A regularity test based on this approach is implemented as:

int ALIAS_Check_Regularity_Linear_Matrix(int DimA, INTERVAL_VECTOR (* Func)(int l1, int l2,INTERVAL_VECTOR & v_IS), int (* A_Cond)(int dimA, INTERVAL_VECTOR (* Func1)(int l1, int l2,INTERVAL_VECTOR &v_IS), INTERVAL_VECTOR & v_IS,INTERVAL_MATRIX &A), int Row_Or_Column, int Context, INTEGER_MATRIX &Implication_Var, int Use_Rohn, INTERVAL_VECTOR &Domain)where

`Row_Or_Column`: 1 if the row of the matrix are used, 2 if the columns are used`Context`: is used to determine if this procedure is used according to the following rules (see section 7.4 for the meaning of the flag`Simp_in_Cond`):- always used if 100 or if
`Context`is equal to`Simp_in_Cond` - not used if
`Context`lie in [-2,2] - not used if
`Context`=3 and`Simp_in_Cond` - not used if
`Context`=4 and`Simp_in_Cond` - not used if
`Context`=5 and`Simp_in_Cond`is not 0 or 1 - not used if
`Context`=6 and`Simp_in_Cond`is not 0 or 2

- always used if 100 or if
`Implication_Var`: an integer matrix of dimension`DimA`, where is the number of unknowns. If this matrix has a 1 at row , column , then the unknown appear linearly in some elements of row (or column ) of the matrix`Use_Rohn`: 1 if the Rohn consistency test is used to check that a matrix in has a constant sign`Domain`: the ranges for the input parameters