals2.ord_induction_p3 [in sset12]
Ordinals2.ord_div_nonzero_b [in sset12]
Ordinals2.ord_pow1x [in sset12]
Ordinals2.ord_induction_p16 [in sset12]
Ordinals2.ord_prod_normal [in sset12]
Ordinals2.ord_sum2_succ [in sset12]
Ordinals2.ord_mult_compat_lt1 [in sset12]
Ordinals2.ord_pow_axioms [in sset12]
Ordinals2.ord_pow_succ [in sset12]
Ordinals2.ord_sup_pr11 [in sset12]
Ordinals2.ord_sup_pr12 [in sset12]
Ordinals2.ord_bound_coll [in sset12]
Ordinals2.ord_mult_succ [in sset12]
Ordinals2.ord_plus_normal [in sset12]
Ordinals2.ord_sub_pr1 [in sset12]
Ordinals2.ord_induction_p4 [in sset12]
Ordinals2.ord_plus_simp_left [in sset12]
Ordinals2.ord_pow_increasing5 [in sset12]
Ordinals2.ord_induction_p15 [in sset12]
Ordinals2.ord_induction_p12 [in sset12]
Ordinals2.ord_sup_pr9 [in sset12]
Ordinals2.ord_induction_p1 [in sset12]
Ordinals2.ord_induction_p10 [in sset12]
Ordinals2.ord_pow_increasing4 [in sset12]
Ordinals2.ord_pow_increasing0 [in sset12]
Ordinals2.ord_induction_p8 [in sset12]
Ordinals2.ord_plus_compat_lt [in sset12]
Ordinals2.ord_induction_p7 [in sset12]
Ordinals2.ord_induction_p17 [in sset12]
Ordinals2.ord_pow00 [in sset12]
Ordinals2.ord_ext_div_unique [in sset12]
Ordinals2.ord_sup_pr7 [in sset12]
Ordinals2.ord_induction_p19 [in sset12]
Ordinals2.ord_induction_p14 [in sset12]
Ordinals2.ord_stric_incr_unbounded1 [in sset12]
Ordinals2.ord_induction_p18 [in sset12]
Ordinals2.ord_prod_compat_lt2 [in sset12]
Ordinals2.ord_pow_sum [in sset12]
Ordinals2.ord_sup_pr8 [in sset12]
Ordinals2.ord_plus_compat_lt1 [in sset12]
Ordinals2.ord_induction_p2 [in sset12]
Ordinals2.ord_sup_pr13 [in sset12]
Ordinals2.ord_mult_compat_lt [in sset12]
Ordinals2.ord_pow0x [in sset12]
Ordinals2.ord_pow_normal [in sset12]
Ordinals2.ord_pow_increasing3 [in sset12]
Ordinals2.ord_induction_p11 [in sset12]
Ordinals2.ord2_lt_pr [in sset12]
Ordinals2.set_ordinal_card_le_pr [in sset12]
Ordinals2.set_ordinal_card_lt_pr [in sset12]
Ordinals2.substr_opbnat [in sset12]
Ordinals2.worder_opbnat [in sset12]
Ordinals2.zero_least_ordinal2 [in sset12]


P

Pair.kpr0_pair [in sset1]
Pair.pair_exten [in sset1]
Pair.pair_is_pair [in sset1]
Pair.Pair.kprE [in sset1]
Pair.Pair.kpr1E [in sset1]
Pair.Pair.kpr2E [in sset1]
Pair.pr1_pair [in sset1]
Pair.pr1_def [in sset1]
Pair.pr2_def [in sset1]
Pair.pr2_pair [in sset1]
Powerset.inc_x_powerset_x [in sset1]
Powerset.inc_e_powerset_x [in sset1]
Powerset.powerset_inc [in sset1]
Powerset.powerset_emptyset [in sset1]
Powerset.powerset_monotone [in sset1]
Powerset.powerset_sub [in sset1]
Powerset.powerset_inc_rw [in sset1]


