6 #ifndef realroot_homography_hpp
7 #define realroot_homography_hpp
21 homography(
const real& A,
const real& B,
const real&
C,
const real&D): a(A),b(B),c(C),d(D) {}
39 for (
int i=0;i<n;++i ) H << homography<real>();
43 H << homography<real>(A,B,
C,D);
49 void shift_hom (
const real & t,
const int & v) { H[v].shift_hom(t); }
50 void reciprocal_hom (
const real & t,
const int & v) { H[v].reciprocal_hom(t); }
51 void contract_hom (
const real & t,
const int & v) { H[v].contract_hom(t); }
62 #endif //realroot_homography_hpp
void reciprocal_hom(const real &t)
Definition: homography.hpp:26
int size()
Definition: homography.hpp:57
Sequence of terms with reference counter.
Definition: Seq.hpp:28
Definition: homography.hpp:33
homography(const real &A, const real &B, const real &C, const real &D)
Definition: homography.hpp:21
void shift_hom(const real &t, const int &v)
Definition: homography.hpp:49
MP swap(const MP &P, int var_i, int var_j)
Definition: sparse_monomials.hpp:988
real a
Definition: homography.hpp:17
homography_mv()
Definition: homography.hpp:37
homography(const homography &H)
Definition: homography.hpp:20
real c
Definition: homography.hpp:17
size_type size() const
Definition: Seq.hpp:166
void reciprocal_hom(const real &t, const int &v)
Definition: homography.hpp:50
void contract_hom(const real &t, const int &v)
Definition: homography.hpp:51
void contract_hom(const real &t)
Definition: homography.hpp:29
void colapse()
Definition: homography.hpp:52
void shift_hom(const real &t)
Definition: homography.hpp:23
Definition: homography.hpp:15
homography< real > operator[](int i)
Definition: homography.hpp:46
real b
Definition: homography.hpp:17
homography_mv(int n)
Definition: homography.hpp:38
double C
Definition: solver_mv_fatarcs.cpp:16
homography()
Definition: homography.hpp:19
homography< real > operator[](unsigned &i)
Definition: homography.hpp:47
Seq< homography< real > > H
Definition: homography.hpp:35
homography_mv(const real &A, const real &B, const real &C, const real &D)
Definition: homography.hpp:41
real d
Definition: homography.hpp:17