| 
    shape_doc 0.1 
   | 
 
#include <cell3d_surface_algebraic.hpp>
  
 Definition at line 55 of file cell3d_surface_algebraic.hpp.
| typedef surface_algebraic<C,Ref> AlgebraicSurface | 
Definition at line 72 of file cell3d_surface_algebraic.hpp.
| typedef bounding_box<C,Ref> BoundingBox | 
Reimplemented from cell3d< C, V >.
Definition at line 70 of file cell3d_surface_algebraic.hpp.
Reimplemented from cell3d< C, V >.
Definition at line 66 of file cell3d_surface_algebraic.hpp.
Definition at line 68 of file cell3d_surface_algebraic.hpp.
Reimplemented from cell3d< C, V >.
Definition at line 67 of file cell3d_surface_algebraic.hpp.
| typedef Topology::Edge Edge | 
Reimplemented from cell3d< C, V >.
Definition at line 63 of file cell3d_surface_algebraic.hpp.
| typedef Topology::Face Face | 
Definition at line 64 of file cell3d_surface_algebraic.hpp.
| typedef Topology::Point Point | 
Reimplemented from cell3d< C, V >.
Definition at line 62 of file cell3d_surface_algebraic.hpp.
| typedef use<cell3d_surface_algebraic_def,V>::Polynomial Polynomial | 
Definition at line 74 of file cell3d_surface_algebraic.hpp.
| typedef solver_implicit<C,V> Solver | 
Definition at line 79 of file cell3d_surface_algebraic.hpp.
Reimplemented from cell3d< C, V >.
Definition at line 60 of file cell3d_surface_algebraic.hpp.
| typedef tpl3d<C,V> Topology3d | 
Reimplemented from cell3d< C, V >.
Definition at line 59 of file cell3d_surface_algebraic.hpp.
| cell3d_surface_algebraic | ( | const cell3d_surface_algebraic< C, V > & | s | ) | 
Definition at line 128 of file cell3d_surface_algebraic.hpp.
: Cell3d((BoundingBox)s), m_polynomial(s.equation()), m_center(0) { }
| cell3d_surface_algebraic | ( | const Polynomial & | pol, | 
| const BoundingBox & | bx | ||
| ) | 
Definition at line 135 of file cell3d_surface_algebraic.hpp.
: Cell3d(bx), m_polynomial(pol), m_center(0) { }
| cell3d_surface_algebraic | ( | char * | pol, | 
| const BoundingBox & | bx | ||
| ) | 
Definition at line 142 of file cell3d_surface_algebraic.hpp.
: Cell3d(bx), m_polynomial(pol), m_center(0) { }
| cell3d_surface_algebraic | ( | const AlgebraicSurface & | sf, | 
| const BoundingBox & | b | ||
| ) | 
Definition at line 148 of file cell3d_surface_algebraic.hpp.
References surface_algebraic< C, V >::equation(), cell3d_surface_algebraic< C, V >::m_polynomial, bounding_box< C, V >::xmax(), bounding_box< C, V >::xmin(), bounding_box< C, V >::ymax(), bounding_box< C, V >::ymin(), bounding_box< C, V >::zmax(), and bounding_box< C, V >::zmin().
: Cell3d(b), m_center(0) { Seq<mmx::GMP::rational> bx; bx<<as<mmx::GMP::rational>(b.xmin()); bx<<as<mmx::GMP::rational>(b.xmax()); bx<<as<mmx::GMP::rational>(b.ymin()); bx<<as<mmx::GMP::rational>(b.ymax()); bx<<as<mmx::GMP::rational>(b.zmin()); bx<<as<mmx::GMP::rational>(b.zmax()); Polynomial tmp; tensor::bernstein<mmx::GMP::rational> polq(sf.equation().rep(),bx); let::assign(tmp.rep(),polq); m_polynomial=tmp; // BoundingBox* bbx = sf->boundingBox(); // Polynomial ft, bk; // tensor::face(ft,m_polynomial, 2, 1); // solver_implicit::edge_point(n_intersections, ft, north_edge, bbx); // solver_implicit::edge_point(s_intersections, ft, south_edge, bbx); // solver_implicit::edge_point(w_intersections, ft, west_edge , bbx); // solver_implicit::edge_point(e_intersections, ft, east_edge , bbx); // tensor::face(bk, m_polynomial, 2, 0); // solver_implicit::edge_point(n_intersections, bk, north_edge, bbx); // solver_implicit::edge_point(s_intersections, bk, south_edge, bbx); // solver_implicit::edge_point(w_intersections, bk, west_edge , bbx); // solver_implicit::edge_point(e_intersections, bk, east_edge , bbx); // tensor::face(ft, m_polynomial, 1, 1); // solver_implicit::edge_point(w_intersections, ft, west_edge, bbx); // solver_implicit::edge_point(e_intersections, ft, east_edge, bbx); // tensor::face(bk, m_polynomial, 1, 0); // solver_implicit::edge_point(w_intersections, bk, west_edge, bbx); // solver_implicit::edge_point(e_intersections, bk, east_edge, bbx); // foreach(Point* p, n_intersections) std::cout<<"n "<<p->x()<<" "<<p->y()<<" "<<p->z()<<std::endl; // foreach(Point* p, s_intersections) std::cout<<"s "<<p->x()<<" "<<p->y()<<" "<<p->z()<<std::endl; // foreach(Point* p, w_intersections) std::cout<<"w "<<p->x()<<" "<<p->y()<<" "<<p->z()<<std::endl; // foreach(Point* p, e_intersections) std::cout<<"e "<<p->x()<<" "<<p->y()<<" "<<p->z()<<std::endl; }
| cell3d_surface_algebraic | ( | AlgebraicSurface * | , | 
| const BoundingBox & | |||
| ) | 
| BoundingBox boundingBox | ( | ) |  const [inline, inherited] | 
        
Definition at line 74 of file cell3d.hpp.
{ return (BoundingBox)*this; }
| virtual Point center | ( | void | ) |  const [inline, virtual, inherited] | 
        