R

Relation.canonical_decompositiona [in sset4]
Relation.canonical_decompositionb [in sset4]
Relation.canonical_decomposition_surj [in sset4]
Relation.canonical_foq_induced_rel_bijective [in sset4]
Relation.canonical_decomposition_surj2 [in sset4]
Relation.canonical_decomposition [in sset4]
Relation.canon_proj_inc [in sset4]
Relation.canon_proj_surjective [in sset4]
Relation.canon_proj_source [in sset4]
Relation.canon_proj_diagonal_bijective [in sset4]
Relation.canon_proj_target [in sset4]
Relation.canon_proj_W [in sset4]
Relation.canon_proj_show_surjective [in sset4]
Relation.canon_proj_function [in sset4]
Relation.class_rep [in sset4]
Relation.class_is_inv_direct_value [in sset4]
Relation.class_dichot [in sset4]
Relation.class_is_cut [in sset4]
Relation.class_prod_of_rel2 [in sset4]
Relation.coarsest_equivalence [in sset4]
Relation.coarse_related [in sset4]
Relation.coarse_substrate [in sset4]
Relation.coarse_equivalence [in sset4]
Relation.coarse_graph [in sset4]
Relation.compatible_ext_to_prod_inv [in sset4]
Relation.compatible_with_proj [in sset4]
Relation.compatible_constant_on_classes [in sset4]
Relation.compatible_with_pr [in sset4]
Relation.compatible_injection_induced_rel [in sset4]
Relation.compatible_with_equiv_pr [in sset4]
Relation.compatible_with_pr2 [in sset4]
Relation.compatible_ext_to_prod [in sset4]
Relation.compatible_ea [in sset4]
Relation.compatible_constant_on_classes2 [in sset4]
Relation.compatible_with_finer [in sset4]
Relation.compatible_with_proj3 [in sset4]
Relation.composable_fun_projs [in sset4]
Relation.composable_fun_projcs [in sset4]
Relation.composable_fun_projc [in sset4]
Relation.composable_fun_proj [in sset4]
Relation.compose_foq_proj [in sset4]
Relation.compose_fun_proj_ev [in sset4]
Relation.compose_fun_proj_eq2 [in sset4]
Relation.compose_fun_proj_ev2 [in sset4]
Relation.compose_fun_proj_eq [in sset4]
Relation.cqr_aux [in sset4]
Relation.decomposable_ext_to_prod_rel [in sset4]
Relation.diagonal_equivalence [in sset4]
Relation.diagonal_equivalence1 [in sset4]
Relation.diagonal_substrate [in sset4]
Relation.diagonal_equivalence2 [in sset4]
Relation.diagonal_class [in sset4]
Relation.domain_is_substrate [in sset4]
Relation.ea_related [in sset4]
Relation.ea_equivalence [in sset4]
Relation.ea_foq_injective [in sset4]
Relation.ea_foq_on_im_bijective [in sset4]
Relation.equipotent_equivalence [in sset4]
Relation.equivalence_is_graph [in sset4]
Relation.equivalence_prod_of_rel [in sset4]
Relation.equivalence_equivalence [in sset4]
Relation.equivalence_pr [in sset4]
Relation.equivalence_relation_bourbaki_ex5 [in sset4]
Relation.equivalence_has_graph [in sset4]
Relation.equivalence_relation_pr1 [in sset4]
Relation.equivalence_has_graph2 [in sset4]
Relation.equivalence_if_has_graph2 [in sset4]
Relation.equivalence_if_has_graph [in sset4]
Relation.equivalence_has_graph0 [in sset4]
Relation.exists_fun_on_quotient [in sset4]
Relation.exists_unique_fun_on_quotient [in sset4]
Relation.ext_to_prod_rel_W [in sset4]
Relation.ext_to_prod_rel_function [in sset4]
Relation.finer_sub_equiv [in sset4]
Relation.finer_sub_equiv3 [in sset4]
Relation.finer_sub_equiv2 [in sset4]
Relation.finest_equivalence [in sset4]
Relation.first_proj_eq_pr [in sset4]
Relation.first_proj_graph [in sset4]
Relation.first_proj_eq_related [in sset4]
Relation.first_proj_substrate [in sset4]
Relation.first_proj_equiv_proj [in sset4]
Relation.first_proj_class [in sset4]
Relation.first_proj_equivalence [in sset4]
Relation.foqcs_axioms [in sset4]
Relation.foqcs_function [in sset4]
Relation.foqcs_W [in sset4]
Relation.foqc_axioms [in sset4]
Relation.foqc_function [in sset4]
Relation.foqc_W [in sset4]
Relation.foqs_axioms [in sset4]
Relation.foqs_function [in sset4]
Relation.foqs_W [in sset4]
Relation.foq_axioms [in sset4]
Relation.foq_finer_surjective [in sset4]
Relation.foq_finer_function [in sset4]
Relation.foq_finer_W [in sset4]
Relation.foq_W [in sset4]
Relation.foq_function [in sset4]
Relation.foq_induced_rel_image [in sset4]
Relation.foq_induced_rel_injective [in sset4]
Relation.fun_on_quotient_pr [in sset4]
Relation.fun_on_quotient_pr2 [in sset4]
Relation.fun_on_quotient_pr4 [in sset4]
Relation.fun_on_quotient_pr3 [in sset4]
Relation.fun_on_quotient_pr5 [in sset4]
Relation.graph_on_graph [in sset4]
Relation.graph_on_rw1 [in sset4]
Relation.graph_ea_equivalence [in sset4]
Relation.graph_on_substrate [in sset4]
Relation.graph_ea_substrate [in sset4]
Relation.graph_of_ea [in sset4]
Relation.graph_on_rw2 [in sset4]
Relation.graph_on_rw0 [in sset4]
Relation.idempotent_graph_transitive [in sset4]
Relation.iirel_function [in sset4]
Relation.iirel_substrate [in sset4]
Relation.iirel_relation [in sset4]
Relation.iirel_related [in sset4]
Relation.iirel_class [in sset4]
Relation.inc_arg1_substrate [in sset4]
Relation.inc_arg2_substrate [in sset4]
