|
The Publications
Result of the query in the list of publications :
245 Conference articles |
69 - A Geometric Primitive Extraction Process for Remote Sensing Problems.. F. Lafarge and G. Gimel'farb and X. Descombes. In Proc. Advanced Concepts for Intelligent Vision Systems, pages 518-529, Juan-les-Pins, France, October 2008. Copyright :
@INPROCEEDINGS{LGF2008,
|
author |
= |
{Lafarge, F. and Gimel'farb, G. and Descombes, X.}, |
title |
= |
{A Geometric Primitive Extraction Process for Remote Sensing Problems.}, |
year |
= |
{2008}, |
month |
= |
{October}, |
booktitle |
= |
{ACIVS}, |
pages |
= |
{518-529}, |
address |
= |
{Juan-les-Pins, France}, |
pdf |
= |
{http://www.springerlink.com/content/b228321527177226/}, |
keyword |
= |
{} |
} |
|
70 - Unsupervised One-Class SVM Using a Watershed Algorithm and Hysteresis Thresholding to Detect Burnt Areas. O. Zammit and X. Descombes and J. Zerubia. In Proc. International Conference on Pattern Recognition and Image Analysis (PRIA), Nizhny Novgorod, Russia, September 2008. Keywords : Classification, Segmentation, Support Vector Machines, Burnt areas, Forest fires, Satellite images. Copyright :
@INPROCEEDINGS{zammit_pria_08,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Unsupervised One-Class SVM Using a Watershed Algorithm and Hysteresis Thresholding to Detect Burnt Areas}, |
year |
= |
{2008}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition and Image Analysis (PRIA)}, |
address |
= |
{Nizhny Novgorod, Russia}, |
pdf |
= |
{http://hal.inria.fr/inria-00316297/fr/}, |
keyword |
= |
{Classification, Segmentation, Support Vector Machines, Burnt areas, Forest fires, Satellite images} |
} |
|
71 - Combining One-Class Support Vector Machines and hysteresis thresholding: application to burnt area mapping. O. Zammit and X. Descombes and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 2008. Note : to appear. Keywords : Classification, Satellite images, Support Vector Machines, Burnt areas, Forest fires, Clustering. Copyright :
@INPROCEEDINGS{zammit_eusipco_08,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Combining One-Class Support Vector Machines and hysteresis thresholding: application to burnt area mapping}, |
year |
= |
{2008}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Lausanne, Switzerland}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7080254}, |
keyword |
= |
{Classification, Satellite images, Support Vector Machines, Burnt areas, Forest fires, Clustering} |
} |
|
72 - Unsupervised Hierarchical Image Segmentation based on the TS-MRF model and Fast Mean-Shift Clustering. R. Gaetano and G. Scarpa and G. Poggi and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 2008. Keywords : Segmentation, Markov Random Fields, Mean Shift, Land Classification.
@INPROCEEDINGS{Gaetano2008,
|
author |
= |
{Gaetano, R. and Scarpa, G. and Poggi, G. and Zerubia, J.}, |
title |
= |
{Unsupervised Hierarchical Image Segmentation based on the TS-MRF model and Fast Mean-Shift Clustering}, |
year |
= |
{2008}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Lausanne, Switzerland}, |
pdf |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7080521}, |
keyword |
= |
{Segmentation, Markov Random Fields, Mean Shift, Land Classification} |
} |
Abstract :
Tree-Structured Markov Random Field (TS-MRF) models have been recently proposed to provide a hierarchical multiscale description of images. Based on such a model, the unsupervised image segmentation is carried out by means of a sequence of nested class splits, where each class is modeled as a local binary MRF.
We propose here a new TS-MRF unsupervised segmentation technique which improves upon the original algorithm by selecting a better tree structure and eliminating spurious classes. Such results are obtained by using the Mean-Shift procedure to estimate the number of pdf modes at each node (thus allowing for a non-binary tree), and to obtain a more reliable initial clustering for subsequent MRF optimization. To this end, we devise a new reliable and fast clustering algorithm based on the Mean-Shift technique. Experimental results prove the potential of the proposed method. |
|
73 - A new computationally efficient stochastic approach for building reconstruction from satellite data. F. Lafarge and M. Durupt and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In XXI ISPRS Congress, Part A, Beijing, China, July 2008. Note : Copyright ISPRS Keywords : 3D reconstruction, Building, satellite data, stochastic approach, jump process.
@INPROCEEDINGS{lafarge_isprs08,
|
author |
= |
{Lafarge, F. and Durupt, M. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A new computationally efficient stochastic approach for building reconstruction from satellite data}, |
year |
= |
{2008}, |
month |
= |
{July}, |
booktitle |
= |
{XXI ISPRS Congress, Part A}, |
address |
= |
{Beijing, China}, |
note |
= |
{Copyright ISPRS}, |
url |
= |
{http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/40.pdf}, |
keyword |
= |
{3D reconstruction, Building, satellite data, stochastic approach, jump process} |
} |
|
74 - Indexing of mid-resolution satellite images with structural attributes. A. Bhattacharya and M. Roux and H. Maitre and I. H. Jermyn and X. Descombes and J. Zerubia. In The International Society for Photogrammetry and Remote Sensing, Beijing, China, July 2008. Keywords : Landscape, Segmentation, Features, Extraction, Classification, Modelling.
@INPROCEEDINGS{Bhattacharya08,
|
author |
= |
{Bhattacharya, A. and Roux, M. and Maitre, H. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Indexing of mid-resolution satellite images with structural attributes}, |
year |
= |
{2008}, |
month |
= |
{July}, |
booktitle |
= |
{The International Society for Photogrammetry and Remote Sensing}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Bhattacharya08isprs.pdf}, |
keyword |
= |
{Landscape, Segmentation, Features, Extraction, Classification, Modelling} |
} |
Abstract :
Indexing and retrieval of satellite images relies on the extraction of appropriate information from the data about the entity of interest
(e.g. land cover type) and on the robustness of this extraction to nuisance variables. Entities in an image may be strongly correlated
with each other and can therefore be used to characterize geographical environments on the Earth’s surface.
The properties of road networks vary considerably from one geographical environment to another. The networks pertaining in a
satellite image can therefore be used to classify and retrieve such environments. In the work presented in this paper we have defined
7 such classes. These classes can be categorized as follows: 2 urban classes consisting of “Urban USA” and “Urban Europe”; 3
rural classes consisting of “Villages”, “Mountains” and “Fields”; an “Airports” class and a “Common” class (this can be considered
as a rejection class). These classes were then classified with the aid of geometrical and topological features computed from the road
networks occurring in them. In our work we have used two extraction methods simultaneously on an image to extract the road networks
pertaining in it. A set of 16 network features were computed from one extraction method and were categorized into 6 groups as follows:
6 measures of ‘density’, 4 measures of ‘curviness’, 2 measures of ‘homogeneity’, 1 measure of ‘length’, 2 measures of ‘distribution’
and 1 measure of ‘entropy’.