Definition at line 67 of file cell3d.hpp.
References bounding_box< C, V >::xmax(), bounding_box< C, V >::xmin(), bounding_box< C, V >::ymax(), bounding_box< C, V >::ymin(), bounding_box< C, V >::zmax(), and bounding_box< C, V >::zmin().
Definition at line 170 of file cell3d.hpp.
References mmx::shape::check_overlap(), and SELF.
{
    int i;
    bool flag;
    //copy horizontally
    b->e_neighbors= this->e_neighbors ;
    foreach(SELF* cl,b->e_neighbors) {
      i= cl->w_neighbors.search(this);
      cl->w_neighbors[i]= b;
    }
    a->w_neighbors= this->w_neighbors ;
    foreach(SELF* cl,a->w_neighbors) {
      i= cl->e_neighbors.search(this);
      cl->e_neighbors[i]= a;
    }
    //update vertically
    foreach(SELF* cl,this->s_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,0) //)
           && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) )
        {
          //assert( cl->ymax()== a->ymin() );
          a->s_neighbors<< cl;
          i= cl->n_neighbors.search(this);
          cl->n_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,0) //)
           && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) )
        {
          //assert( cl->ymax()== b->ymin() );
          b->s_neighbors<< cl;
          if (!flag)
            {
              i= cl->n_neighbors.search(this);
              cl->n_neighbors[i]= b;
            }
          else
            cl->n_neighbors << b;
        }
    }
    foreach(SELF* cl,this->n_neighbors) {
        flag=false;
        if ( check_overlap(cl,a,0) //)
             && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) ) 
        {
            a->n_neighbors<< cl;
            i= cl->s_neighbors.search(this);
            cl->s_neighbors[i]= a;
            flag=true;
        }
        if ( check_overlap(cl,b,0) //)
             && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) )
        {
            b->n_neighbors<< cl;
            if (!flag)
            {
              i= cl->s_neighbors.search(this);
              cl->s_neighbors[i]= b;
            }
            else
              cl->s_neighbors << b;
        }
    } 
    //update depth
    foreach(SELF* cl,this->f_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,0) //)
           && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) )
        {
          //assert( cl->ymax()== a->ymin() );
          a->f_neighbors<< cl;
          i= cl->b_neighbors.search(this);
          cl->b_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,0) //)
           && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) )
        {
          //assert( cl->ymax()== b->ymin() );
          b->f_neighbors<< cl;
          if (!flag)
            {
              i= cl->b_neighbors.search(this);
              cl->b_neighbors[i]= b;
            }
          else
            cl->b_neighbors << b;
        }
    }
    foreach(SELF* cl,this->b_neighbors) {
        flag=false;
        if ( check_overlap(cl,a,0) //)
           && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) ) 
        {
            a->b_neighbors<< cl;
            i= cl->f_neighbors.search(this);
            cl->f_neighbors[i]= a;
            flag=true;
        }
        if ( check_overlap(cl,b,0) //)
           && ( check_overlap(cl,a,1) || check_overlap(cl,a,2)) )
        {
            b->b_neighbors<< cl;
            if (!flag)
            {
              i= cl->f_neighbors.search(this);
              cl->f_neighbors[i]= b;
            }
            else
              cl->f_neighbors << b;
        }
    }
}
Definition at line 290 of file cell3d.hpp.
References mmx::shape::check_overlap(), and SELF.
{
    int i;
    bool flag;
    //copy vertically
    a->s_neighbors= this->s_neighbors ;
    foreach(SELF* cl,a->s_neighbors) {
      i= cl->n_neighbors.search(this);
      cl->n_neighbors[i]= a;
    }
    b->n_neighbors= this->n_neighbors ;
    foreach(SELF* cl,b->n_neighbors) {
      i= cl->s_neighbors.search(this);
      cl->s_neighbors[i]= b;
    }
    
    //update horizontally
    foreach(SELF* cl,this->w_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,1) //) 
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) ) 
        {
          //assert( cl->xmax()== a->xmin() );
          a->w_neighbors<< cl;
          i= cl->e_neighbors.search(this);
          cl->e_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,1) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) ) 
        {
          //assert( cl->xmax()== b->xmin() );
          b->w_neighbors<< cl;
          if (!flag)
            {
              i= cl->e_neighbors.search(this);
              cl->e_neighbors[i]= b;
            }
          else
            cl->e_neighbors << b;
        }
    }
    foreach(SELF* cl,this->e_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,1) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) )  
        {
          a->e_neighbors<< cl;
          i= cl->w_neighbors.search(this);
          cl->w_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,1) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) ) 
        {
          b->e_neighbors<< cl;
          if (!flag)
            {
              i= cl->w_neighbors.search(this);
              cl->w_neighbors[i]= b;
            }
          else
            cl->w_neighbors << b;
        }
    }
    //update depth
    foreach(SELF* cl,this->f_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,1) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) )  
        {
          //assert( cl->xmax()== a->xmin() );
          a->f_neighbors<< cl;
          i= cl->b_neighbors.search(this);
          cl->b_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,1) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) ) 
        {
          //assert( cl->xmax()== b->xmin() );
          b->f_neighbors<< cl;
          if (!flag)
            {
              i= cl->b_neighbors.search(this);
              cl->b_neighbors[i]= b;
            }
          else
            cl->b_neighbors << b;
        }
    }
    foreach(SELF* cl,this->b_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,1) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) )  
        {
          a->b_neighbors<< cl;
          i= cl->f_neighbors.search(this);
          cl->f_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,1) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,2)) ) 
        {
          b->b_neighbors<< cl;
          if (!flag)
            {
              i= cl->f_neighbors.search(this);
              cl->f_neighbors[i]= b;
            }
          else
            cl->f_neighbors << b;
        }
    }
}
Definition at line 411 of file cell3d.hpp.
References mmx::shape::check_overlap(), and SELF.
{
    int i;
    bool flag;
    //copy vertically
    a->f_neighbors= this->f_neighbors ;
    foreach(SELF* cl,a->f_neighbors) {
      i= cl->b_neighbors.search(this);
      cl->b_neighbors[i]= a;
    }
    b->b_neighbors= this->b_neighbors ;
    foreach(SELF* cl,b->b_neighbors) {
      i= cl->f_neighbors.search(this);
      cl->f_neighbors[i]= b;
    }
    
