next up previous contents
Next: Possible parameters values for Up: Parametric polynomials and eigenvalues Previous: Parametric polynomials and eigenvalues   Contents


Minimal and maximal real roots of a parametric polynomial

The purpose here is to determine the minimal and maximal values of the set of real roots of the the set of polynomials, when the parameters are bounded. There may be eventually also constraints on the parameters. The algorithm is implemented as:

 
int ALIAS_Min_Max_EigenValues(int Degree,  
                              int Nb_Parameter,
                              INTERVAL_VECTOR (* TheCoeff)(INTERVAL_VECTOR &), 
                              int Nb_Constraints,
                              INTEGER_VECTOR &Type_Eq,
                              int (* TheMatrix)(INTERVAL_VECTOR &, INTERVAL_MATRIX &), 
                              int Has_Matrix,
                              INTERVAL_VECTOR (* IntervalFunction)(int,int,INTERVAL_VECTOR &), 
                              int *Has_Gradient,
                              INTERVAL_MATRIX (* Gradient)(int, int,INTERVAL_VECTOR &), 
                              INTERVAL & TheDomain, 
                              INTERVAL_VECTOR & TheDomain_Parameter, 
                              int Type,int Nb_Points,int Use_Solve,int rand,
                              int M,
                              double Accuracy_Variable,double Accuracy,double AccuracyM,
                              INTERVAL &Lowest_Root,INTERVAL &Highest_Root,
                              INTERVAL_MATRIX &Place,int  Stop,double *Seuil,
                              int (* Solve_Poly)(double *, int *,double *), 
                              int (* Simp_Proc)(INTERVAL_VECTOR &))
where the arguments are: The confidence in this procedure is at the same level than the confidence in the numerical algorithm that solve a polynomial.

The return code is:

The possible bisection mode are:

For mode 2 if the gradient is available and if the polynomial parameter has a value that is better than the current optimum, then this variable is bisected otherwise we use the smear function to determine the bisected variable.


next up previous contents
Next: Possible parameters values for Up: Parametric polynomials and eigenvalues Previous: Parametric polynomials and eigenvalues   Contents
Jean-Pierre Merlet 2012-12-20