Relation.inc_rep_substrate [in sset4]
Relation.inc_class_quotient [in sset4]
Relation.inc_rep_itself [in sset4]
Relation.inc_class [in sset4]
Relation.inc_itself_class [in sset4]
Relation.inc_coarse_all_equivalence_relations [in sset4]
Relation.inc_all_relations [in sset4]
Relation.inc_quotient [in sset4]
Relation.inc_pr1_substrate [in sset4]
Relation.inc_in_quotient_substrate [in sset4]
Relation.inc_substrate [in sset4]
Relation.inc_substrate_rw [in sset4]
Relation.inc_pr2_substrate [in sset4]
Relation.inc_all_equivalence_relations [in sset4]
Relation.induced_rel_class [in sset4]
Relation.induced_rel_equivalence [in sset4]
Relation.induced_rel_substrate [in sset4]
Relation.induced_rel_related [in sset4]
Relation.induced_rel_iirel_axioms [in sset4]
Relation.inter_rel_symmetric [in sset4]
Relation.inter_rel_rw [in sset4]
Relation.inter_rel_equivalence [in sset4]
Relation.inter_rel_graph [in sset4]
Relation.inter_rel_transitive [in sset4]
Relation.inter_rel_substrate [in sset4]
Relation.inter_rel_reflexive [in sset4]
Relation.inter2_is_graph1 [in sset4]
Relation.inter2_is_graph2 [in sset4]
Relation.in_class_related [in sset4]
Relation.isc_transitive [in sset4]
Relation.isc_equivalence [in sset4]
Relation.isc_reflexive [in sset4]
Relation.isc_symmetric [in sset4]
Relation.is_class_class [in sset4]
Relation.is_class_pr [in sset4]
Relation.is_class_rw [in sset4]
Relation.nonempty_class_symmetric [in sset4]
Relation.nonempty_image [in sset4]
Relation.non_empty_in_quotient [in sset4]
Relation.partition_fun_bijective [in sset4]
Relation.partition_is_equivalence [in sset4]
Relation.partition_relation_class [in sset4]
Relation.partition_relation_pr [in sset4]
Relation.partition_rel_graph [in sset4]
Relation.partition_from_equivalence [in sset4]
Relation.partition_relation_class2 [in sset4]
Relation.partition_inc_unique1 [in sset4]
Relation.partition_class_inc [in sset4]
Relation.partition_relation_substrate [in sset4]
Relation.prod_of_rel_refl [in sset4]
Relation.prod_of_rel_trans [in sset4]
Relation.prod_of_rel_pr [in sset4]
Relation.prod_of_rel_is_rel [in sset4]
Relation.prod_of_rel_sym [in sset4]
Relation.quotient_of_relations_related [in sset4]
Relation.quotient_of_relations_substrate [in sset4]
Relation.quotient_canonical_decomposition [in sset4]
Relation.quotient_of_relations_pr [in sset4]
Relation.quotient_of_relations_class_bis [in sset4]
Relation.quotient_of_relations_related_bis [in sset4]
Relation.quotient_of_relations_equivalence [in sset4]
Relation.reflexive_inc_substrate [in sset4]
Relation.reflexive_reflexive [in sset4]
Relation.reflexive_ap2 [in sset4]
Relation.reflexive_ap [in sset4]
Relation.reflexivity_e [in sset4]
Relation.related_e_rw [in sset4]
Relation.related_class_eq [in sset4]
Relation.related_ext_to_prod_rel [in sset4]
Relation.related_class_eq1 [in sset4]
Relation.related_rep_rep [in sset4]
Relation.related_rw [in sset4]
Relation.related_rep_in_class [in sset4]
Relation.related_rep_class [in sset4]
Relation.related_graph_canon_proj [in sset4]
Relation.related_prod_of_rel1 [in sset4]
Relation.related_prod_of_rel2 [in sset4]
Relation.rel_on_quo_pr [in sset4]
Relation.rel_on_quo_pr2 [in sset4]
Relation.rep_sys_function_pr [in sset4]
Relation.rep_sys_function_pr2 [in sset4]
Relation.right_inv_canon_proj [in sset4]
Relation.saturated_complement [in sset4]
Relation.saturated_pr [in sset4]
Relation.saturated_union [in sset4]
Relation.saturated_pr4 [in sset4]
Relation.saturated_intersection [in sset4]
Relation.saturated_pr3 [in sset4]
Relation.saturated_pr2 [in sset4]
Relation.saturation_of_smallest [in sset4]
Relation.saturation_of_union [in sset4]
Relation.saturation_of_pr [in sset4]
Relation.section_is_representative_system_function [in sset4]
Relation.section_canon_proj_function [in sset4]
Relation.section_canon_proj_W [in sset4]
Relation.section_canon_proj_pr [in sset4]
Relation.section_canon_proj_axioms [in sset4]
Relation.selfinverse_graph_symmetric [in sset4]
Relation.substrate_prod_of_rel [in sset4]
Relation.substrate_prod_of_rel2 [in sset4]
Relation.substrate_smallest [in sset4]
Relation.substrate_prod_of_rel1 [in sset4]
Relation.substrate_sub [in sset4]
Relation.sub_graph_coarse_substrate [in sset4]
Relation.sub_im_canon_proj_quotient [in sset4]
Relation.sub_class_substrate [in sset4]
Relation.sub_quotient_powerset [in sset4]
Relation.surjective_pr7 [in sset4]
Relation.symmetricity_e [in sset4]
Relation.symmetric_symmetric [in sset4]
Relation.symmetric_transitive_reflexive [in sset4]
Relation.symmetric_ap [in sset4]
Relation.symmetric_transitive_equivalence [in sset4]
Relation.transitive_ap [in sset4]
Relation.transitive_transitive [in sset4]
Relation.transitivity_e [in sset4]
Relation.trivial_equiv [in sset4]
Relation.union_quotient [in sset4]
Relation.union2_is_graph [in sset4]