    //update horizontally
    foreach(SELF* cl,this->w_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,2) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )  
        {
          //assert( cl->xmax()== a->xmin() );
          a->w_neighbors<< cl;
          i= cl->e_neighbors.search(this);
          cl->e_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,2) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )  
        {
          //assert( cl->xmax()== b->xmin() );
          b->w_neighbors<< cl;
          if (!flag)
            {
              i= cl->e_neighbors.search(this);
              cl->e_neighbors[i]= b;
            }
          else
            cl->e_neighbors << b;
        }
    }
    foreach(SELF* cl,this->e_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,2) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )   
        {
          a->e_neighbors<< cl;
          i= cl->w_neighbors.search(this);
          cl->w_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,2) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )  
        {
          b->e_neighbors<< cl;
          if (!flag)
            {
              i= cl->w_neighbors.search(this);
              cl->w_neighbors[i]= b;
            }
          else
            cl->w_neighbors << b;
        }
    }
    //update vertically
    foreach(SELF* cl,this->s_neighbors) {
      flag=false;
      if ( check_overlap(cl,a,0) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )  
        {
          //assert( cl->ymax()== a->ymin() );
          a->s_neighbors<< cl;
          i= cl->n_neighbors.search(this);
          cl->n_neighbors[i]= a;
          flag=true;
        }
      if ( check_overlap(cl,b,0) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )  
        {
          //assert( cl->ymax()== b->ymin() );
          b->s_neighbors<< cl;
          if (!flag)
            {
              i= cl->n_neighbors.search(this);
              cl->n_neighbors[i]= b;
            }
          else
            cl->n_neighbors << b;
        }
    }
    foreach(SELF* cl,this->n_neighbors) {
        flag=false;
        if ( check_overlap(cl,a,2) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )  
        {
          a->n_neighbors<< cl;
          i= cl->s_neighbors.search(this);
          cl->s_neighbors[i]= a;
          flag=true;
        }
        if ( check_overlap(cl,b,2) //)
        && ( check_overlap(cl,a,0) || check_overlap(cl,a,1)) )  
          {
            b->n_neighbors<< cl;
            if (!flag) {
              i= cl->s_neighbors.search(this);
              cl->s_neighbors[i]= b;
            }
            else
              cl->s_neighbors << b;
        }
    }
}
| bool contains | ( | double | x, | 
| bool | strict = false  | 
        ||
| ) |  [inherited] | 
        
| bool contains | ( | double | x, | 
| double | y, | ||
| bool | strict = false  | 
        ||
| ) |  [inherited] | 
        
| bool contains | ( | double | x, | 
| double | y, | ||
| double | z, | ||
| bool | strict = false  | 
        ||
| ) |  [inherited] | 
        
| void disconnect | ( | ) |  [inline, inherited] | 
        
Definition at line 528 of file cell3d.hpp.
{
    this->e_neighbors.clear();  
    this->w_neighbors.clear();  
    this->n_neighbors.clear();  
    this->s_neighbors.clear();  
    this->b_neighbors.clear();  
    this->f_neighbors.clear();  
}
| bool edge_point | ( | Point ** | CELL, | 
| int | cube_index | ||
| ) | const | 
Definition at line 492 of file cell3d_surface_algebraic.hpp.
                                                   {
  
  BoundingBox* bx = (BoundingBox*)this;
  Seq<Point*>  F;
  Polynomial bk, ft;
  tensor::face(bk, equation(), 2, 0);
  if (cube_index & 1) {
    Solver::edge_point(F, bk, Solver::north_back_edge, *bx);    
    if(F.size()==0) { 
      std::cout<<"Problem in MC0"<<std::endl;
      return false;
    } else
      CELL[0] = F[0]; 
    F.resize(0);
  }
  if (cube_index & 2) {
    Solver::edge_point(F, bk, Solver::east_back_edge , *bx);
    if(F.size()==0) {  
      std::cout<<"Problem in MC1"<<std::endl;
      return false;
    } else
      CELL[1] = F[0];  
    F.resize(0);
  }
  if (cube_index & 4) {
    Solver::edge_point(F, bk, Solver::south_back_edge, *bx);
    if(F.size()==0) {  
      std::cout<<"Problem in MC2"<<std::endl;
      return false;
    } else
      CELL[2] = F[0]; 
    F.resize(0);
  }
  if (cube_index & 8) {
    Solver::edge_point(F, bk, Solver::west_back_edge , *bx);
    if(F.size()==0) { 
      std::cout<<"Problem in MC3"<<std::endl;
    } else
      CELL[3] = F[0]; 
    F.resize(0);
  }
  tensor::face(ft,equation(), 2, 1);
  if (cube_index & 16) {
    Solver::edge_point(F, ft, Solver::north_front_edge, *bx);
    if(F.size()==0) { 
      std::cout<<"Problem in MC4 "<<std::endl;
      return false;
      } else
      CELL[4] = F[0]; 
    F.resize(0);
  }
  
  if (cube_index & 32) {
    Solver::edge_point(F, ft, Solver::east_front_edge , *bx);
    if(F.size()==0) { 
      std::cout<<"Problem in MC5"<<std::endl;
      return false;
    } else
      CELL[5] = F[0]; 
    F.resize(0);
  }
  
  if (cube_index & 64) {
    Solver::edge_point(F, ft, Solver::south_front_edge, *bx);
    if(F.size()==0) {
      std::cout<<"Problem in MC6"<<std::endl;
      return false;
    } else
      CELL[6] = F[0]; 
    F.resize(0);
  }
  
  if (cube_index & 128) {
    Solver::edge_point(F, ft, Solver::west_front_edge , *bx);
    if(F.size()==0)  {
      std::cout<<"Problem in MC7"<<std::endl;
      return false;
    } else
      CELL[7] = F[0]; 
    F.resize(0);
  }
  
  tensor::face(ft, equation(), 1, 1);
  if (cube_index & 256) {
    Solver::edge_point(F, ft, Solver::north_west_edge, *bx);
    if(F.size()==0)  {
      std::cout<<"Problem in MC8"<<std::endl;
      return false;
    } else
      CELL[8] = F[0]; 
    F.resize(0);
  } 
  
  if (cube_index & 512) {
    Solver::edge_point(F, ft, Solver::north_east_edge, *bx);
    if(F.size()==0)  {
      std::cout<<"Problem in MC9"<<std::endl;
      return false;
    } else
      CELL[9] =  F[0]; 
    F.resize(0);
  } 
  
  tensor::face(bk, equation(), 1, 0);
  
  if (cube_index & 1024) {
    Solver::edge_point(F, bk, Solver::south_east_edge, *bx);
    if(F.size()==0)  {
      std::cout<<"Problem in MC10"<<std::endl;
      return false;
    } else
      CELL[10] = F[0]; 
    F.resize(0);
    } 
  
  if (cube_index & 2048) {
    Solver::edge_point(F, bk, Solver::south_west_edge, *bx);
    if(F.size()==0)  {
      std::cout<<"Problem in MC11"<<std::endl;
      return false;
    } else
      CELL[11] = F[0]; 
    F.resize(0);
  } 
  return true;
}
| const Polynomial& equation | ( | void | ) |  const [inline] | 
        
Definition at line 111 of file cell3d_surface_algebraic.hpp.
References cell3d_surface_algebraic< C, V >::m_polynomial.
{return m_polynomial;}
| Polynomial get_polynomial | ( | ) |  const [inline] | 
        
