Definition in file Decomp.h.
Go to the source code of this file.
Functions | |
template<class A, class M> | |
M | Decomp (const M &mat) |
template<class A, class M> | |
M | Triang (const M &mat) |
Triang is doing the same thing as Decomp . | |
template<class A, class M1, class M2> | |
M1 | Decomp (M1 &mat, M2 &L) |
template<class A, class M1, class M2, class M3> | |
M1 | Decomp (M1 &mat, M2 &L, M3 &S) |
M1 Decomp | ( | M1 & | mat, | |
M2 & | L, | |||
M3 & | S | |||
) |
Apply the decomposition and return the second factor in L1
and the third factor if it exist in L2
. For instance, in a LU-decomposition, the fisrt factor will the lower matrix L and the third factor will the pivots indices of the columns. It uses the function decomp(A(),mat.rep(),L.rep(),S.rep())
.
Definition at line 69 of file Decomp.h.
References MATRIX::decomp().
M1 Decomp | ( | M1 & | mat, | |
M2 & | L | |||
) |
Apply the decomposition and return the second factor in L
. For instance, in a LU-decomposition, it will put in L the lower matrix factor; in a QR-decomposition it will be Q, It uses the function decomp(A(),mat.rep(),L.rep())
.
Definition at line 55 of file Decomp.h.
References MATRIX::decomp().
M Decomp | ( | const M & | mat | ) |
The function is performing a decomposition of the matrix into components. The parameter argument type A
is specifying the type of decomposition to be computed. It can be LU
, QR
, Bareiss
, Here is an exemple of how to calf the function, which compute a LU-decomposition of a matrix m
: {xxx} Decomp<LU>(m); {xxx} The function MATRIX::decomp(LU(),m.rep())
will be called. The specification of this function may depend on the container type of m.rep()
. In most of the cases, the output matrix will be triangular.
Definition at line 33 of file Decomp.h.
References MATRIX::decomp().
M Triang | ( | const M & | mat | ) |
Triang is doing the same thing as Decomp
.
Definition at line 42 of file Decomp.h.
References MATRIX::decomp().