U

Union.inc_tack_on_x [in sset1]
Union.inc_tack_on_y [in sset1]
Union.inc_tack_on_sub [in sset1]
Union.sub_union [in sset1]
Union.tack_on_complement [in sset1]
Union.tack_on_when_inc [in sset1]
Union.tack_on_rw [in sset1]
Union.tack_on_or [in sset1]
Union.tack_on_sub [in sset1]
Union.union_empty [in sset1]
Union.union_doubleton [in sset1]
Union.union_rw [in sset1]
Union.union_exists [in sset1]
Union.union_singleton [in sset1]
Union.union_inc [in sset1]
Union.union_sub [in sset1]
Union.union2A [in sset1]
Union.union2C [in sset1]
Union.union2idem [in sset1]
Union.union2sub [in sset1]
Union.union2sub_first [in sset1]
Union.union2sub_second [in sset1]
Union.union2_first [in sset1]
Union.union2_second [in sset1]
Union.union2_rw [in sset1]
Union.union2_or [in sset1]


W

Worder.bij_pair_isomorphism_onto_segment [in sset6]
Worder.canonical_doubleton_order_pr [in sset6]
Worder.coarse_segment_monotone [in sset6]
Worder.compose_order_morphism [in sset6]
Worder.compose_order_isomorphism [in sset6]
Worder.disjoint_union2_rw1 [in sset6]
Worder.disjoint_union2_rw [in sset6]
Worder.empty_is_segment [in sset6]
Worder.identity_isomorphism [in sset6]
Worder.identity_morphism [in sset6]
Worder.increasing_function_segments [in sset6]
Worder.inc_lt1_substrate [in sset6]
Worder.inc_segment [in sset6]
Worder.inc_bound_segmentc [in sset6]
Worder.inc_lt2_substrate [in sset6]
Worder.inc_set_of_segments [in sset6]
Worder.induced_order_trans [in sset6]
Worder.induced_trans [in sset6]
Worder.inductive_max_greater [in sset6]
Worder.inductive_graphs [in sset6]
Worder.inductive_powerset [in sset6]
Worder.intersection_is_segment [in sset6]
Worder.inverse_order_isomorphism [in sset6]
Worder.isomorphic_subset_segment [in sset6]
Worder.isomorphism_worder_unique [in sset6]
Worder.isomorphism_worder [in sset6]
Worder.lexorder_order [in sset6]
Worder.lexorder_total [in sset6]
Worder.lexorder_substrate [in sset6]
Worder.lexorder_gle [in sset6]
Worder.lexorder_substrate_aux [in sset6]
Worder.le_in_segment [in sset6]
Worder.lt_in_segment [in sset6]
Worder.maximal_in_powerset [in sset6]
Worder.minimal_in_powerset [in sset6]
Worder.not_in_segment [in sset6]
Worder.not_lt_self [in sset6]
Worder.order_merge3 [in sset6]
Worder.order_merge1 [in sset6]
Worder.order_merge2 [in sset6]
Worder.order_morphism_pr1 [in sset6]
Worder.order_merge5 [in sset6]
Worder.order_merge4 [in sset6]
Worder.rts_extensionality [in sset6]
Worder.rts_function [in sset6]
Worder.rts_surjective [in sset6]
Worder.rts_W [in sset6]
Worder.segmentc_rw [in sset6]
Worder.segmentc_insetof [in sset6]
Worder.segment_injective1 [in sset6]
Worder.segment_insetof [in sset6]
Worder.segment_induced_a [in sset6]
Worder.segment_monotone [in sset6]
Worder.segment_injective [in sset6]
Worder.segment_inc [in sset6]
Worder.segment_alt [in sset6]
Worder.segment_alt1 [in sset6]
Worder.segment_c_pr [in sset6]
Worder.segment_induced1 [in sset6]
Worder.segment_rw [in sset6]
Worder.segment_dichot_sub [in sset6]
Worder.segment_monotone1 [in sset6]
Worder.segment_is_segment [in sset6]
Worder.segment_induced [in sset6]
Worder.set_of_segments_iso_isomorphism [in sset6]
Worder.set_of_segments_worder [in sset6]
Worder.set_of_segments_iso_bijective [in sset6]
Worder.set_of_segments_axiom [in sset6]
Worder.strict_increasing_extens [in sset6]
Worder.subsegment_is_segment [in sset6]
Worder.substrate_is_segment [in sset6]
Worder.substrate_canonical_doubleton_order [in sset6]
Worder.sub_segment [in sset6]
Worder.sub_segmentc [in sset6]
Worder.sub_segment1 [in sset6]
Worder.sub_segment2 [in sset6]
Worder.sub_set_of_segments [in sset6]
Worder.tack_on_segment [in sset6]
Worder.transfinite_principle [in sset6]
Worder.transfinite_pr [in sset6]
Worder.transfinite_unique1 [in sset6]
Worder.transfinite_aux1 [in sset6]
Worder.transfinite_principle1 [in sset6]
Worder.transfinite_aux2 [in sset6]
Worder.transfinite_defined_pr [in sset6]
Worder.transfinite_principle_bis [in sset6]
Worder.transfinite_unique [in sset6]
Worder.transfinite_principle2 [in sset6]
Worder.transfinite_definition [in sset6]
Worder.transfinite_aux3 [in sset6]
Worder.transfinite_definition_stable [in sset6]
Worder.unionf_is_segment [in sset6]
Worder.union_segments [in sset6]
Worder.union_is_segment [in sset6]
Worder.unique_isomorphism_onto_segment [in sset6]
Worder.well_ordered_segment [in sset6]
Worder.wordering_pr [in sset6]
Worder.worder_adjoin_greatest [in sset6]
Worder.worder_merge [in sset6]
Worder.worder_is_order [in sset6]
Worder.worder_canonical_doubleton_order [in sset6]
Worder.worder_total [in sset6]
Worder.worder_restriction [in sset6]
Worder.worder_hassup [in sset6]
Worder.worder_least [in sset6]
Worder.Zermelo [in sset6]
Worder.Zermelo_bis [in sset6]
Worder.Zermelo_aux [in sset6]
Worder.Zermelo_aux4 [in sset6]
Worder.Zermelo_aux1 [in sset6]
Worder.Zermelo_aux2 [in sset6]
Worder.Zermelo_aux0 [in sset6]
Worder.Zermelo_aux3 [in sset6]
Worder.Zorn_aux [in sset6]
Worder.Zorn_lemma [in sset6]



Section Index

I

IntegerProps.Base_b_expansion [in sset9]



Notation Index

B

_ \coP _ [in sset2]
_ \Eq _ [in sset2]
_ \Is _ [in sset5]
_ [in sset7]
_ <=o _ [in sset7]
0 c [in sset7]
1 c [in sset7]
2 c [in sset7]
\csup [in sset7]
\opred [in sset7]
\osup [in sset7]


C

_ ^c _ [in sset7]
_ <=c _ [in sset7]
_ +c _ [in sset7]
_ [in sset7]
_ *c _ [in sset7]
_ \co _ [in sset2]


F

_ [in sset8]
_ <=N _ [in sset8]
3 c [in sset8]
4 c [in sset8]


I

_ %/c _ [in sset9]
_ %%c _ [in sset9]
_ -c _ [in sset9]
_ %|c _ [in sset9]
10 c [in sset9]


O

_ +o _ [in sset11]
_ *o _ [in sset11]
0 o [in sset11]
1 o [in sset11]
2 o [in sset11]
\omega [in sset11]
_ ^o _ [in sset12]
_ -o _ [in sset12]


T

_ & _ [in sset1]



Constructor Index

A

Axioms.nonemptyT_intro [in sset1]
Axioms.nonempty_intro [in sset1]


C

Constructions.Zorec_c [in sset1]


L

Little.two_points_a [in sset1]
Little.two_points_b [in sset1]



Inductive Index

A

Axioms.nonempty [in sset1]
Axioms.nonemptyT [in sset1]


C

Constructions.emptyset [in sset1]
Constructions.Zorec [in sset1]


L

Little.two_points [in sset1]



Abbreviation Index

B

Bordinal.cardinal [in sset7]


F

Function.L [in sset1]


P

Pair.J [in sset1]
Pair.P [in sset1]
Pair.Q [in sset1]



Definition Index

A

Axioms.inc [in sset1]
Axioms.sub [in sset1]