Definition at line 112 of file cell3d_surface_algebraic.hpp.
References cell3d_surface_algebraic< C, V >::m_polynomial.
{return m_polynomial;}
| void insert | ( | Point * | p | ) |  [inline] | 
        
Definition at line 107 of file cell3d_surface_algebraic.hpp.
References cell3d_surface_algebraic< C, V >::m_points.
{ m_points<< p; }
| void insert | ( | Face * | p | ) |  [inline] | 
        
Definition at line 108 of file cell3d_surface_algebraic.hpp.
References cell3d_surface_algebraic< C, V >::m_faces.
{ m_faces<< p;  }
| bool insert_regular | ( | Topology * | t | ) |  [virtual] | 
        
Implements cell3d< C, V >.
Definition at line 339 of file cell3d_surface_algebraic.hpp.
                                {
  
  //  Topology3d* tpl3d= dynamic_cast<Topology3d*>(t);
  //  marching_cube::polygonise(*this, *this);
    
  //  if(this->m_idx == 0) 
  
  // marching_cube::polygonise(*t, *this); //NOT before topology_regular
  //  tpl3d->insert(F);
  
  
  //foreach(Point* p, F->points()) tpl3d->insert(p);
  return true;
}
| bool insert_singular | ( | Topology * | ) |  [virtual] | 
        
Implements cell3d< C, V >.
Definition at line 360 of file cell3d_surface_algebraic.hpp.
                                {
  return true;
}
| bounding_box< C, V > * intersect | ( | const bounding_box< C, V > & | other | ) |  [inherited] | 
        
Definition at line 318 of file bounding_box.hpp.
References mmx::shape::mmxmax(), mmx::shape::mmxmin(), and SELF.
Referenced by bounding_box< double, V >::operator*().
                                 {
  SELF * cell = new SELF ;
  cell->set_xmin(mmxmax(this->xmin(), other.xmin())) ;
  cell->set_xmax(mmxmin(this->xmax(), other.xmax())) ;
  cell->set_ymin(mmxmax(this->ymin(), other.ymin())) ;
  cell->set_ymax(mmxmin(this->ymax(), other.ymax())) ;
  cell->set_zmin(mmxmax(this->zmin(), other.zmin())) ;
  cell->set_zmax(mmxmin(this->zmax(), other.zmax())) ;
  return cell ;
}
| void intersected | ( | bounding_box< C, V > * | other | ) |  [inherited] | 
        
Definition at line 298 of file bounding_box.hpp.
References mmx::shape::mmxmax(), and mmx::shape::mmxmin().
| bool intersects | ( | bounding_box< C, V > * | other, | 
| bool | strict = true  | 
        ||
| ) |  [inherited] | 
        
Definition at line 238 of file bounding_box.hpp.
References mmx::shape::mmxmax(), and mmx::shape::mmxmin().
{
         if(this->is0D())
            return (this->xmin() == other->xmin()) ;
    else if(this->is1D())
        if(strict)
            return ((mmxmax(this->xmin(), other->xmin()) <  mmxmin(this->xmax(), other->xmax()))) ;
        else
            return ((mmxmax(this->xmin(), other->xmin()) <= mmxmin(this->xmax(), other->xmax()))) ;
    else if(this->is2D())
        if(strict)
            return ((mmxmax(this->xmin(), other->xmin()) <  mmxmin(this->xmax(), other->xmax())) &&
                    (mmxmax(this->ymin(), other->ymin()) <  mmxmin(this->ymax(), other->ymax()))) ;
        else
            return ((mmxmax(this->xmin(), other->xmin()) <= mmxmin(this->xmax(), other->xmax())) &&
                    (mmxmax(this->ymin(), other->ymin()) <= mmxmin(this->ymax(), other->ymax()))) ;
    else if(this->is3d()) {
        if(strict)
            return ((mmxmax(this->xmin(), other->xmin()) <  mmxmin(this->xmax(), other->xmax())) &&
                    (mmxmax(this->ymin(), other->ymin()) <  mmxmin(this->ymax(), other->ymax())) &&
                    (mmxmax(this->zmin(), other->zmin()) <  mmxmin(this->zmax(), other->zmax()))) ;
        else
            return ((mmxmax(this->xmin(), other->xmin()) <= mmxmin(this->xmax(), other->xmax())) &&
                    (mmxmax(this->ymin(), other->ymin()) <= mmxmin(this->ymax(), other->ymax())) &&
                    (mmxmax(this->zmin(), other->zmin()) <= mmxmin(this->zmax(), other->zmax()))) ;
    }
         return false ;
}
| bool is0D | ( | void | ) |  const [inline, inherited] | 
        
| bool is1D | ( | void | ) |  const [inline, inherited] | 
        
| bool is2D | ( | void | ) |  const [inline, inherited] | 
        
| bool is3d | ( | void | ) |  const [inline, inherited] | 
        
| bool is_active | ( | void | ) |  const [virtual] | 
        
Implements cell3d< C, V >.
Definition at line 193 of file cell3d_surface_algebraic.hpp.
                       {
  //BoundingBox* bbx=(BoundingBox*)this;
  
  //    cout<<(BoundingBox*)this<<endl;
  //    cout<<m_polynomial.rep()<<endl;
  //    cout<<has_sign_variation(m_polynomial.begin(),m_polynomial.end())<<endl;
  
  //  Seq<Point*> lp;
  //  Polynomial ft, bk;
  //  tensor::face(ft,m_polynomial, 2, 1);
//     solver_implicit::edge_point(lp, m_polynomial, north_front_edge, bbx);
//     solver_implicit::edge_point(lp, m_polynomial, south_front_edge, bbx);
//     solver_implicit::edge_point(lp, m_polynomial, west_front_edge , bbx);
//     solver_implicit::edge_point(lp, m_polynomial, east_front_edge , bbx);
//     tensor::face(bk, m_polynomial, 2, 0);
//     solver_implicit::edge_point(lp, bk, north_back_edge, bbx);
//     solver_implicit::edge_point(lp, bk, south_back_edge, bbx);
//     solver_implicit::edge_point(lp, bk, west_back_edge , bbx);
//     solver_implicit::edge_point(lp, bk, east_back_edge , bbx);
//     tensor::face(m_polynomial, m_polynomial, 1, 1);
//     solver_implicit::edge_point(lp, ft, west_edge, bbx);
//     solver_implicit::edge_point(lp, ft, east_edge, bbx);
//     tensor::face(bk, m_polynomial, 1, 0);
//     solver_implicit::edge_point(lp, bk, west_edge, bbx);
//     solver_implicit::edge_point(lp, bk, east_edge, bbx);
//    foreach(Point* p, lp) std::cout<<" "<<p->x()<<" "<<p->y()<<" "<<p->z()<<std::endl;
  return has_sign_variation(m_polynomial.begin(),m_polynomial.end());
}
| virtual bool is_intersected | ( | void | ) |  [inline, virtual] | 
        
