next up previous contents index
Next: Index Up: Supported functions Previous: spread   Contents   Index


system


Usage

system( $a_{11},a_{12},\dots,a_{nn}$)
system(L)


Parameter Type Description
$a_{ij}$ ${\mathbb{Q}}(x)$ The entries of a square matrix
L ${\mathbb{Q}}[n,E]$ A difference operator


Returns

system( $a_{11},\dots,a_{nn}$) returns the system $Y(n+1) = A Y(n)$, where $A$ is the square matrix given by the $a_{ij}$'s, while system(L) returns the companion system associated with the operator L.


Remarks

The entries of the matrix must be listed by rows.


Example

The system

\begin{displaymath}
\left(\begin{array}{c} y_1(n+1) \\ y_2(n+1) \end{array}\righ...
...ht)
\left(\begin{array}{c} y_1(n) \\ y_2(n) \end{array}\right)
\end{displaymath}

has the following rational kernel:
1 --> A := system((2*n^2+4*n)/(n^2+n),(-n^2-3*n-2)/(n^2+n),1,0);
2 --> K := kernel(A);
3 --> tex(K);

\begin{displaymath}
\pmatrix{
{{1} \over {2}}\,n^{2}+{{1} \over {2}}\,n &
-{{1} ...
...over {2}}\,n &
-{{1} \over {2}}\,n^{2}+{{3} \over {2}}\,n\cr }
\end{displaymath}



Manuel Bronstein 2002-09-04