B

Bfunction.agreeC [in sset2]
Bfunction.agrees_on [in sset2]
Bfunction.bcreate [in sset2]
Bfunction.bcreate1 [in sset2]
Bfunction.bijection [in sset2]
Bfunction.bijectiveC [in sset2]
Bfunction.BL [in sset2]
Bfunction.canonical_injection [in sset2]
Bfunction.composable [in sset2]
Bfunction.constant_function [in sset2]
Bfunction.diagonal_application [in sset2]
Bfunction.empty_function [in sset2]
Bfunction.empty_functionC [in sset2]
Bfunction.equipotent [in sset2]
Bfunction.extends [in sset2]
Bfunction.extendsC [in sset2]
Bfunction.ext_to_prod [in sset2]
Bfunction.ext_to_prodC [in sset2]
Bfunction.first_proj [in sset2]
Bfunction.functional_graph [in sset2]
Bfunction.identityC [in sset2]
Bfunction.imageC [in sset2]
Bfunction.inclusionC [in sset2]
Bfunction.injection [in sset2]
Bfunction.injectiveC [in sset2]
Bfunction.inverseC [in sset2]
Bfunction.inv_graph_canon [in sset2]
Bfunction.is_left_inverseC [in sset2]
Bfunction.is_constant_function [in sset2]
Bfunction.is_right_inverseC [in sset2]
Bfunction.is_constant_functionC [in sset2]
Bfunction.is_left_inverse [in sset2]
Bfunction.is_function [in sset2]
Bfunction.is_right_inverse [in sset2]
Bfunction.left_inverseC [in sset2]
Bfunction.pairC [in sset2]
Bfunction.partial_fun1 [in sset2]
Bfunction.partial_fun2 [in sset2]
Bfunction.pr1C [in sset2]
Bfunction.pr2C [in sset2]
Bfunction.restriction [in sset2]
Bfunction.restrictionC [in sset2]
Bfunction.restriction_to_image [in sset2]
Bfunction.restriction1 [in sset2]
Bfunction.restriction2 [in sset2]
Bfunction.restriction2C [in sset2]
Bfunction.restriction2_axioms [in sset2]
Bfunction.right_inverseC [in sset2]
Bfunction.second_proj [in sset2]
Bfunction.set_of_gfunctions [in sset2]
Bfunction.surjection [in sset2]
Bfunction.surjectiveC [in sset2]
Bfunction.tack_on_f [in sset2]
Bfunction.transf_axioms [in sset2]
Bfunction.W [in sset2]
Border.antisymmetric_r [in sset5]
Border.bounded_both [in sset5]
Border.bounded_above [in sset5]
Border.bounded_below [in sset5]
Border.coarser [in sset5]
Border.coarser_preorder [in sset5]
Border.cofinal_set [in sset5]
Border.coinitial_set [in sset5]
Border.decreasing_fun [in sset5]
Border.empty_function_tg [in sset5]
Border.equivalence_associated_o [in sset5]
Border.extension_order [in sset5]
Border.fam_of_substrates [in sset5]
Border.function_order_r [in sset5]
Border.function_order [in sset5]
Border.gge [in sset5]
Border.ggt [in sset5]
Border.gle [in sset5]
Border.glt [in sset5]
Border.graph_order_r [in sset5]
Border.graph_of_function [in sset5]
Border.graph_of_partition [in sset5]
Border.graph_order [in sset5]
Border.greatest_lower_bound [in sset5]
Border.greatest_element [in sset5]
Border.has_inf_graph [in sset5]
Border.has_infimum [in sset5]
Border.has_supremum [in sset5]
Border.has_sup_graph [in sset5]
Border.inclusion_order [in sset5]
Border.inclusion_suborder [in sset5]
Border.increasing_fun [in sset5]
Border.induced_order [in sset5]
Border.inf [in sset5]
Border.infimum [in sset5]
Border.inf_graph [in sset5]
Border.interval_co [in sset5]
Border.interval_uc [in sset5]
Border.interval_uu [in sset5]
Border.interval_oo [in sset5]
Border.interval_cc [in sset5]
Border.interval_oc [in sset5]
Border.interval_cu [in sset5]
Border.interval_uo [in sset5]
Border.interval_ou [in sset5]
Border.is_semi_open_interval [in sset5]
Border.is_antisymmetric [in sset5]
Border.is_interval [in sset5]
Border.is_left_unbounded_interval [in sset5]
Border.is_closed_interval [in sset5]
Border.is_right_unbounded_interval [in sset5]
Border.is_lu_interval [in sset5]
Border.is_ru_interval [in sset5]
Border.is_bounded_interval [in sset5]
Border.is_inf_fun [in sset5]
Border.is_open_interval [in sset5]
Border.is_sup_graph [in sset5]
Border.is_inf_graph [in sset5]
Border.is_sup_fun [in sset5]
Border.is_unbounded_interval [in sset5]
Border.lattice [in sset5]
Border.least_upper_bound [in sset5]
Border.least_element [in sset5]
Border.left_directed [in sset5]
Border.lower_bound [in sset5]
Border.maximal_element [in sset5]
Border.minimal_element [in sset5]
Border.monotone_fun [in sset5]
Border.opposite_relation [in sset5]
Border.opposite_order [in sset5]
Border.order [in sset5]
Border.order_isomorphic [in sset5]
Border.order_re [in sset5]
Border.order_axioms [in sset5]
Border.order_r [in sset5]
Border.order_associated [in sset5]
Border.order_morphism [in sset5]
Border.order_with_greatest [in sset5]
Border.order_isomorphism [in sset5]
Border.partial_fun [in sset5]
Border.partition_fun_of_set [in sset5]
Border.partition_relation_set [in sset5]
Border.partition_relation_set_aux [in sset5]
Border.preorder [in sset5]
Border.preorder_r [in sset5]
Border.product_order_r [in sset5]
Border.product_order [in sset5]
Border.product_order_axioms [in sset5]
Border.product2_order [in sset5]
Border.prod_of_substrates [in sset5]
Border.reflexive_rr [in sset5]
Border.right_directed [in sset5]
Border.set_of_preorders [in sset5]
Border.set_of_fgraphs [in sset5]
Border.set_of_partition_set [in sset5]
Border.set_of_majorants1 [in sset5]
Border.strict_monotone_fun [in sset5]
Border.strict_decreasing_fun [in sset5]
Border.strict_increasing_fun [in sset5]
Border.sup [in sset5]
Border.supremum [in sset5]
Border.sup_graph [in sset5]
Border.the_greatest_element [in sset5]
Border.the_least_element [in sset5]
Border.total_order [in sset5]
Border.upper_bound [in sset5]
Bordinal.asymmetric_set [in sset7]
Bordinal.cardinalVp [in sset7]
Bordinal.cardinal_of [in sset7]
Bordinal.Cardinal.cardinal [in sset7]
Bordinal.card_one [in sset7]
Bordinal.card_two [in sset7]
Bordinal.card_zero [in sset7]
Bordinal.decent_set [in sset7]
Bordinal.finite_o [in sset7]
Bordinal.finite_c [in sset7]
Bordinal.finite_set [in sset7]
Bordinal.infinite_c [in sset7]
Bordinal.infinite_set [in sset7]
Bordinal.infinite_o [in sset7]
Bordinal.is_cardinal [in sset7]
Bordinal.is_ordinal [in sset7]
Bordinal.least_ordinal [in sset7]
Bordinal.limit_ordinal [in sset7]
Bordinal.omega0 [in sset7]
Bordinal.order_le [in sset7]
Bordinal.ordinal [in sset7]
Bordinal.ordinal_le [in sset7]
Bordinal.ordinal_set [in sset7]
Bordinal.ordinal_oa [in sset7]
Bordinal.ordinal_lt [in sset7]
Bordinal.ordinal_o [in sset7]
Bordinal.ord_sup_pr [in sset7]
Bordinal.succ [in sset7]
Bordinal.succ_o [in sset7]
Bordinal.transitive_set [in sset7]
Bordinal.worder_of [in sset7]
Bproduct.constant_functor [in sset3]
Bproduct.cst_graph [in sset3]
Bproduct.diagonal_graphp [in sset3]
Bproduct.ext_map_prod [in sset3]
Bproduct.ext_map_prod_aux [in sset3]
Bproduct.ext_map_prod_axioms [in sset3]
Bproduct.fun_set_to_prod [in sset3]
Bproduct.fun_set_to_prod5 [in sset3]
Bproduct.gbcreate [in sset3]
Bproduct.is_constant_graph [in sset3]
Bproduct.productb [in sset3]
Bproduct.productf [in sset3]
Bproduct.productt [in sset3]
Bproduct.product_compose [in sset3]
Bproduct.product1 [in sset3]
Bproduct.product1_canon [in sset3]
Bproduct.product2 [in sset3]
Bproduct.product2_canon [in sset3]
Bproduct.prod_assoc_axioms [in sset3]
Bproduct.prod_of_product_aux [in sset3]
Bproduct.prod_of_prod_target [in sset3]
Bproduct.prod_of_products [in sset3]
Bproduct.prod_of_products_canon [in sset3]
Bproduct.prod_assoc_map [in sset3]
Bproduct.prod_of_function [in sset3]
Bproduct.pr_it [in sset3]
Bproduct.pr_i [in sset3]
Bproduct.pr_j [in sset3]
Bproduct.restriction_product [in sset3]
Bunion.coarser_c [in sset3]
Bunion.coarser_covering [in sset3]
Bunion.compose3function [in sset3]
Bunion.covering [in sset3]
Bunion.covering_s [in sset3]
Bunion.covering_f [in sset3]
Bunion.disjoint_union_fam [in sset3]
Bunion.disjoint_union [in sset3]
Bunion.extension_to_parts [in sset3]
Bunion.first_partial_map [in sset3]
Bunion.first_partial_fun [in sset3]
Bunion.first_partial_function [in sset3]
Bunion.function_prop_sub [in sset3]
Bunion.function_prop [in sset3]
Bunion.injective_graph [in sset3]
Bunion.intersectionb [in sset3]
Bunion.intersectionf [in sset3]
Bunion.intersectiont [in sset3]
Bunion.intersection_covering [in sset3]
Bunion.intersection_covering2 [in sset3]
Bunion.largest_partition [in sset3]
Bunion.mutually_disjoint [in sset3]
Bunion.partial_fun_axioms [in sset3]
Bunion.partition [in sset3]
Bunion.partition_fam [in sset3]
Bunion.partition_s [in sset3]
Bunion.partition_with_complement [in sset3]
Bunion.second_partial_map [in sset3]
Bunion.second_partial_fun [in sset3]
Bunion.second_partial_function [in sset3]
Bunion.set_of_sub_functions [in sset3]
Bunion.set_of_permutations [in sset3]
Bunion.set_of_functions [in sset3]
Bunion.smallest_partition [in sset3]
Bunion.unionb [in sset3]
Bunion.unionf [in sset3]
Bunion.uniont [in sset3]
Bunion.variant [in sset3]
Bunion.varianti [in sset3]
Bunion.variantL [in sset3]
Bunion.variantLc [in sset3]