Implements cell3d< C, V >.
Definition at line 91 of file cell3d_surface_algebraic.hpp.
{return true;}
| bool is_regular | ( | void | ) |  [virtual] | 
        
Implements cell3d< C, V >.
Definition at line 229 of file cell3d_surface_algebraic.hpp.
                 { 
  Polynomial dxf, dyf, dzf;
  Polynomial fp0, fp1;
  Polynomial bk, ft;
  tensor::face(bk, m_polynomial, 2, 0);
  if(Solver::edge_sign_var(bk, Solver::north_back_edge) >1) return false; 
  if(Solver::edge_sign_var(bk, Solver::south_back_edge) >1) return false; 
  if(Solver::edge_sign_var(bk, Solver::east_back_edge ) >1) return false; 
  if(Solver::edge_sign_var(bk, Solver::west_back_edge ) >1) return false; 
  tensor::face(ft, m_polynomial, 2, 1);
  if(Solver::edge_sign_var(ft, Solver::north_front_edge) >1) return false; 
  if(Solver::edge_sign_var(ft, Solver::south_front_edge) >1) return false; 
  if(Solver::edge_sign_var(ft, Solver::east_front_edge ) >1) return false; 
  if(Solver::edge_sign_var(ft, Solver::west_front_edge ) >1) return false; 
  tensor::face(ft, equation(), 1, 1);
  if(Solver::edge_sign_var(ft, Solver::north_west_edge) >1) return false; 
  if(Solver::edge_sign_var(ft, Solver::north_east_edge) >1) return false; 
  tensor::face(bk, equation(), 1, 0);
  if(Solver::edge_sign_var(bk, Solver::south_west_edge) >1) return false; 
  if(Solver::edge_sign_var(bk, Solver::south_east_edge) >1) return false; 
  tensor::diff(dxf.rep(),m_polynomial.rep(),0);
  tensor::diff(dyf.rep(),m_polynomial.rep(),1);
  tensor::diff(dzf.rep(),m_polynomial.rep(),2);
  if(!has_sign_variation(dxf.begin(),dxf.end())) {
    this->m_idx=0;
    return true;
    
    tensor::face(fp0, dyf, 0, 0);
    tensor::face(fp1, dyf, 0, 1);
    if(!has_sign_variation(fp0.begin(),fp0.end()) &&
       !has_sign_variation(fp1.begin(),fp1.end()) ) return true;
    tensor::face(fp0, dzf, 0, 0);
    tensor::face(fp1, dzf, 0, 1);
    if(!has_sign_variation(fp0.begin(),fp0.end()) &&
       !has_sign_variation(fp1.begin(),fp1.end())) return true;
    return false;
  }
  //tensor::diff(dyf.rep(),m_polynomial.rep(),1);
  if(!has_sign_variation(dyf.begin(),dyf.end())) {
    this->m_idx=1;
    return true;
//     tensor::face(fp0, dzf, 0, 0);
//     tensor::face(fp1, dzf, 0, 1);
//     if(!has_sign_variation(fp0.begin(),fp0.end()) &&
//        !has_sign_variation(fp1.begin(),fp1.end())) return true;
//     return false;
  }
  //tensor::diff(dzf.rep(),m_polynomial.rep(),2);
  if(!has_sign_variation(dzf.begin(),dzf.end())) {
    this->m_idx=2;
    return true;
  }
  return false;
}
| void join0 | ( | cell3d< C, V > * | b | ) |  [inline, inherited] | 
        
Definition at line 149 of file cell3d.hpp.
{
    this->e_neighbors << b; 
    b->w_neighbors << this; 
}
| void join1 | ( | cell3d< C, V > * | b | ) |  [inline, inherited] | 
        
Definition at line 156 of file cell3d.hpp.
{
    b->s_neighbors << this;
    this->n_neighbors << b;
}
Definition at line 163 of file cell3d.hpp.
{
    b->f_neighbors << this;
    this->b_neighbors << b;
}
| int mc_index | ( | void | ) | const | 
Definition at line 474 of file cell3d_surface_algebraic.hpp.
                     {
  double isolevel = 0;
  int CubeIndex=0;
  
  if (vertex_eval(0,1,0) <= isolevel) CubeIndex |= 1;
  if (vertex_eval(1,1,0) <= isolevel) CubeIndex |= 2;
  if (vertex_eval(1,0,0) <= isolevel) CubeIndex |= 4;
  if (vertex_eval(0,0,0) <= isolevel) CubeIndex |= 8;
  if (vertex_eval(0,1,1) <= isolevel) CubeIndex |= 16;
  if (vertex_eval(1,1,1) <= isolevel) CubeIndex |= 32;
  if (vertex_eval(1,0,1) <= isolevel) CubeIndex |= 64;
  if (vertex_eval(0,0,1) <= isolevel) CubeIndex |= 128;
  
  return CubeIndex;
}
| Seq<cell3d *> neighbors | ( | ) |  [inline, inherited] | 
        
Definition at line 96 of file cell3d.hpp.
References cell3d< C, V >::b_neighbors, cell3d< C, V >::e_neighbors, cell3d< C, V >::f_neighbors, cell3d< C, V >::n_neighbors, cell3d< C, V >::s_neighbors, and cell3d< C, V >::w_neighbors.
                            { 
    Seq<cell3d *> t;
    t<< s_neighbors ;
    t<< e_neighbors ;
    t<< n_neighbors ;
    t<< b_neighbors ;
    t<< w_neighbors ;
    t<< f_neighbors ;
    return t;     } ;
| double & operator() | ( | unsigned | v, | 
| unsigned | s | ||
| ) |  [inherited] | 
        
| double operator() | ( | unsigned | v, | 
| unsigned | s | ||
| ) |  const [inherited] | 
        
| bounding_box<C,V>* operator* | ( | const bounding_box< C, V > & | other | ) |  [inline, inherited] | 
        
Definition at line 103 of file bounding_box.hpp.
{ return intersect(other) ; }
| bounding_box<C,V>* operator+ | ( | const bounding_box< C, V > & | other | ) |  [inline, inherited] | 
        
Definition at line 104 of file bounding_box.hpp.
{ return     unite(other) ; }
| void polygonise | ( | Topology3d * | t | ) |  [virtual] | 
        