Due to certain limitations of these extraction methods there was a relative failure of network extraction in certain urban regions con-
taining narrow and dense road structures. This loss of information was circumvented by segmenting the urban regions and computing
a second set of geometrical and topological features from them. A set of 4 urban region features were computed and were categorized
into 3 groups as follows: 2 measures of ‘density’, 1 measure of ‘labels’ and 1 measure of ‘compactness’.
The 500 images (each of size 512x512 pixels) forming our database were selected from SPOT5 scenes with 5m resolution. From each
image a set of geometrical and topological features were computed from the road networks and urban regions. These features were
then used to classify the pre-defined geographical classes. Feature selection was done to avoid the burden of feature dimensionality
and increase the classification performance. A set of 20 features was selected from 36 features by Fisher Linear Discriminant (FLD)
analysis which gave the least classification error with an one-vs-rest linear Support Vector Machine (SVM).
The impact of spatial resolution and size of images on the feature set have been explored in this work. We took a closer look at the effect
of spatial resolution and size of images on the discriminative power of the feature set to classify the images belonging to the pre-defined
geographical classes. Tests were performed with feature selection by FLD and one-vs-rest linear SVM classification on a database with
images of 10m resolution. Another test was performed with feature selection by FLD and one-vs-rest linear SVM classification on a
database with 5m resolution images (each of size 256x256 pixels).
With the above mentioned approaches, we developed a novel method to classify large satellite images acquired by SPOT5 satellite (5m
resolution) with patches of images each of size 512x512 pixels extracted from them. There has been a large amount of work dedicated
to the classification of large satellite images at pixel level rather than considering image patches of different sizes. Classification of
image patches of different sizes from a large satellite image is a novel idea in the sense that the patches considered contain significant
coverage of a particular type of geographical environment.
Road networks and urban region features were computed from these image patches extracted from the large image. A one-vs-rest
Gaussian kernel SVM classification method was used to classify this large image. The classification results show that the image
patches were labeled with the class having the maximum geographical coverage of the area associated in the large image. The large
image was mapped into a “region matrix”, where each element of the matrix corresponds to a geographical class. This is a ‘hard’
classification and no inference can be drawn about the classification confidence.
In certain cases, this produces some anomalies, as a single patch may contain two or more different geographical coverages. In order
to have an estimate of these partial coverages, the output of the SVM was mapped into probabilities. These probability measures were
then studied to have a closer look at the classification accuracies. The results confirm that our method is able to classify a large image
into various geographical classes with a mean error of less than 10%.
Future studies can use operators to detect not only man-made structures like roads and urban areas, but also natural entities like rivers,
forests, etc. In this work we have restricted ourselves to a single resolution, but our methodology can be adapted to consider images
of higher resolutions from QuickBird and the future Pleiade satellite. At a better resolution it may be possible to extract different
structures like buildings, gardens, cross-roads, etc. This in turn will allow us to incorporate more classes to appropriately classify any
geographical environment. At an image resolution of 1m, we may imagine to have sub-classes of an existing class, e.g., classes like
urban Europe and urban USA can de divided into downtown, residential and industrial classes. |
|
75 - Extraction of main and secondary roads in VHR images using a higher-order phase field model. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. In Proc. XXI ISPRS Congress, Part A, pages 215-22, Beijing, China, July 2008. Keywords : Road network, Urban areas, Satellite images, Segmentation, Modelling, Variational methods. Copyright : ISPRS
@INPROCEEDINGS{Peng08a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Extraction of main and secondary roads in VHR images using a higher-order phase field model}, |
year |
= |
{2008}, |
month |
= |
{July}, |
booktitle |
= |
{Proc. XXI ISPRS Congress, Part A}, |
pages |
= |
{215-22}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/33.pdf}, |
keyword |
= |
{Road network, Urban areas, Satellite images, Segmentation, Modelling, Variational methods} |
} |
Abstract :
This paper addresses the issue of extracting main and secondary road networks in dense urban areas from very high resolution (VHR, ~0.61m) satellite images. The difficulty with secondary roads lies in the low discriminative power of the grey-level distributions of road regions and the background, and the greater effect of occlusions and other noise on narrower roads. To tackle this problem, we use a previously developed higher-order active contour (HOAC) phase field model and augment it with an additional non-linear nonlocal term. The additional term allows separate control of road width and road curvature; thus more precise prior knowledge can be incorporated, and better road prolongation can be achieved for the same width. Promising results on QuickBird panchromatic images at reduced resolutions and comparisons with other models demonstrate the role and the efficiency of our new model. |
|
76 - Building reconstruction from a single DEM. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, U.S., June 2008.
@INPROCEEDINGS{lafarge_cvpr08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Building reconstruction from a single DEM}, |
year |
= |
{2008}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Anchorage, Alaska, U.S.}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_lafarge_cvpr08.pdf}, |
keyword |
= |
{} |
} |
|
77 - Blind deconvolution for diffraction-limited fluorescence microscopy. P. Pankajakshan and B. Zhang and L. Blanc-Féraud and Z. Kam and J.C. Olivo-Marin and J. Zerubia. In Proc. IEEE International Symposium on Biomedical Imaging (ISBI), pages 740-743, Paris, France, May 2008. Keywords : Confocal microscopy, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, total variation regularization. Copyright : This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
@INPROCEEDINGS{ppankajakshan08a,
|
author |
= |
{Pankajakshan, P. and Zhang, B. and Blanc-Féraud, L. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Blind deconvolution for diffraction-limited fluorescence microscopy}, |
year |
= |
{2008}, |
month |
= |
{May}, |
booktitle |
= |
{Proc. IEEE International Symposium on Biomedical Imaging (ISBI)}, |
pages |
= |
{740-743}, |
address |
= |
{Paris, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_ppankajakshan08a.pdf}, |
keyword |
= |
{Confocal microscopy, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, total variation regularization} |
} |
Abstract :
Optical Sections of biological samples obtained from a fluorescence Confocal Laser Scanning Microscopes (CLSM) are often degraded by out-of-focus blur and photon counting noise. Such physical constraints on the observation are a result of the diffraction-limited nature of the optical system, and the reduced amount of light detected by the photomultiplier respectively. Hence, the image stacks can benefit from postprocessing restoration methods based on deconvolution. The parameters of the acquisition system’s Point Spread Function (PSF) may vary during the course of experimentation, and so they have to be estimated directly from the observation data. We describe here an alternate minimization algorithm for the simultaneous blind estimation of the specimen 3D distribution of fluorescent sources and the PSF. Experimental results on real data show that the algorithm provides very good deconvolution results in comparison to theoretical microscope PSF models. |
|
78 - Automatic 3D modeling of urban scenes from satellite images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. SPACEAPPLI, Toulouse, France, April 2008.
