Workshop POPEYE
Cosponsored by MMSOS (specific action of EuroFGI Network of Excellence)
IMAG Grenoble, 21-22 May 2008.
Program 21 May:
·
Jean-Yves Le Boudec
title: Mean Field Interaction Models for
Computer and Communication
Systems and the Decoupling Assumption.
Joint work with Michel Benaim
Abstract:
We consider models of N interacting objects, where
the interaction is via a common resource and the
distribution of states of all objects. We introduce
the key scaling concept of intensity; informally, the
expected number of transitions per object per time
slot is of the order of the intensity. We consider the
case of vanishing intensity, i.e. the expected number
of object transitions per time slot is o(N). We show
that, under mild assumptions and for large N, the
occupancy measure converges, in mean square (and thus
in probability) over any finite horizon, to a
deterministic dynamical system. The mild assumption is
essentially that the coefficient of variation of the
number of object transitions per time slot remains
bounded with $N$. No independence assumption is needed
anywhere. The convergence results allow us to derive
properties valid in the stationary regime. We discuss
when one can assure that a stationary point of the ODE
is the large N limit of the stationary probability
distribution of the state of one object for the system
with N objects. We use this to develop a critique of
the decoupling assumption sometimes used in conjunction
with a fixed point analysis.
·
Marc Lelarge
A Local Mean Field Analysis of Security Investments in Networks.
Joint work with J. Bolot.
Abstract:
Getting agents in the Internet, and in networks in general, to invest in and deploy security features and protocols is a challenge, in particular because of economic reasons arising from the presence of network externalities. We study a network of interconnected agents, which are subject to epidemic risks such as those caused by propagating viruses and worms, and which can decide whether or not to invest some amount to self-protect and deploy security solutions. We introduce a general model which combines an epidemic propagation model with an economic model for agents which captures network effects and externalities. Borrowing ideas and techniques used in statistical physics, we introduce a Local Mean Field (LMF) model, which extends the standard mean-field approximation to take into account the correlation structure on local neighborhoods. We solve the LMF model in a network with externalities, and we identify the impact of network externalities on the decision to invest in and deploy security features.
Hamidou Tembine
Title: Evolutionary Game Dynamics with Migration:
theory, and applications to
wireless networks.
joint work with E. Altman, R. Elazouzi and W. H.
Sandholm (University of Wisconsin)
Abstract:
We propose an evolutionary game dynamics with migration
for hybrid population games with many local interactions at the same time.
Each local interaction concerns a random number of interacting players.
The strategies of a player have two components. Specifically,
each player chooses both (i) the region or subpopulation and (ii) a
strategy among a finite set of secondary pure strategies
in each region. We assume that when updating a strategy, a player
can change only the secondary strategies associate to the region at a time. We
investigate what impact this restriction has on the population dynamics.
We apply this model to the integrated power control and base station assignment
problem
in a multi-cell in code division multiple access(CDMA) wireless data networks with
large number of mobiles. We show that global neutrally evolutionary stable
strategies and choice constrained equilibria are stationary points of hybrid mean
dynamics called dynamics with multicomponent strategies under the positive
correlation conditions. We give some convergence results of our
hybrid model in
stable population games and potential population games under
some particular class of dynamics.
Olivier Bournez
Title: Population protocols and extensions.
Joint work with Xavier Koegler, Pierre Fraigniaud and Johanne Cohen
Abstract:
Les protocoles de populations ont été introduits par Angluin-Aspnes-Diamadi-Fischer-Peralta comme un modèle de réseaux de capteurs: une population d'agents, à états finis, interagissent par paires. Les interactions ont lieu avec une hypothèse de passivité mobile: chaque agent peut entrer en communication avec tout autre agent, et les interactions ne sont pas contrôlées, mais obéissent à une hypothèses d'équité, vérifiée par exemple par une hypothèse d'appariement selon une loi uniforme.
On discutera de certains liens entre ce modèle et les hypothèses faites généralement dans les modèles de la théorie évolutionnaire des jeux.
On présentera quelques résultats connus sur la puissance de reconnaissance et de calcul du modèle: Angluin-Aspnes-Eisenstat ont caractérisé la puissance de reconnaissance du modèle comme celle des relations définissables en arithmétique de Presburger. On présentera quelques extensions de ce résultat à des systèmes probabilistes et on discutera de ce qui peut être calculé par le modèle avec une hypothèse de grande population.
Les résultats qui seront présentés correspondent au travail de stage de première année d'ENS et au stage de master en cours de Xavier Koegler. Travail de master encadré par Pierre Fraigniaud et moi-même. Travail de première année encadré par Johanne Cohen et moi-même.