Implements cell3d< C, V >.
Definition at line 355 of file cell3d_surface_algebraic.hpp.
References marching_cube::polygonise().
                              {
  marching_cube::polygonise(*t, *this); 
}
| typedef REF_OF | ( | V | ) | 
| void set_xmax | ( | double | x | ) |  [inline, inherited] | 
        
Definition at line 74 of file bounding_box.hpp.
{ this->m_xmax = x ; }
| void set_xmin | ( | double | x | ) |  [inline, inherited] | 
        
Definition at line 73 of file bounding_box.hpp.
{ this->m_xmin = x ; }
| void set_ymax | ( | double | y | ) |  [inline, inherited] | 
        
Definition at line 76 of file bounding_box.hpp.
{ this->m_ymax = y ; }
| void set_ymin | ( | double | y | ) |  [inline, inherited] | 
        
Definition at line 75 of file bounding_box.hpp.
{ this->m_ymin = y ; }
| void set_zmax | ( | double | z | ) |  [inline, inherited] | 
        
Definition at line 78 of file bounding_box.hpp.
{ this->m_zmax = z ; }
| void set_zmin | ( | double | z | ) |  [inline, inherited] | 
        
Definition at line 77 of file bounding_box.hpp.
{ this->m_zmin = z ; }
| double size | ( | void | ) |  [inherited] | 
        
Definition at line 199 of file bounding_box.hpp.
References mmx::max().
Referenced by voronoi2d< C, V >::run(), topology2d< C, V >::run(), mesher3d_shape< C, V >::run(), and mesher3d_curve_algebraic< C, V >::run().
| void split | ( | CELL *& | left, | 
| CELL *& | right, | ||
| int | v, | ||
| double | s | ||
| ) | 
Definition at line 301 of file cell3d_surface_algebraic.hpp.
References BoundingBox.
                                                      {
  
  //  cout<<"Split begin"<<endl;
  if(v==0) {
    left = new CELL(m_polynomial, BoundingBox(this->xmin(),c, this->ymin(), this->ymax(), this->zmin(), this->zmax()));
    right= new CELL(m_polynomial, BoundingBox(c,this->xmax(), this->ymin(), this->ymax(), this->zmin(), this->zmax()));
    /*  Update neighbors  */
    this->connect0(left, right);
    left->join0(right);
  } else if (v==1) {
    left = new CELL(m_polynomial, BoundingBox(this->xmin(),this->xmax(), this->ymin(), c, this->zmin(), this->zmax()));
    right= new CELL(m_polynomial, BoundingBox(this->xmin(),this->xmax(), c, this->ymax(), this->zmin(), this->zmax()));
    /*  Update neighbors  */
    this->connect1(left, right);
    left->join1(right);
  } else {//v==2
    left = new CELL(m_polynomial, BoundingBox(this->xmin(),this->xmax(),this->ymin(),this->ymax(), this->zmin(), c));
    right= new CELL(m_polynomial, BoundingBox(this->xmin(),this->xmax(),this->ymin(),this->ymax(), c, this->zmax()));
    /*  Update neighbors  */
    this->connect2(left, right);
    left->join2(right);
  } 
  //cell3d_split(left,right,this,v,c);
  //  cout<<"Subdivide end "<<*left<<" "<<*right<<endl;
  tensor::split(left->m_polynomial, right->m_polynomial, v);
  //this->disconnect();
}
| void split_position | ( | int & | v, | 
| double & | s | ||
| ) |  [virtual, inherited] | 
        
Reimplemented in cell3d_list< C, V >.
Definition at line 125 of file cell3d.hpp.
                                      {
  double sx = (this->xmax()-this->xmin());
  double sy = (this->ymax()-this->ymin());
  double sz = (this->zmax()-this->zmin());
  
  if(sx<sy)
      if(sy<sz) {
        v=2;
        s=(this->zmax()+this->zmin())/2;
      } else {
        v=1;
        s=(this->ymax()+this->ymin())/2;
      }
    else
      if(sx<sz) {
        v=2;
        s=(this->zmax()+this->zmin())/2;
      } else {
        v=0;
        s=(this->xmax()+this->xmin())/2;
      }
}
Definition at line 117 of file cell3d.hpp.
Referenced by mesher3d_shape< C, V >::subdivide().
                                         {
  int v; double s;
  this->split_position(v,s);
  this->subdivide(Left,Right,v,s);
  return v;
}
| virtual void subdivide | ( | cell3d< C, V > *& | left, | 
| cell3d< C, V > *& | right, | ||
| int | v, | ||
| double | s | ||
| ) |  [pure virtual, inherited] | 
        
Definition at line 331 of file cell3d_surface_algebraic.hpp.
References mmx::shape_ssi::left(), mmx::shape_ssi::right(), and SELF.
| bool topology_regular | ( | Topology * | t | ) |  [virtual] | 
        
Implements cell3d< C, V >.
Definition at line 365 of file cell3d_surface_algebraic.hpp.
References tpl3d< C, V >::insert().
                                  {
  
  Topology3d* tpl3d= dynamic_cast<Topology3d*>(t);
   if(this->w_neighbors.size()>1)
     resolve_conflict(this->w_neighbors, this->xmin(),0 );
   if(this->e_neighbors.size()>1)
     resolve_conflict(this->e_neighbors, this->xmax(),0 );
    // foreach(Cell3d* cl, this->n_neighbors) 
    //   if(dynamic_cast<SELF*>(cl)->m_faces.size()>0)
    //     insert_bbx(tpl3d,cl,1,0);      
  
  if(this->n_neighbors.size()>1)
    resolve_conflict(this->n_neighbors, this->ymax(),1 );
   if(this->s_neighbors.size()>1)
     resolve_conflict(this->s_neighbors, this->ymin(),1 );
   if(this->f_neighbors.size()>1)
     resolve_conflict(this->f_neighbors, this->zmax(),2 );
   if(this->b_neighbors.size()>1)
     resolve_conflict(this->b_neighbors, this->zmin(),2 );
    //output topology
  foreach(Point* p, this->m_points)  tpl3d->insert(p);
  foreach(Face* f,  this->m_faces)   
  {
    tpl3d->insert(f);
    //if (f->size()>3) insert_bbx(tpl3d, (BoundingBox*)this);
  }
  return true;
}
| bounding_box< C, V > * unite | ( | bounding_box< C, V > * | other | ) |  [inherited] | 
        