@INPROCEEDINGS{lafarge_spaceappli08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Automatic 3D modeling of urban scenes from satellite images}, |
year |
= |
{2008}, |
month |
= |
{April}, |
booktitle |
= |
{Proc. SPACEAPPLI}, |
address |
= |
{Toulouse, France}, |
url |
= |
{http://www.toulousespaceshow.eu/tss08/spaceappli08/index.htm}, |
keyword |
= |
{} |
} |
|
79 - Compression artifacts reduction using variational methods: algorithms and experimental study. P. Weiss and L. Blanc-Féraud and T. Andre and M. Antonini. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, March 2008. Keywords : compression artifact, fast l1 optimization, Total variation, contrast enhancement, nesterov scheme, jpeg2000. Copyright :
@INPROCEEDINGS{ICASSP_WEISS,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Andre, T. and Antonini, M.}, |
title |
= |
{Compression artifacts reduction using variational methods: algorithms and experimental study}, |
year |
= |
{2008}, |
month |
= |
{March}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Las Vegas, USA}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/Conferences/icassp2008.pdf}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_ICASSP_WEISS.pdf}, |
keyword |
= |
{compression artifact, fast l1 optimization, Total variation, contrast enhancement, nesterov scheme, jpeg2000} |
} |
|
80 - AUTOMATIC FLAMINGO DETECTION USING A MULTIPLE BIRTH AND DEATH PROCESS. S. Descamps and X. Descombes and A. Béchet and J. Zerubia. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, March 2008. Copyright : copyright IEEE 2008
@INPROCEEDINGS{descamps08,
|
author |
= |
{Descamps, S. and Descombes, X. and Béchet, A. and Zerubia, J.}, |
title |
= |
{AUTOMATIC FLAMINGO DETECTION USING A MULTIPLE BIRTH AND DEATH PROCESS}, |
year |
= |
{2008}, |
month |
= |
{March}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Las Vegas, USA}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_descamps08.pdf}, |
keyword |
= |
{} |
} |
|
81 - SATELLITE IMAGE RECONSTRUCTION FROM AN IRREGULAR SAMPLING. E. Bughin and L. Blanc-Féraud and J. Zerubia. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, March 2008. Keywords : Irregular sampling, Variational methods, Fourier analysis, Satellite imaging. Copyright :
@INPROCEEDINGS{Bughin08,
|
author |
= |
{Bughin, E. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{SATELLITE IMAGE RECONSTRUCTION FROM AN IRREGULAR SAMPLING}, |
year |
= |
{2008}, |
month |
= |
{March}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Las Vegas, USA}, |
url |
= |
{http://hal.inria.fr/docs/00/27/89/19/PDF/bughinICASSP08.pdf}, |
keyword |
= |
{Irregular sampling, Variational methods, Fourier analysis, Satellite imaging} |
} |
|
82 - Mixing Geometric and Radiometric Features for Change Classification. A. Fournier and X. Descombes and J. Zerubia. In Proc. SPIE Symposium on Electronic Imaging, San Jose, USA, January 2008. Keywords : Change detection, directional Statistics, polygonal approximation, Classification. Copyright : Copyright 2008 SPIE and IS&T. This paper was published in the proceedings of IS&T/SPIE 20th Annual Symposium on Electronic Imaging and is made available as an electronic reprint (preprint) with permission of SPIE and IS&T. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
@INPROCEEDINGS{fournier_spie08,
|
author |
= |
{Fournier, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Mixing Geometric and Radiometric Features for Change Classification}, |
year |
= |
{2008}, |
month |
= |
{January}, |
booktitle |
= |
{Proc. SPIE Symposium on Electronic Imaging}, |
address |
= |
{San Jose, USA}, |
url |
= |
{http://hal.inria.fr/inria-00269853/fr/}, |
keyword |
= |
{Change detection, directional Statistics, polygonal approximation, Classification} |
} |
Abstract :
Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data. |
|
83 - Diagramme de phase d'une énergie de type contours actifs d'ordre supérieur : le cas d'une barre longue. A. El Ghoul and I. H. Jermyn and J. Zerubia. In 16ème congrès francophone AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle (RFIA), Amiens, France, January 2008. Keywords : Diagramme de phase, Contours actifs d'ordre supérieur, Shape, geometric prior, Télédétection.
@INPROCEEDINGS{ElGhoul08,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Diagramme de phase d'une énergie de type contours actifs d'ordre supérieur : le cas d'une barre longue}, |
year |
= |
{2008}, |
month |
= |
{January}, |
booktitle |
= |
{16ème congrès francophone AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle (RFIA)}, |
address |
= |
{Amiens, France}, |
url |
= |
{https://hal.inria.fr/inria-00319575}, |
pdf |
= |
{http://hal.inria.fr/docs/00/31/95/75/PDF/rfia08aymenelghoul.pdf}, |
keyword |
= |
{Diagramme de phase, Contours actifs d'ordre supérieur, Shape, geometric prior, Télédétection} |
} |
Résumé :
Dans cet article, nous présentons l’analyse de stabilité du modèle des “contours actifs d’ordre supérieur” (CAOS), pour l’extraction des réseaux routiers présents dans des images de télédétection. Le modèle énergétique des CAOS à minimiser présente des comportements différents en fonction des valeurs des paramètres du modèle.
Il s’est avéré que deux structures géométriques sont favorisées
par ce modèle : des structures linéiques et circulaires. Nous nous intéressons ici à la détermination du diagramme de phase, qui définit les gammes des valeurs des paramètres du modèle des CAOS, permettant d’obtenir des structures linéiques. |
Abstract :
In this paper, we present a stability analysis of a “higher-order active contour” (HOAC) model for road network extraction from remotely sensed images. The HOAC energy presents several different behaviours depending on the model parameter values. Two types of geometric structure are favoured, namely line networks and circles. In this
work, we derive the phase diagram giving the parameter ranges of the HOAC model that allow stable linear structures. |
|
84 - Forest Fire Detection based on Gaussian field analysis. F. Lafarge and X. Descombes and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), Poznan, Poland, September 2007. Note : Copyright EURASIP Keywords : Gaussian Field, DT-caracteristic, Forest fires.
@INPROCEEDINGS{lafarge_eusipco07,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Forest Fire Detection based on Gaussian field analysis}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Poznan, Poland}, |
note |
= |
{Copyright EURASIP}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_lafarge_eusipco07.pdf}, |
keyword |
= |
{Gaussian Field, DT-caracteristic, Forest fires} |
} |
|
85 - 3D city modeling based on Hidden Markov Model. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE International Conference on Image Processing (ICIP), San Antonio, U.S., September 2007. Note : Copyright IEEE Keywords : 3D reconstruction, Building, Hidden Markov Model.
@INPROCEEDINGS{lafarge_icip07,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{3D city modeling based on Hidden Markov Model}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{San Antonio, U.S.}, |
note |
= |
{Copyright IEEE}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4379207}, |
keyword |
= |
{3D reconstruction, Building, Hidden Markov Model} |
} |
|
86 - A `Gas of Circles' Phase Field Model and its Application to Tree Crown Extraction. P. Horvath and I. H. Jermyn. In Proc. European Signal Processing Conference (EUSIPCO), Poznan, Poland, September 2007. Keywords : Phase Field, Tree Crown Extraction.