Les protocoles de populations ont été introduits par Angluin-Aspnes-Diamadi-Fischer-Peralta comme un modèle de réseaux de capteurs: une population d'agents, à états finis, interagissent par paires. Les interactions ont lieu avec une hypothèse de passivité mobile: chaque agent peut entrer en communication avec tout autre agent, et les interactions ne sont pas contrôlées, mais obéissent à une hypothèses d'équité, vérifiée par exemple par une hypothèse d'appariement selon une loi uniforme. On discutera de certains liens entre ce modèle et les hypothèses faites généralement dans les modèles de la théorie évolutionnaire des jeux. On présentera quelques résultats connus sur la puissance de reconnaissance et de calcul du modèle: Angluin-Aspnes-Eisenstat ont caractérisé la puissance de reconnaissance du modèle comme celle des relations définissables en arithmétique de Presburger. On présentera quelques extensions de ce résultat à des systèmes probabilistes et on discutera de ce qui peut être calculé par le modèle avec une hypothèse de grande population. Les résultats qui seront présentés correspondent au travail de stage de première année d'ENS et au stage de master en cours de Xavier Koegler. Travail de master encadré par Pierre Fraigniaud et moi-même. Travail de première année encadré par Johanne Cohen et moi-même.
Program 22 May
·
Yezekael Hayel
title: Stochastic Evolutionary games for energy management of wireless networks,
joint work with E. Altman, R. El-Azouzi and T. Hamidou
Abstract:
We present a class of evolutionary games involving large populations that have many pairwise interactions between randomly selected players. The
fitness of a player depends not only on the actions chosen in the interaction but also on the individual state of the players. Players have finite
life time and take during which they participate in several local interactions. The actions taken by a player determine not only the immediate
fitness but also the transition probabilities to its next individual state. We define and characterize the Evolutionary Stable Strategies (ESS) for
these games and propose a method to compute them. We illustrate the model and results through a networking problem.
·
Pierre Bernhard
Title: Continuum equilibrium,
joint work with E. Altman and A. Silva
Abstract:
Computing optimal routes in massively dense adhoc networks
becomes intractable as the number of nodes becomes very large.
One recent approach to solve this problem is to use a fluid
type approximation in which the whole network is replaced by
a continuum plain. Various paradigms from physics have been
used recently in order to solve the continuum model. We propose
in this paper an alternative modeling and solution approach similar
to a model by Beckmann developed more than fifty years ago
from the area of road traffic.
·
Sylvain Sorin
Time average replicator and best reply dynamics.
Joint work with Josef Hofbauer, and Yannick Viossat
·
Eitan Altman
title:Routing in massively dense Ad-hoc Networks
with Directionnal Antennas.
Joint work with A. Silva, P. Bernhard and M. Debbah
Abstract:
We consider massively dense ad-hoc networks
and study their continuum limits as the node density increases and as
the graph providing the available
routes becomes a continuous area with location and congestion
dependent costs. We study both the global optimal solution as
well as the non-cooperative routing
problem among a large population of users where
each user seeks a path from its source to its destination
so as to minimize its individual cost. We seek for a
(continuum version of the) Wardrop equilibrium. We first
show how to derive meaningful cost models as a function of the
scaling properties of the capacity of the network as a function of
the density of nodes.
We present various solution methodologies for the problem: (1) the
viscosity solution of the Hamilton-Bellman-Jacobi equation,
for the global optimization problem,
(2) a method based on Green Theorem for the least cost problem of an
individual, and (3) a solution of the Wardrop equilibrium problem
using a transformation into an equivalent global optimization problem.
·
Roberto Cominetti
title: Equilibrium and learning in traffic network games.
Abstract:
Traffic in congested networks is often described as an equilibrium or
steady state that emerges from the
adaptive behavior of drivers. While this intuitive view tends to be
confirmed in experiments, traditional
concepts such as Wardrop Equilibrium or Stochastic User Equilibrium are
directly stated as equilibrium
equations which are not tied to an underlying adaptive dynamics. The
notion of Markovian equilibrium
incorporates some dynamical features by assuming that passengers move
towards their destination through
a sequential process of arc selection based on a random discrete choice
model at every intermediate node
in their trip: route selection is the outcome of a sequential decision
process while network flows are the
invariant measures of the corresponding Markov chains. Despite a certain
dynamical flavor, this notion
remains essentially static and is not linked to an adaptive behavior of
the players.
In this talk we discuss a discrete time stochastic process that
represents a plausible model for the adaptive
behavior of finitely many users in a simple traffic network. The
dynamics are based on a minimal piece of
information: each player observes only the travel time for the specific
route chosen on any given day, and
future decisions depend on the history of past individual observations.
Since travel times depend on the
congestion conditions imposed collectively by all the player's
decisions, the process progressively reveals
to each player the congestion conditions in the network. In the long
run, the temporal evolution of the
dynamics lead the system to coordinate on a steady state that may be
characterized as a Nash equilibrium
for a particular steady state game, providing a unified framework where
a stochastic model for user behavior
gives rise to a continuous dynamical system and leads ultimately to a
consistent notion of equilibrium.
The approach is connected to the literature on adaptive learning in
repeated games and specific tools such
as fictitious play and no-regret dynamics. However it presents
substantial differences in the form of the dynamics
as well as in the interpretation of the state variables. In particular
we observe a clear distinction between the
original repeated game and the steady state game.
Location
and Acomodation
|
Coordinators:
Eitan Altman and Alain Jean Marie, MAESTRO, INRIA
| |