C

Cardinal.cardinal_lt [in sset7]
Cardinal.cardinal_set [in sset7]
Cardinal.cardinal_le [in sset7]
Cardinal.cardinal_sum [in sset7]
Cardinal.cardinal_prod [in sset7]
Cardinal.card_pow [in sset7]
Cardinal.card_plus [in sset7]
Cardinal.card_mult [in sset7]
Cardinal.doubleton_fam [in sset7]
Cardinal.equipotent_ex [in sset7]
Cardinal.equipotent_to_subset [in sset7]
Cardinal.restriction_to_image [in sset7]
Cardinal.set_of_cardinals_le [in sset7]
Cardinal.TPas [in sset7]
Cardinal.TPbs [in sset7]
Cartesian.product [in sset1]
Complement.complement [in sset1]
Constructions.Bo [in sset1]
Constructions.by_cases [in sset1]
Constructions.choose [in sset1]
Constructions.empty [in sset1]
Constructions.exists_unique [in sset1]
Constructions.rep [in sset1]
Constructions.strict_sub [in sset1]
Constructions.Yo [in sset1]
Constructions.Zo [in sset1]
Correspondence.acreate [in sset2]
Correspondence.composableC [in sset2]
Correspondence.compose [in sset2]
Correspondence.compose_graph [in sset2]
Correspondence.corresp [in sset2]
Correspondence.diagonal [in sset2]
Correspondence.gacreate [in sset2]
Correspondence.graph [in sset2]
Correspondence.identity [in sset2]
Correspondence.image_by_fun [in sset2]
Correspondence.image_by_graph [in sset2]
Correspondence.image_of_fun [in sset2]
Correspondence.im_singleton [in sset2]
Correspondence.inverse_graph [in sset2]
Correspondence.inverse_fun [in sset2]
Correspondence.inv_image_by_fun [in sset2]
Correspondence.inv_image_by_graph [in sset2]
Correspondence.is_triple [in sset2]
Correspondence.is_correspondence [in sset2]
Correspondence.related [in sset2]
Correspondence.set_of_correspondences [in sset2]
Correspondence.source [in sset2]
Correspondence.target [in sset2]