@INPROCEEDINGS{Horvath07d,
|
author |
= |
{Horvath, P. and Jermyn, I. H.}, |
title |
= |
{A `Gas of Circles' Phase Field Model and its Application to Tree Crown Extraction}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Poznan, Poland}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07d.pdf}, |
keyword |
= |
{Phase Field, Tree Crown Extraction} |
} |
Abstract :
The problem of extracting the region in the image domain
corresponding to an a priori unknown number of circular objects
occurs in several domains. We propose a new model of a `gas of
circles', the ensemble of regions in the image domain composed of
circles of a given radius. The model uses the phase field
reformulation of higher-order active contours (HOACs). Phase fields
possess several advantages over contour and level set approaches to
region modelling, in particular for HOAC models. The reformulation
allows us to benefit from these advantages without losing the
strengths of the HOAC framework. Combined with a suitable likelihood
energy, and applied to the tree crown extraction problem, the new
model shows markedly improved performance, both in quality of
results and in computation time, which is two orders of magnitude
less than the HOAC level set implementation.
|
|
87 - A Phase Field Model Incorporating Generic and Specific Prior Knowledge Applied to Road Network Extraction from VHR Satellite Images. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia and B. Hu. In Proc. British Machine Vision Conference (BMVC), Warwick, UK, September 2007. Keywords : Road network, Very high resolution, Higher-order, Active contour, Shape, Prior.
@INPROCEEDINGS{Peng07a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J. and Hu, B.}, |
title |
= |
{A Phase Field Model Incorporating Generic and Specific Prior Knowledge Applied to Road Network Extraction from VHR Satellite Images}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. British Machine Vision Conference (BMVC)}, |
address |
= |
{Warwick, UK}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Peng07a.pdf}, |
keyword |
= |
{Road network, Very high resolution, Higher-order, Active contour, Shape, Prior} |
} |
Abstract :
We address the problem of updating road maps in dense urban areas by extracting the main road network from a very high resolution (VHR) satellite image. Our model of the region occupied by the road network in the image is innovative. It incorporates three different types of prior geometric knowledge: generic boundary smoothness constraints, equivalent to a standard active contour prior; knowledge of the geometric properties of road networks (i.e. that they occupy regions composed of long, low-curvature segments joined at junctions), equivalent to a higher-order active contour prior; and knowledge of the road network at an earlier date derived from GIS data, similar to other ‘shape priors’ in the literature. In addition, we represent the road network region as a ‘phase field’, which offers a number of important advantages over other region modelling frameworks. All three types of prior knowledge prove important for overcoming the complexity of geometric ‘noise’ in VHR images. Promising results and a comparison with several other techniques demonstrate the effectiveness of our approach. |
|
88 - Apprentissage non supervisé des SVM par un algorithme des K-moyennes entropique pour la détection de zones brûlées. O. Zammit and X. Descombes and J. Zerubia. In Proc. GRETSI Symposium on Signal and Image Processing, Troyes, France, September 2007. Keywords : Satellite images, Forest fires, Burnt areas, Classification, Support Vector Machines, Learning base.
@INPROCEEDINGS{zammit_gretsi_07,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Apprentissage non supervisé des SVM par un algorithme des K-moyennes entropique pour la détection de zones brûlées}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Troyes, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_zammit_gretsi_07.pdf}, |
keyword |
= |
{Satellite images, Forest fires, Burnt areas, Classification, Support Vector Machines, Learning base} |
} |
|
89 - Rectangular Road Marking Detection with Marked Point Processes. O. Tournaire and N. Paparoditis and F. Lafarge. In ISPRS Conference Photogrammetric Image Analysis (PIA), Vol. 36, pages 149--154, Org. IAPRS, Munich, Germany, September 2007.
@INPROCEEDINGS{tournaire_pia07,
|
author |
= |
{Tournaire, O. and Paparoditis, N. and Lafarge, F.}, |
title |
= |
{Rectangular Road Marking Detection with Marked Point Processes}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{ISPRS Conference Photogrammetric Image Analysis (PIA)}, |
volume |
= |
{36}, |
pages |
= |
{149--154}, |
organization |
= |
{IAPRS}, |
address |
= |
{Munich, Germany}, |
pdf |
= |
{http://www-sop.inria.fr/ariana/Publis/2007-tournaire-pia.pdf}, |
keyword |
= |
{} |
} |
|
90 - A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs. C. Benedek and T. Szirányi and Z. Kato and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Vol. 6, pages 141--144, San Antonio, Texas, USA, September 2007. Keywords : Change detection, Aerial images, Camera motion, MRF. Copyright : Copyright IEEE
@INPROCEEDINGS{benedek_ICIP07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
volume |
= |
{6}, |
pages |
= |
{141--144}, |
address |
= |
{San Antonio, Texas, USA}, |
url |
= |
{http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4379541&isnumber=4379494&punumber=4378863&k2dockey=4379541@ieeecnfs&query=%28benedek+%3Cin%3E+metadata%29+%3Cand%3E+%284379494+%3Cin%3E+isnumber%29&pos=0}, |
pdf |
= |
{http://web.eee.sztaki.hu/~bcsaba/Publications/Pdf/benedek_icip2007.pdf}, |
keyword |
= |
{Change detection, Aerial images, Camera motion, MRF} |
} |
Abstract :
In this paper, we give a probabilistic model for automatic change detection on airborne images taken with moving cameras. To ensure robustness, we adopt an unsupervised coarse matching instead of a precise image registration. The challenge of the proposed model is to eliminate the registration errors, noise and the parallax artifacts caused by the static objects having considerable height (buildings, trees, walls etc.) from the difference image. We describe the background membership of a given image point through two different features, and introduce a novel three-layerMarkov Random Field (MRF) model to ensure connected homogenous regions in the segmented image. |
|
91 - Sur la complexite et la rapidite d’algorithmes pour la minimisation de la variation totale sous contraintes. P. Weiss and L. Blanc-Féraud and G. Aubert. In Proc. Symposium on Signal and Image Processing (GRETSI), Troyes, France, September 2007. Keywords : l1 norm minimization, compression noise denoising, optimal algorithm, convex analysis, Total variation, nesterov scheme.
@INPROCEEDINGS{Pierre Weiss,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{Sur la complexite et la rapidite d’algorithmes pour la minimisation de la variation totale sous contraintes}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. Symposium on Signal and Image Processing (GRETSI)}, |
address |
= |
{Troyes, France}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/Conferences/Gretsi_WeissBlancFeraudAubert_2010.PDF}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Pierre Weiss.pdf}, |
keyword |
= |
{l1 norm minimization, compression noise denoising, optimal algorithm, convex analysis, Total variation, nesterov scheme} |
} |
|
92 - A Multispectral Data Model for Higher-Order Active Contours and its Application to Tree Crown Extraction. P. Horvath. In Proc. Advanced Concepts for Intelligent Vision Systems, Delft, Netherlands, August 2007. Keywords : Higher-order, Tree Crown Extraction, Colour.
