next up previous contents index
Next: factor Up: Supported functions Previous: element   Contents   Index


exteriorPower


Usage

exteriorPower(L, m)


Parameter Type Description
L ${\mathbb{Q}}[n,E]$ A difference operator
m ${\mathbb{Z}}$ A positive integer


Returns

Returns a difference operator ${L}^{\wedge_{n}}$ of minimal order whose kernel is generated by the Casoratians of $n$ elements of a basis of $\mbox{Ker}(L)$.


Example

The second exterior power of

\begin{displaymath}
L = E^4-E-n
\end{displaymath}

can be computed as follows:
1 --> L :=  E^4-E-n;
2 --> Le2 := exteriorPower(L,2);
3 --> tex(Le2);

\begin{displaymath}
E^{6}+\left(n+2\right)\,E^{4}-E^{3}-\left(n^{2}+5\,n+6\right)\,
E^{2}-n^{3}-3\,n^{2}-2\,n
\end{displaymath}

To prove that $L$ is irreducible, it is sufficient to check that neither $L$, its adjoint or its second exterior power has a hypergeometric solution over ${\mathbb{Q}}$, and that the eigenring of $L$ is trivial:
4 --> tex(hyper(L));

\begin{displaymath}[~]
\end{displaymath}

5 --> tex(hyper(adjoint(L)));

\begin{displaymath}[~]
\end{displaymath}

6 --> tex(hyper(Le2));

\begin{displaymath}[~]
\end{displaymath}

7 --> tex(eigenring(L));

\begin{displaymath}[ 1 ]
\end{displaymath}


next up previous contents index
Next: factor Up: Supported functions Previous: element   Contents   Index
Manuel Bronstein 2002-09-04