Definition at line 330 of file bounding_box.hpp.
References mmx::shape::mmxmax(), mmx::shape::mmxmin(), and SELF.
Referenced by bounding_box< double, V >::operator+().
                        {
  SELF * cell = new SELF ;
  cell->set_xmin(mmxmin(this->xmin(), other->xmin())) ;
  cell->set_xmax(mmxmax(this->xmax(), other->xmax())) ;
  cell->set_ymin(mmxmin(this->ymin(), other->ymin())) ;
  cell->set_ymax(mmxmax(this->ymax(), other->ymax())) ;
  cell->set_zmin(mmxmin(this->zmin(), other->zmin())) ;
  cell->set_zmax(mmxmax(this->zmax(), other->zmax())) ;
  return cell ;
}
| void united | ( | bounding_box< C, V > * | other | ) |  [inherited] | 
        
Definition at line 308 of file bounding_box.hpp.
References mmx::shape::mmxmax(), and mmx::shape::mmxmin().
| bool unites | ( | bounding_box< C, V > * | other, | 
| bool | strict = true  | 
        ||
| ) |  [inherited] | 
        
Definition at line 268 of file bounding_box.hpp.
References mmx::shape::mmxmax(), and mmx::shape::mmxmin().
{
  if(this->is0D())
    return (this->xmin() == other->xmin()) ;
  else if(this->is1D()) {
    if(strict)
      return ((mmxmin(this->xmin(), other->xmin()) <  mmxmax(this->xmax(), other->xmax()))) ;
    else
      return ((mmxmin(this->xmin(), other->xmin()) <= mmxmax(this->xmax(), other->xmax()))) ;
  } else if(this->is2D()) {
    if(strict)
      return ((mmxmin(this->xmin(), other->xmin()) <  mmxmax(this->xmax(), other->xmax())) &&
              (mmxmin(this->ymin(), other->ymin()) <  mmxmax(this->ymax(), other->ymax()))) ;
    else
      return ((mmxmin(this->xmin(), other->xmin()) <= mmxmax(this->xmax(), other->xmax())) &&
              (mmxmin(this->ymin(), other->ymin()) <= mmxmax(this->ymax(), other->ymax()))) ;
  } else if(this->is3d()) {
    if(strict)
      return ((mmxmin(this->xmin(), other->xmin()) <  mmxmax(this->xmax(), other->xmax())) &&
                    (mmxmin(this->ymin(), other->ymin()) <  mmxmax(this->ymax(), other->ymax())) &&
              (mmxmin(this->zmin(), other->zmin()) <  mmxmax(this->zmax(), other->zmax()))) ;
    else
      return ((mmxmin(this->xmin(), other->xmin()) <= mmxmax(this->xmax(), other->xmax())) &&
              (mmxmin(this->ymin(), other->ymin()) <= mmxmax(this->ymax(), other->ymax())) &&
              (mmxmin(this->zmin(), other->zmin()) <= mmxmax(this->zmax(), other->zmax()))) ;
    }
  return false ;
}
| double vertex_eval | ( | unsigned | sx, | 
| unsigned | sy, | ||
| unsigned | sz | ||
| ) | const | 
Definition at line 463 of file cell3d_surface_algebraic.hpp.
                                                             {
  
  int s=0;
  s+= sx*(m_polynomial.rep().env.sz(0)-1)*m_polynomial.rep().env.st(0);
  s+= sy*(m_polynomial.rep().env.sz(1)-1)*m_polynomial.rep().env.st(1);
  s+= sz*(m_polynomial.rep().env.sz(2)-1)*m_polynomial.rep().env.st(2);
  return m_polynomial[s];
}
| double xmax | ( | void | ) |  [inline, inherited] | 
        
Definition at line 56 of file bounding_box.hpp.
Referenced by cell2d_algebraic_curve< C, V >::cell2d_algebraic_curve(), cell3d_algebraic_curve< C, V >::cell3d_algebraic_curve(), cell3d_surface_algebraic< C, V >::cell3d_surface_algebraic(), cell3d< C, V >::center(), cell< C, REF_OF(REF_OF(V)) >::center(), EdgeListBuilder< node_t >::computeCommonFace(), solver_implicit< C, V >::extremal(), topology< C, V >::insert(), mesher3d_curve_algebraic< C, V >::insert(), solver_implicit< C, V >::intersection(), solver_implicit< C, V >::singular(), and EdgeListBuilder< node_t >::verifyFaceList().
{ return m_xmax ; }
| double xmax | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 63 of file bounding_box.hpp.
{ return m_xmax ; }
| double xmin | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 62 of file bounding_box.hpp.
{ return m_xmin ; }
| double xmin | ( | void | ) |  [inline, inherited] | 
        
Definition at line 55 of file bounding_box.hpp.
Referenced by cell2d_algebraic_curve< C, V >::cell2d_algebraic_curve(), cell3d_algebraic_curve< C, V >::cell3d_algebraic_curve(), cell3d_surface_algebraic< C, V >::cell3d_surface_algebraic(), cell3d< C, V >::center(), cell< C, REF_OF(REF_OF(V)) >::center(), EdgeListBuilder< node_t >::computeCommonFace(), solver_implicit< C, V >::extremal(), topology< C, V >::insert(), mesher3d_curve_algebraic< C, V >::insert(), solver_implicit< C, V >::intersection(), mmx::shape::operator<<(), mmx::operator<<(), solver_implicit< C, V >::singular(), and EdgeListBuilder< node_t >::verifyFaceList().
{ return m_xmin ; }
| double xsize | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 69 of file bounding_box.hpp.
| double ymax | ( | void | ) |  [inline, inherited] | 
        
Definition at line 58 of file bounding_box.hpp.
Referenced by cell2d_algebraic_curve< C, V >::cell2d_algebraic_curve(), cell3d_algebraic_curve< C, V >::cell3d_algebraic_curve(), cell3d_surface_algebraic< C, V >::cell3d_surface_algebraic(), cell3d< C, V >::center(), cell< C, REF_OF(REF_OF(V)) >::center(), EdgeListBuilder< node_t >::computeCommonFace(), solver_implicit< C, V >::extremal(), topology< C, V >::insert(), mesher3d_curve_algebraic< C, V >::insert(), solver_implicit< C, V >::intersection(), solver_implicit< C, V >::singular(), and EdgeListBuilder< node_t >::verifyFaceList().
{ return m_ymax ; }
| double ymax | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 65 of file bounding_box.hpp.
{ return m_ymax ; }
| double ymin | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 64 of file bounding_box.hpp.
{ return m_ymin ; }
| double ymin | ( | void | ) |  [inline, inherited] | 
        