@INPROCEEDINGS{Horvath07c,
|
author |
= |
{Horvath, P.}, |
title |
= |
{A Multispectral Data Model for Higher-Order Active Contours and its Application to Tree Crown Extraction}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. Advanced Concepts for Intelligent Vision Systems}, |
address |
= |
{Delft, Netherlands}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07c.pdf}, |
keyword |
= |
{Higher-order, Tree Crown Extraction, Colour} |
} |
Abstract :
Forestry management makes great use of statistics concerning the
individual trees making up a forest, but the acquisition of this
information is expensive. Image processing can potentially both
reduce this cost and improve the statistics. The key problem is the
delineation of tree crowns in aerial images. The automatic solution
of this problem requires considerable prior information to be built
into the image and region models. Our previous work has focused on
including shape information in the region model; in this paper we
examine the image model. The aerial images involved have three
bands. We study the statistics of these bands, and construct both
multispectral and single band image models. We combine these with a
higher-order active contour model of a `gas of circles' in order to
include prior shape information about the region occupied by the
tree crowns in the image domain. We compare the results produced by
these models on real aerial images and conclude that multiple bands
improves the quality of the segmentation. The model has many other
potential applications, e.g. to nano-technology, microbiology,
physics, and medical imaging.
|
|
93 - A New Phase Field Model of a `Gas of Circles' for Tree Crown Extraction from Aerial Images. P. Horvath and I. H. Jermyn. In Proc. International Conference on Computer Analysis of Images and Patterns (CAIP), Vienna, Austria, August 2007. Keywords : Phase Field, Tree Crown Extraction.
@INPROCEEDINGS{Horvath07b,
|
author |
= |
{Horvath, P. and Jermyn, I. H.}, |
title |
= |
{A New Phase Field Model of a `Gas of Circles' for Tree Crown Extraction from Aerial Images}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. International Conference on Computer Analysis of Images and Patterns (CAIP)}, |
address |
= |
{Vienna, Austria}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07b.pdf}, |
keyword |
= |
{Phase Field, Tree Crown Extraction} |
} |
Abstract :
We describe a model for tree crown extraction from aerial images, a
problem of great practical importance for the forestry industry. The
novelty lies in the prior model of the region occupied by tree
crowns in the image, which is a phase field version of the
higher-order active contour inflection point `gas of circles' model.
The model combines the strengths of the inflection point model with
those of the phase field framework: it removes the `phantom circles'
produced by the original `gas of circles' model, while executing two
orders of magnitude faster than the contour-based inflection point
model. The model has many other areas of application e.g., to
imagery in nanotechnology, biology, and physics. |
|
94 - Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves. S. Joshi and E. Klassen and A. Srivastava and I. H. Jermyn. In Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), Ezhou, China, August 2007. Keywords : Shape, Reparameterization, Metric, Geodesic. Copyright : The original publication is available at www.springerlink.com.
@INPROCEEDINGS{Joshi07b,
|
author |
= |
{Joshi, S. and Klassen, E. and Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)}, |
address |
= |
{Ezhou, China}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Joshi07b.pdf}, |
keyword |
= |
{Shape, Reparameterization, Metric, Geodesic} |
} |
Abstract :
This paper illustrates and extends an efficient framework, called the square-root-elastic (SRE) framework, for studying shapes of closed curves, that was first introduced in [2]. This framework combines the strengths of two important ideas - elastic shape metric and path-straightening methods - for finding geodesics in shape spaces of curves. The elastic metric allows for optimal matching of features between curves while path-straightening ensures that the algorithm results in geodesic paths. This paper extends this framework by removing two important shape preserving transformations: rotations and re-parameterizations, by forming quotient spaces and constructing geodesics on these quotient spaces. These ideas are demonstrated using experiments involving 2D and 3D curves. |
|
95 - Parametric blind deconvolution for confocal laser scanning microscopy. P. Pankajakshan and B. Zhang and L. Blanc-Féraud and Z. Kam and J.C. Olivo-Marin and J. Zerubia. In Proc. 29th International Conference of IEEE EMBS (EMBC-07), pages 6531-6534, August 2007. Keywords : Confocal microscopy, Blind Deconvolution, Poisson noise, Total variation, EM algorithm, Bayesian estimation. Copyright : ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
@INPROCEEDINGS{Pankajakshan07a,
|
author |
= |
{Pankajakshan, P. and Zhang, B. and Blanc-Féraud, L. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Parametric blind deconvolution for confocal laser scanning microscopy}, |
year |
= |
{2007}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. 29th International Conference of IEEE EMBS (EMBC-07)}, |
pages |
= |
{6531-6534}, |
pdf |
= |
{http://ieeexplore.ieee.org/iel5/4352184/4352185/04353856.pdf?tp=&isnumber=&arnumber=4353856}, |
keyword |
= |
{Confocal microscopy, Blind Deconvolution, Poisson noise, Total variation, EM algorithm, Bayesian estimation} |
} |
Abstract :
In this paper, we propose a method for the
iterative restoration of fluorescence Confocal Laser Scanning
Microscopic (CLSM) images and parametric estimation of the
acquisition system’s Point Spread Function (PSF). The CLSM is
an optical fluorescence microscope that scans a specimen in 3D
and uses a pinhole to reject most of the out-of-focus light. However,
the quality of the images suffers from two basic physical
limitations. The diffraction-limited nature of the optical system,
and the reduced amount of light detected by the photomultiplier
cause blur and photon counting noise respectively. These images
can hence benefit from post-processing restoration methods
based on deconvolution. An efficient method for parametric
blind image deconvolution involves the simultaneous estimation
of the specimen 3D distribution of fluorescent sources and
the microscope PSF. By using a model for the microscope
image acquisition physical process, we reduce the number of
free parameters describing the PSF and introduce constraints.
The parameters of the PSF may vary during the course of
experimentation, and so they have to be estimated directly from
the observed data. A priori model of the specimen is further
applied to stabilize the alternate minimization algorithm and to
converge to the solutions. |
|
96 - Assessment of different classification algorithms for burnt land discrimination. O. Zammit and X. Descombes and J. Zerubia. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 3000-3003, Barcelone, Spain, July 2007. Keywords : Satellite images, Burnt areas, Support Vector Machines, Forest fires, Classification. Copyright : IEEE
|
97 - A Hierarchical Texture Model for Unsupervised Segmentation of Remotely Sensed Images. G. Scarpa and M. Haindl and J. Zerubia. In Scandinavian Conference on Image Analysis, Vol. 4522/2007, pages 303-312, series LNCS 4522, Ed. Springer Berlin / Heidelberg, Aalborg, Denmark, June 2007.
@INPROCEEDINGS{scarpa_scia_07,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{A Hierarchical Texture Model for Unsupervised Segmentation of Remotely Sensed Images}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Scandinavian Conference on Image Analysis}, |
volume |
= |
{4522/2007}, |
pages |
= |
{303-312}, |
series |
= |
{LNCS 4522}, |
editor |
= |
{Springer Berlin / Heidelberg}, |
address |
= |
{Aalborg, Denmark}, |
url |
= |
{http://link.springer.com/chapter/10.1007%2F978-3-540-73040-8_31}, |
keyword |
= |
{} |
} |
|
98 - A Novel Representation for Riemannian Analysis of Elastic Curves in R^n. S. Joshi and E. Klassen and A. Srivastava and I. H. Jermyn. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA, June 2007. Keywords : Shape, Metric, Geodesic, Prior.