F

FiniteSets.Bnat [in sset8]
FiniteSets.Bnat_order [in sset8]
FiniteSets.Bnat_le [in sset8]
FiniteSets.Bnat_lt [in sset8]
FiniteSets.card_four [in sset8]
FiniteSets.card_three [in sset8]
FiniteSets.of_finite_character [in sset8]
FiniteSets.predc [in sset8]
Function.domain [in sset1]
Function.fcomposable [in sset1]
Function.fcompose [in sset1]
Function.fgraph [in sset1]
Function.gcompose [in sset1]
Function.graph_constructor [in sset1]
Function.identity_g [in sset1]
Function.inverse_image [in sset1]
Function.is_restriction [in sset1]
Function.is_graph [in sset1]
Function.range [in sset1]
Function.restr [in sset1]
Function.V [in sset1]


I

Image.fun_image [in sset1]
InfiniteSets.countable_set [in sset10]
InfiniteSets.decreasing_sequence [in sset10]
InfiniteSets.increasing_sequence [in sset10]
InfiniteSets.induction_defined [in sset10]
InfiniteSets.induction_defined1 [in sset10]
InfiniteSets.induction_defined_set [in sset10]
InfiniteSets.induction_defined1_set [in sset10]
InfiniteSets.induction_defined0_set [in sset10]
InfiniteSets.stationary_sequence [in sset10]
IntegerProps.binom [in sset9]
IntegerProps.BNdivides [in sset9]
IntegerProps.card_quo [in sset9]
IntegerProps.card_quo0 [in sset9]
IntegerProps.card_rem0 [in sset9]
IntegerProps.card_rem [in sset9]
IntegerProps.card_ten [in sset9]
IntegerProps.card_five [in sset9]
IntegerProps.card_sub [in sset9]
IntegerProps.char_fun [in sset9]
IntegerProps.division_prop [in sset9]
IntegerProps.eqmod [in sset9]
IntegerProps.expansion_value [in sset9]
IntegerProps.factorial [in sset9]
IntegerProps.finite_int_fam [in sset9]
IntegerProps.induction_term [in sset9]
IntegerProps.induction_defined0 [in sset9]
IntegerProps.interval_Bnato [in sset9]
IntegerProps.interval_cc_0a [in sset9]
IntegerProps.interval_Bnatco [in sset9]
IntegerProps.interval_co_0a [in sset9]
IntegerProps.interval_Bnat [in sset9]
IntegerProps.interval_cc_1a [in sset9]
IntegerProps.is_expansion [in sset9]
IntegerProps.is_base_ten_expansion [in sset9]
IntegerProps.number_of_injections [in sset9]
IntegerProps.partition_with_pi_elements [in sset9]
IntegerProps.rest_plus_interval [in sset9]
IntegerProps.rest_minus_interval [in sset9]
IntegerProps.set_of_functions_sum_eq [in sset9]
IntegerProps.set_of_functions_sum_le [in sset9]
IntegerProps.set_of_increasing_functions_int [in sset9]
IntegerProps.set_of_partitions_aux [in sset9]
IntegerProps.set_of_injections [in sset9]
IntegerProps.set_of_graph_sum_le_int [in sset9]
IntegerProps.set_of_graph_sum_le [in sset9]
IntegerProps.set_of_partitions [in sset9]
IntegerProps.set_of_graph_sum_eq [in sset9]
IntegerProps.set_of_strict_incr_functions [in sset9]
IntegerProps.set_of_incr_functions [in sset9]
IntegerProps.subsets_with_p_elements [in sset9]
IntegerProps.sum_to_increasing_fct [in sset9]
IntegerProps.sum_to_increasing_fun [in sset9]
Intersection.disjoint [in sset1]
Intersection.intersection [in sset1]
Intersection.intersection2 [in sset1]


L

Little.doubleton [in sset1]
Little.is_singleton [in sset1]
Little.singleton [in sset1]
Little.small_set [in sset1]
Little.TPa [in sset1]
Little.TPb [in sset1]


O

Ordinals1.canonical_du2 [in sset11]
Ordinals1.order_prod2 [in sset11]
Ordinals1.order_sum [in sset11]
Ordinals1.order_sum_a [in sset11]
Ordinals1.order_prod [in sset11]
Ordinals1.order_prod_a [in sset11]
Ordinals1.order_sum_r [in sset11]
Ordinals1.order_sum2 [in sset11]
Ordinals1.ord_prod [in sset11]
Ordinals1.ord_zero [in sset11]
Ordinals1.ord_sum [in sset11]
Ordinals1.ord_two [in sset11]
Ordinals1.ord_sum2 [in sset11]
Ordinals1.ord_omega [in sset11]
Ordinals1.ord_prod2 [in sset11]
Ordinals1.ord_one [in sset11]
Ordinals1.sum_of_substrates [in sset11]
Ordinals2.aleph_aux2 [in sset12]
Ordinals2.aleph_aux1 [in sset12]
Ordinals2.cantor_normal_b [in sset12]
Ordinals2.cantor_normal_a [in sset12]
Ordinals2.cofinal_ordinal [in sset12]
Ordinals2.normal_ofs2 [in sset12]
Ordinals2.normal_ofs1 [in sset12]
Ordinals2.normal_ofs [in sset12]
Ordinals2.omega_fct [in sset12]
Ordinals2.ordinal_expansion1 [in sset12]
Ordinals2.ordinal_interval [in sset12]
Ordinals2.ordinal_expansion3 [in sset12]
Ordinals2.ordinal_expansion2 [in sset12]
Ordinals2.ord_induction_prop [in sset12]
Ordinals2.ord_pow [in sset12]
Ordinals2.ord_induction_aux [in sset12]
Ordinals2.ord_ext_div_pr [in sset12]
Ordinals2.ord_induction_defined [in sset12]
Ordinals2.ord_induction_axioms3 [in sset12]
Ordinals2.ord_indecomposable [in sset12]
Ordinals2.ord_div_pr1 [in sset12]
Ordinals2.ord_induction_axioms [in sset12]
Ordinals2.ord_induction_axioms2 [in sset12]
Ordinals2.ord_sub [in sset12]
Ordinals2.ord_div_pr0 [in sset12]
Ordinals2.set_ordinal_card_le [in sset12]


