next up previous contents index
Next: symmetricPower Up: Supported functions Previous: rightLcm   Contents   Index


symmetricKernel


Usage

symmetricKernel(L, n)


Parameter Type Description
L $\mathbbm{Q}[x,\frac d{dx}]$ A differential operator
n $\mathbbm{Z}$ A positive integer


Returns

symmetricKernel L returns a basis for $\mbox{Ker}{\left({\mbox{ ${L}^{\raise2pt\vbox{\hbox{$\mbox{\footnotesize\vbox{\...
...}}}$}} \raise3pt\vbox{\hbox{$\scriptstyle n$}}} $}}\right)} \cap \mathbbm{Q}(x)$, where $\mbox{ ${L}^{\raise2pt\vbox{\hbox{$\mbox{\footnotesize\vbox{\hbox{$\mathop{\mat...
...box{\hbox{$s$}}\mskip3mu}}\,$}}}$}} \raise3pt\vbox{\hbox{$\scriptstyle n$}}} $}$ is the $n^{{\rm th}}$ symmetric power of $L$.


Remarks

Using symmetricKernel can be more efficient than computing the symmetric power and its kernel separately.


Example

We compute the rational kernel of the second symmetric power of

\begin{displaymath}
L = \frac{d^7}{dx^7} - x \frac d{dx} + \frac 12
\end{displaymath}

as follows:
1 --> L := D^7 - x*D + 1/2;
2 --> K := symmetricKernel(L, 2);
3 --> tex(K);

\begin{displaymath}[ x ]
\end{displaymath}


See Also

kernel, symmetricPower



Manuel Bronstein 2002-09-04