@INPROCEEDINGS{Joshi07a,
|
author |
= |
{Joshi, S. and Klassen, E. and Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{A Novel Representation for Riemannian Analysis of Elastic Curves in R^n}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Minneapolis, USA}, |
url |
= |
{http://dx.doi.org/10.1109/CVPR.2007.383185}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Joshi07a.pdf}, |
keyword |
= |
{Shape, Metric, Geodesic, Prior} |
} |
Abstract :
We propose an efficient representation for studying shapes of closed curves in R^n. This paper combines the strengths of two important ideas---elastic shape metric and path-straightening methods---and results in a very fast algorithm for finding geodesics in shape spaces. The elastic metric allows for optimal matching of features between the two curves while path-straightening ensures that the algorithm results in geodesic paths. For the novel representation proposed here, the elastic metric becomes the simple L^2 metric, in contrast to the past usage where more complex forms were used. We present the step-by-step algorithms for computing geodesics and demonstrate them with 2-D as well as 3-D examples. |
|
99 - Indexing Satellite Images with Features Computed from Man-Made Structures on the Earth’s Surface. A. Bhattacharya and M. Roux and H. Maitre and I. H. Jermyn and X. Descombes and J. Zerubia. In Proc. International Workshop on Content-Based Multimedia Indexing, Bordeaux, France, June 2007. Keywords : Indexation, Road network, Semantic, Retrieval, Feature statistics.
@INPROCEEDINGS{Bhattacharya07a,
|
author |
= |
{Bhattacharya, A. and Roux, M. and Maitre, H. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Indexing Satellite Images with Features Computed from Man-Made Structures on the Earth’s Surface}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. International Workshop on Content-Based Multimedia Indexing}, |
address |
= |
{Bordeaux, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Bhattacharya07a.pdf}, |
keyword |
= |
{Indexation, Road network, Semantic, Retrieval, Feature statistics} |
} |
Abstract :
Indexing and retrieval from remote sensing image databases relies on the extraction of appropriate information from the data about the entity of interest (e.g. land cover type) and on the robustness of this extraction to nuisance variables. Other entities in an image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. The road network contained in an image is one example. The properties of road networks vary considerably from one geographical environment to another, and they can therefore be used to classify and retrieve such environments. In this paper, we define several such environments, and classify them with the aid of geometrical and topological features computed from the road networks occurring in them. The relative failure of network extraction methods in certain types of urban area obliges us to segment such areas and to add a second set of geometrical and topological features computed from the segmentations. To validate the approach, feature selection and SVM linear kernel classification are performed on the feature set arising from a diverse image database. |
|
100 - Riemannian Analysis of Probability Density Functions with Applications in Vision. S. Joshi and A. Srivastava and I. H. Jermyn. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA, June 2007. Keywords : Probability density function, Metric, Geodesic, Reparameterization.
@INPROCEEDINGS{Joshi07,
|
author |
= |
{Joshi, S. and Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{Riemannian Analysis of Probability Density Functions with Applications in Vision}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Minneapolis, USA}, |
url |
= |
{http://dx.doi.org/10.1109/CVPR.2007.383188 }, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Joshi07.pdf}, |
keyword |
= |
{Probability density function, Metric, Geodesic, Reparameterization} |
} |
Abstract :
Applications in computer vision involve statistically analyzing an important class of constrained, non- negative functions, including probability density functions (in texture analysis), dynamic time-warping functions (in activity analysis), and re-parametrization or non-rigid registration functions (in shape analysis of curves). For this one needs to impose a Riemannian structure on the spaces formed by these functions. We propose a em spherical version of the Fisher-Rao metric that provides closed form expressions for geodesics and distances, and allows an efficient computation of statistics. We compare this metric with some previously used metrics and present an application in planar shape classification. |
|
101 - A Hierarchical finite-state model for texture segmentation. G. Scarpa and M. Haindl and J. Zerubia. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 1, pages 1209-1212, Honolulu, HI (USA), April 2007.
@INPROCEEDINGS{scarpa_icassp_07,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{A Hierarchical finite-state model for texture segmentation}, |
year |
= |
{2007}, |
month |
= |
{April}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
volume |
= |
{1}, |
pages |
= |
{1209-1212}, |
address |
= |
{Honolulu, HI (USA)}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4217303}, |
keyword |
= |
{} |
} |
|
102 - Urban road extraction from VHR images using a multiscale image model and a phase field model of network geometry. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia. In Proc. Urban, Paris, France, April 2007. Keywords : Road network, Very high resolution, Multiscale, Higher-order, Active contour, Shape.
@INPROCEEDINGS{Peng07_urban,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Urban road extraction from VHR images using a multiscale image model and a phase field model of network geometry}, |
year |
= |
{2007}, |
month |
= |
{April}, |
booktitle |
= |
{Proc. Urban}, |
address |
= |
{Paris, France}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Peng07urban.pdf}, |
keyword |
= |
{Road network, Very high resolution, Multiscale, Higher-order, Active contour, Shape} |
} |
Abstract :
This paper addresses the problem of automatically
extracting the main road network in a dense urban area from
a very high resolution optical satellite image using a variational
approach. The model energy has two parts: a phase field higherorder
active contour energy that describes our prior knowledge
of road network geometry, i.e. that it is composed of elongated
structures with roughly parallel borders that meet at junctions;
and a multi-scale statistical image model describing the image
we expect to see given a road network. By minimizing the model
energy, an estimate of the road network is obtained. Promising
results on 0.6m QuickBird Panchromatic images are presented,
and future improvements to the models are outlined. |
|
103 - Image deconvolution using a stochastic differential equation approach. X. Descombes and M. Lebellego and E. Zhizhina. In Proc. nternational Conference on Computer Vision Theory
and Applications, Barcelona, Spain, March 2007. Keywords : Deconvolution, Stochastic Differential Equation.
@INPROCEEDINGS{xavBarca2,
|
author |
= |
{Descombes, X. and Lebellego, M. and Zhizhina, E.}, |
title |
= |
{Image deconvolution using a stochastic differential equation approach}, |
year |
= |
{2007}, |
month |
= |
{March}, |
booktitle |
= |
{Proc. nternational Conference on Computer Vision Theory
and Applications}, |
address |
= |
{Barcelona, Spain}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_xavBarca2.pdf}, |
keyword |
= |
{Deconvolution, Stochastic Differential Equation} |
} |
|
104 - Circular object segmentation using higher-order active contours. P. Horvath and I. H. Jermyn and Z. Kato and J. Zerubia. In In Proc. Conference of the Hungarian Association for Image Analysis and Pattern Recognition (KEPAF'07), Debrecen, Hungary, January 2007. Note : In Hungarian Keywords : Higher-order, Tree Crown Extraction, Shape.