Definition at line 57 of file bounding_box.hpp.
Referenced by cell2d_algebraic_curve< C, V >::cell2d_algebraic_curve(), cell3d_algebraic_curve< C, V >::cell3d_algebraic_curve(), cell3d_surface_algebraic< C, V >::cell3d_surface_algebraic(), cell3d< C, V >::center(), cell< C, REF_OF(REF_OF(V)) >::center(), EdgeListBuilder< node_t >::computeCommonFace(), solver_implicit< C, V >::extremal(), topology< C, V >::insert(), mesher3d_curve_algebraic< C, V >::insert(), solver_implicit< C, V >::intersection(), solver_implicit< C, V >::singular(), and EdgeListBuilder< node_t >::verifyFaceList().
{ return m_ymin ; }
| double ysize | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 70 of file bounding_box.hpp.
| double zmax | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 67 of file bounding_box.hpp.
{ return m_zmax ; }
| double zmax | ( | void | ) |  [inline, inherited] | 
        
Definition at line 60 of file bounding_box.hpp.
Referenced by cell3d_algebraic_curve< C, V >::cell3d_algebraic_curve(), cell3d_surface_algebraic< C, V >::cell3d_surface_algebraic(), cell3d< C, V >::center(), cell< C, REF_OF(REF_OF(V)) >::center(), EdgeListBuilder< node_t >::computeCommonFace(), topology< C, V >::insert(), mesher3d_curve_algebraic< C, V >::insert(), and EdgeListBuilder< node_t >::verifyFaceList().
{ return m_zmax ; }
| double zmin | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 66 of file bounding_box.hpp.
{ return m_zmin ; }
| double zmin | ( | void | ) |  [inline, inherited] | 
        
Definition at line 59 of file bounding_box.hpp.
Referenced by cell3d_algebraic_curve< C, V >::cell3d_algebraic_curve(), cell3d_surface_algebraic< C, V >::cell3d_surface_algebraic(), cell3d< C, V >::center(), cell< C, REF_OF(REF_OF(V)) >::center(), EdgeListBuilder< node_t >::computeCommonFace(), topology< C, V >::insert(), mesher3d_curve_algebraic< C, V >::insert(), and EdgeListBuilder< node_t >::verifyFaceList().
{ return m_zmin ; }
| double zsize | ( | void | ) |  const [inline, inherited] | 
        
Definition at line 71 of file bounding_box.hpp.
Seq<cell3d *> b_neighbors [inherited] | 
        
Definition at line 111 of file cell3d.hpp.
Referenced by cell3d< C, V >::neighbors().
Seq<cell3d *> e_neighbors [inherited] | 
        
Definition at line 107 of file cell3d.hpp.
Referenced by cell3d< C, V >::neighbors().
Seq<cell3d *> f_neighbors [inherited] | 
        
Definition at line 110 of file cell3d.hpp.
Referenced by cell3d< C, V >::neighbors().
Seq<Point *> m_boundary [inherited] | 
        
Definition at line 88 of file cell3d.hpp.
Referenced by cell3d_algebraic_curve< C, V >::cell3d_algebraic_curve().
Definition at line 116 of file cell3d_surface_algebraic.hpp.
Definition at line 120 of file cell3d_surface_algebraic.hpp.
Referenced by cell3d_surface_algebraic< C, V >::insert().
Definition at line 93 of file cell3d.hpp.
| int m_idx | 
Definition at line 117 of file cell3d_surface_algebraic.hpp.
Definition at line 119 of file cell3d_surface_algebraic.hpp.
Referenced by cell3d_surface_algebraic< C, V >::insert().
Definition at line 115 of file cell3d_surface_algebraic.hpp.
Referenced by cell3d_surface_algebraic< C, V >::cell3d_surface_algebraic(), cell3d_surface_algebraic< C, V >::equation(), and cell3d_surface_algebraic< C, V >::get_polynomial().
Seq<Point *> m_singular [inherited] | 
        
Definition at line 89 of file cell3d.hpp.
int m_type [inherited] | 
        
Definition at line 90 of file cell3d.hpp.
double m_xmax [protected, inherited] | 
        
Definition at line 107 of file bounding_box.hpp.
Referenced by bounding_box< double, V >::is0D(), bounding_box< double, V >::is1D(), bounding_box< double, V >::is2D(), bounding_box< double, V >::is3d(), bounding_box< double, V >::set_xmax(), bounding_box< double, V >::xmax(), and bounding_box< double, V >::xsize().
double m_xmin [protected, inherited] | 
        
Definition at line 107 of file bounding_box.hpp.
Referenced by bounding_box< double, V >::is0D(), bounding_box< double, V >::is1D(), bounding_box< double, V >::is2D(), bounding_box< double, V >::is3d(), bounding_box< double, V >::set_xmin(), bounding_box< double, V >::xmin(), and bounding_box< double, V >::xsize().
double m_ymax [protected, inherited] | 
        
Definition at line 108 of file bounding_box.hpp.
Referenced by bounding_box< double, V >::is0D(), bounding_box< double, V >::is1D(), bounding_box< double, V >::is2D(), bounding_box< double, V >::is3d(), bounding_box< double, V >::set_ymax(), bounding_box< double, V >::ymax(), and bounding_box< double, V >::ysize().
double m_ymin [protected, inherited] | 
        
Definition at line 108 of file bounding_box.hpp.
Referenced by bounding_box< double, V >::is0D(), bounding_box< double, V >::is1D(), bounding_box< double, V >::is2D(), bounding_box< double, V >::is3d(), bounding_box< double, V >::set_ymin(), bounding_box< double, V >::ymin(), and bounding_box< double, V >::ysize().
double m_zmax [protected, inherited] | 
        
Definition at line 109 of file bounding_box.hpp.
Referenced by bounding_box< double, V >::is0D(), bounding_box< double, V >::is1D(), bounding_box< double, V >::is2D(), bounding_box< double, V >::is3d(), bounding_box< double, V >::set_zmax(), bounding_box< double, V >::zmax(), and bounding_box< double, V >::zsize().
double m_zmin [protected, inherited] | 
        
Definition at line 109 of file bounding_box.hpp.
Referenced by bounding_box< double, V >::is0D(), bounding_box< double, V >::is1D(), bounding_box< double, V >::is2D(), bounding_box< double, V >::is3d(), bounding_box< double, V >::set_zmin(), bounding_box< double, V >::zmin(), and bounding_box< double, V >::zsize().
Seq<cell3d *> n_neighbors [inherited] | 
        
Definition at line 108 of file cell3d.hpp.
Referenced by cell3d< C, V >::neighbors().
Seq<cell3d *> s_neighbors [inherited] | 
        
Definition at line 104 of file cell3d.hpp.
Referenced by cell3d< C, V >::neighbors().
Seq<cell3d *> w_neighbors [inherited] | 
        
Definition at line 109 of file cell3d.hpp.
Referenced by cell3d< C, V >::neighbors().