P

Pair.is_pair [in sset1]
Pair.kpair [in sset1]
Pair.kpr1 [in sset1]
Pair.kpr2 [in sset1]
Pair.Pair.first_proj [in sset1]
Pair.Pair.pair_ctor [in sset1]
Pair.Pair.second_proj [in sset1]
Powerset.powerset [in sset1]


R

Relation.all_equivalence_relations [in sset4]
Relation.all_relations [in sset4]
Relation.canonical_foq_induced_rel [in sset4]
Relation.canon_proj [in sset4]
Relation.class [in sset4]
Relation.coarse [in sset4]
Relation.compatible_with_equiv [in sset4]
Relation.compatible_with_equivs [in sset4]
Relation.compatible_with_equiv_p [in sset4]
Relation.equivalence_r [in sset4]
Relation.equivalence_re [in sset4]
Relation.equivalence_associated [in sset4]
Relation.eq_rel_associated [in sset4]
Relation.finer_equivalence [in sset4]
Relation.finer_axioms [in sset4]
Relation.first_proj_eqr [in sset4]
Relation.first_proj_eq [in sset4]
Relation.function_on_quotient [in sset4]
Relation.function_on_quotients [in sset4]
Relation.fun_on_reps [in sset4]
Relation.fun_on_rep [in sset4]
Relation.fun_on_quotient [in sset4]
Relation.fun_on_quotients [in sset4]
Relation.graph_on [in sset4]
Relation.iirel_axioms [in sset4]
Relation.induced_rel_axioms [in sset4]
Relation.induced_relation [in sset4]
Relation.inverse_direct_value [in sset4]
Relation.inv_image_relation [in sset4]
Relation.in_same_coset [in sset4]
Relation.is_class [in sset4]
Relation.is_equivalence [in sset4]
Relation.is_transitive [in sset4]
Relation.is_graph_of [in sset4]
Relation.is_symmetric [in sset4]
Relation.is_reflexive [in sset4]
Relation.partition_relation [in sset4]
Relation.prod_of_relation [in sset4]
Relation.quotient [in sset4]
Relation.quotient_of_relations [in sset4]
Relation.reflexive_r [in sset4]
Relation.relation_on_quotient [in sset4]
Relation.representative_system [in sset4]
Relation.representative_system_function [in sset4]
Relation.restricted_eq [in sset4]
Relation.saturated [in sset4]
Relation.saturation_of [in sset4]
Relation.section_canon_proj [in sset4]
Relation.substrate [in sset4]
Relation.substrate_for_prod [in sset4]
Relation.symmetric_r [in sset4]
Relation.transitive_r [in sset4]
Relation.union_image [in sset4]


U

Union.tack_on [in sset1]
Union.union [in sset1]
Union.union2 [in sset1]


W

Worder.canonical_doubleton_order [in sset6]
Worder.common_extension_order [in sset6]
Worder.common_worder_axiom [in sset6]
Worder.common_ordering_set [in sset6]
Worder.common_extension_order_axiom [in sset6]
Worder.inductive_set [in sset6]
Worder.is_segment [in sset6]
Worder.lexicographic_order_axioms [in sset6]
Worder.lexicographic_order [in sset6]
Worder.lexicographic_order_r [in sset6]
Worder.restriction_to_segment_axiom [in sset6]
Worder.restriction_to_segment [in sset6]
Worder.segment [in sset6]
Worder.segment_c [in sset6]
Worder.set_of_segments [in sset6]
Worder.set_of_segments_strict [in sset6]
Worder.set_of_segments_iso [in sset6]
Worder.transfinite_def [in sset6]
Worder.transfinite_defined [in sset6]
Worder.worder [in sset6]
Worder.worder_r [in sset6]
Worder.Zermelo_axioms [in sset6]



Module Index

A

Axioms [in sset1]


B

Bfunction [in sset2]
Border [in sset5]
Bordinal [in sset7]
Bordinal.Cardinal [in sset7]
Bordinal.CardinalSig [in sset7]
Bproduct [in sset3]
Bunion [in sset3]


C

Cardinal [in sset7]
Cartesian [in sset1]
Complement [in sset1]
Constructions [in sset1]
Correspondence [in sset2]


F

FiniteSets [in sset8]
Function [in sset1]


I

Image [in sset1]
InfiniteSets [in sset10]
IntegerProps [in sset9]
Intersection [in sset1]


L

Little [in sset1]


O

Ordinals1 [in sset11]
Ordinals2 [in sset12]


P

Pair [in sset1]
Pair.Pair [in sset1]
Pair.PairSig [in sset1]
Powerset [in sset1]


R

Relation [in sset4]


T

Tactics1 [in sset1]


U

Union [in sset1]


W

Worder [in sset6]



Axiom Index

A

Axioms.chooseT [in sset1]
Axioms.chooseT_pr [in sset1]
Axioms.excluded_middle [in sset1]
Axioms.extensionality [in sset1]
Axioms.iff_eq [in sset1]
Axioms.IM [in sset1]
Axioms.IM_inc [in sset1]
Axioms.IM_exists [in sset1]
Axioms.Ro [in sset1]
Axioms.R_inj [in sset1]


B

Bordinal.CardinalSig.cardinal [in sset7]
Bordinal.CardinalSig.cardinalE [in sset7]


P

Pair.PairSig.first_proj [in sset1]
Pair.PairSig.kprE [in sset1]
Pair.PairSig.kpr1E [in sset1]
Pair.PairSig.kpr2E [in sset1]
Pair.PairSig.pair_ctor [in sset1]
Pair.PairSig.second_proj [in sset1]



Variable Index

I

IntegerProps.Base_b_expansion.b [in sset9]
IntegerProps.Base_b_expansion.g [in sset9]
IntegerProps.Base_b_expansion.k' [in sset9]
IntegerProps.Base_b_expansion.Expg [in sset9]
IntegerProps.Base_b_expansion.f [in sset9]
IntegerProps.Base_b_expansion.Exp [in sset9]
IntegerProps.Base_b_expansion.k [in sset9]



Library Index

S

sset1
sset10
sset11
sset12
sset2
sset3
sset4
sset5
sset6
sset7
sset8
sset9



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3386 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2737 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (35 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (5 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (525 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (30 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (18 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (7 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12 entries)

This page has been generated by coqdoc