@INPROCEEDINGS{Horvath07a,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{Circular object segmentation using higher-order active contours}, |
year |
= |
{2007}, |
month |
= |
{January}, |
booktitle |
= |
{In Proc. Conference of the Hungarian Association for Image Analysis and Pattern Recognition (KEPAF'07)}, |
address |
= |
{Debrecen, Hungary}, |
note |
= |
{In Hungarian}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Horvath07a.pdf}, |
keyword |
= |
{Higher-order, Tree Crown Extraction, Shape} |
} |
|
105 - Gap Filling in 3D Vessel like Patterns with Tensor Fields. L. Risser and F. Plouraboue and X. Descombes. In Proc. International Conference on Computer Vision Theory
and Applications, 2007. Keywords : tensor voting, vascular network.
@INPROCEEDINGS{XDbarca1,
|
author |
= |
{Risser, L. and Plouraboue, F. and Descombes, X.}, |
title |
= |
{Gap Filling in 3D Vessel like Patterns with Tensor Fields}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. International Conference on Computer Vision Theory
and Applications}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_XDbarca1.pdf}, |
keyword |
= |
{tensor voting, vascular network} |
} |
|
106 - Wavelet-based restoration methods: application to 3D confocal microscopy images. C. Chaux and L. Blanc-Féraud and J. Zerubia. In Proc. SPIE Conference on Wavelets, 2007. Keywords : Restoration, Deconvolution, 3D images, Confocal microscopy, Poisson noise, Wavelets. Copyright : Copyright 2007 Society of Photo-Optical Instrumentation Engineers.
This paper was published in Proc. SPIE Conference on Wavelets and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
@INPROCEEDINGS{chaux2007,
|
author |
= |
{Chaux, C. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Wavelet-based restoration methods: application to 3D confocal microscopy images}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. SPIE Conference on Wavelets}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_chaux2007.pdf}, |
keyword |
= |
{Restoration, Deconvolution, 3D images, Confocal microscopy, Poisson noise, Wavelets} |
} |
|
107 - Detection and Completion of Filaments: A Vector Field and PDE Approach. A. Baudour and G. Aubert and L. Blanc-Féraud. In SSVM 2007, LNCS 4485 proceedings, 2007.
@INPROCEEDINGS{ssvm2007,
|
author |
= |
{Baudour, A. and Aubert, G. and Blanc-Féraud, L.}, |
title |
= |
{Detection and Completion of Filaments: A Vector Field and PDE Approach}, |
year |
= |
{2007}, |
booktitle |
= |
{ SSVM 2007, LNCS 4485 proceedings}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_ssvm2007.pdf}, |
keyword |
= |
{} |
} |
|
108 - Détection et Complétion de Filaments: une approche variationelle et vectorielle. A. Baudour and G. Aubert and L. Blanc-Féraud. In Colloque Gretsi Troyes, 2007, 2007.
@INPROCEEDINGS{ Gretsi 2007,
|
author |
= |
{Baudour, A. and Aubert, G. and Blanc-Féraud, L.}, |
title |
= |
{Détection et Complétion de Filaments: une approche variationelle et vectorielle}, |
year |
= |
{2007}, |
booktitle |
= |
{Colloque Gretsi Troyes, 2007}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_ Gretsi 2007.pdf}, |
keyword |
= |
{} |
} |
|
109 - Vers une détection et une classification non-supervisées des changements inter-images. A. Fournier and X. Descombes and J. Zerubia. In Proc. Traitement et Analyse de l'Information - Méthodes et Applications (TAIMA), 2007. Keywords : Markov Random Fields, Registration, Change detection, Clustering.
@INPROCEEDINGS{fournier-taima-07,
|
author |
= |
{Fournier, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Vers une détection et une classification non-supervisées des changements inter-images}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. Traitement et Analyse de l'Information - Méthodes et Applications (TAIMA)}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_fournier-taima-07.pdf}, |
keyword |
= |
{Markov Random Fields, Registration, Change detection, Clustering} |
} |
|
110 - Use of ant colony
optimization for finding neighbourhoods in non-stationary Markov random
field models. S. Le Hegarat-Mascle and A. Kallel and X. Descombes. In Pattern Recognition and Machine Intelligence (PReMI'07), 2007. Keywords : Ants colonization, Markov Random Fields.
@INPROCEEDINGS{ant07b,
|
author |
= |
{Le Hegarat-Mascle, S. and Kallel, A. and Descombes, X.}, |
title |
= |
{Use of ant colony
optimization for finding neighbourhoods in non-stationary Markov random
field models}, |
year |
= |
{2007}, |
booktitle |
= |
{Pattern Recognition and Machine Intelligence (PReMI'07)}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_ant07b.pdf}, |
keyword |
= |
{Ants colonization, Markov Random Fields} |
} |
|
111 - Tree Species Classification Using Radiometry, Texture and Shape Based Features. M. S. Kulikova and M. Mani and A. Srivastava and X. Descombes and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), 2007. Keywords : shape based features, SVM, tree classification.
@INPROCEEDINGS{Kulikova07,
|
author |
= |
{Kulikova, M. S. and Mani, M. and Srivastava, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Tree Species Classification Using Radiometry, Texture and Shape Based Features}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/46/55/05/PDF/Kulikova_EUSIPCO2007.pdf}, |
keyword |
= |
{shape based features, SVM, tree classification} |
} |
Abstract :
We consider the problem of tree species classification from high resolution aerial images based on radiometry, texture and a shape modeling. We use the notion of shape space proposed by Klassen et al., which provides a shape description invariant to translation, rotation and scaling. The shape features are extracted within a geodesic distance in the shape space. We then perform a classification using a SVM approach. We are able to show that the shape descriptors improve the classification performance relative to a classifier based on radiometric and textural descriptors alone. We obtain these results using high resolution Colour InfraRed (CIR) aerial images provided by the Swedish University of Agricultural Sciences. The image viewpoint is close to the nadir, i.e. the tree crowns are seen from above. |
|
112 - An improved 'gas of circles' higher-order active contour model and its application to tree crown extraction. P. Horvath and I. H. Jermyn and Z. Kato and J. Zerubia. In Proc. Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP), Madurai, India, December 2006. Keywords : Tree Crown Extraction, Aerial images, Higher-order, Active contour, Gas of circles, Shape.
@INPROCEEDINGS{Horvath06_icvgip,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{An improved 'gas of circles' higher-order active contour model and its application to tree crown extraction}, |
year |
= |
{2006}, |
month |
= |
{December}, |
booktitle |
= |
{Proc. Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP)}, |
address |
= |
{Madurai, India}, |
url |
= |
{http://dx.doi.org/10.1007/11949619_14}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Horvath06_icvgip.pdf}, |
keyword |
= |
{Tree Crown Extraction, Aerial images, Higher-order, Active contour, Gas of circles, Shape} |
} |
Abstract :
A central task in image processing is to find the
region in the image corresponding to an entity. In a
number of problems, the region takes the form of a
collection of circles, eg tree crowns in remote
sensing imagery; cells in biological and medical
imagery. In~citeHorvath06b, a model of such regions,
the `gas of circles' model, was developed based on
higher-order active contours, a recently developed
framework for the inclusion of prior knowledge in
active contour energies. However, the model suffers
from a defect. In~citeHorvath06b, the model
parameters were adjusted so that the circles were local
energy minima. Gradient descent can become stuck in
these minima, producing phantom circles even with no
supporting data. We solve this problem by calculating,
via a Taylor expansion of the energy, parameter values
that make circles into energy inflection points rather
than minima. As a bonus, the constraint halves the
number of model parameters, and severely constrains one
of the two that remain, a major advantage for an
energy-based model. We use the model for tree crown
extraction from aerial images. Experiments show that
despite the lack of parametric freedom, the new model
performs better than the old, and much better than a
classical active contour. |
|
113 - Burnt area mapping using Support Vector Machines. O. Zammit and X. Descombes and J. Zerubia. In Proc. International Conference on Forest Fire Research, Figueira da Foz, Portugal, November 2006. Keywords : Satellite images, Forest fires, Burnt areas, Support Vector Machines.
@INPROCEEDINGS{zammit_icffr_06,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Burnt area mapping using Support Vector Machines}, |
year |
= |
{2006}, |
month |
= |
{November}, |
booktitle |
= |
{Proc. International Conference on Forest Fire Research}, |
address |
= |
{Figueira da Foz, Portugal}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_zammit_icffr_06.pdf}, |
keyword |
= |
{Satellite images, Forest fires, Burnt areas, Support Vector Machines} |
} |
|
114 - An Automatic Building Reconstruction Method : A Structural Approach Using High Resolution Images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE International Conference on Image Processing (ICIP), Atlanta, October 2006. Keywords : 3D reconstruction, Buildings, RJMCMC, Structural approach, Satellite images. Copyright : IEEE
@INPROCEEDINGS{lafarge_icip06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An Automatic Building Reconstruction Method : A Structural Approach Using High Resolution Images}, |
year |
= |
{2006}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Atlanta}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_icip06.pdf}, |
keyword |
= |
{3D reconstruction, Buildings, RJMCMC, Structural approach, Satellite images} |
} |
|
115 - Computing statistics from a graph representation of road networks in satellite images for indexing and retrieval. A. Bhattacharya and I. H. Jermyn and X. Descombes and J. Zerubia. In Proc. compImage, Coimbra, Portugal, October 2006. Keywords : Road network, Indexation, Semantic, Retrieval, Feature statistics.
@INPROCEEDINGS{bhatta_compimage06,
|
author |
= |
{Bhattacharya, A. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Computing statistics from a graph representation of road networks in satellite images for indexing and retrieval}, |
year |
= |
{2006}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. compImage}, |
address |
= |
{Coimbra, Portugal}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_bhatta_compimage06.pdf}, |
keyword |
= |
{Road network, Indexation, Semantic, Retrieval, Feature statistics} |
} |
Abstract :
Retrieval from remote sensing image archives relies on the
extraction of pertinent information from the data about the entity of interest (e.g. land cover type), and on the robustness of this extraction to nuisance variables (e.g. illumination). Most image-based characterizations are not invariant to such variables. However, other semantic entities in the image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. Road networks are one example: their properties vary considerably, for example, from urban to rural areas. This paper takes the first steps towards classification (and hence retrieval) based on this idea. We study the dependence of a number of network features on the class of the image ('urban' or 'rural'). The chosen features include measures of the network density, connectedness, and `curviness'. The feature distributions of the two classes are well separated in feature space, thus providing a basis for retrieval. Classification using kernel k-means confirms this conclusion. |
|
116 - Nonlinear models for the statistics of adaptive wavelet packet coefficients of texture. J. Aubray and I. H. Jermyn and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), Florence, Italy, September 2006. Keywords : Texture, Adaptive, Wavelet packet, Nonlinear, Bimodal, Statistics.
@INPROCEEDINGS{aubray_eusipco06,
|
author |
= |
{Aubray, J. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Nonlinear models for the statistics of adaptive wavelet packet coefficients of texture}, |
year |
= |
{2006}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Florence, Italy}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_aubray_eusipco06.pdf}, |
keyword |
= |
{Texture, Adaptive, Wavelet packet, Nonlinear, Bimodal, Statistics} |
} |
Abstract :
Probabilistic adaptive wavelet packet models of
texture pro- vide new insight into texture structure
and statistics by focus- ing the analysis on
significant structure in frequency space. In very
adapted subbands, they have revealed new bimodal
statistics, corresponding to the structure inherent to
a texture, and strong dependencies between such
bimodal sub- bands, related to phase coherence in a
texture. Existing models can capture the former but
not the latter. As a first step to- wards modelling
the joint statistics, and in order to simplify earlier
approaches, we introduce a new parametric family of
models capable of modelling both bimodal and unimodal
subbands, and of being generalized to capture the
joint statistics. We show how to compute MAP estimates
for the adaptive basis and model parameters, and apply
the models to Brodatz textures to illustrate their
performance. |
|
117 - 2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes. G. Perrin and X. Descombes and J. Zerubia. In Proc. International Conference on Pattern Recognition (ICPR), Hong-Kong, August 2006. Keywords : Data energy, Object extraction, Tree Crown Extraction, Stochastic geometry, Marked point process.
@INPROCEEDINGS{perrin_06_c,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes}, |
year |
= |
{2006}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Hong-Kong}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_perrin_06_c.pdf}, |
keyword |
= |
{Data energy, Object extraction, Tree Crown Extraction, Stochastic geometry, Marked point process} |
} |
Abstract :
High resolution aerial and satellite images of forests have a key role to play in natural resource management. As they enable to study forests at the scale of trees, it is now possible to get a more accurate evaluation of the forest resources, from which can be deduced information of biodiversity and ecological sustainability. In that prospect, automatic algorithms are needed to give a further exploitation of the data and to assist human operators. In this paper, we present a stochastic geometry approach to extract 2D and 3D parameters of the trees, by modelling the stands as some realizations of a marked point process of ellipses or ellipsoids, whose points are the positions of the trees and marks their geometric features. This approach gives also the number of stems, their position, and their size. It is an energy minimization problem, where the energy embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Results are shown on aerial images provided by the French National Forest Inventory (IFN). |
|
118 - A Higher-Order Active Contour Model for Tree Detection. P. Horvath and I. H. Jermyn and Z. Kato and J. Zerubia. In Proc. International Conference on Pattern Recognition (ICPR), Hong Kong, August 2006. Keywords : Active contour, Gas of circles, Higher-order, Shape, Prior, Tree Crown Extraction.
@INPROCEEDINGS{horvath_icpr06,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Higher-Order Active Contour Model for Tree Detection}, |
year |
= |
{2006}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Hong Kong}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_horvath_icpr06.pdf}, |
keyword |
= |
{Active contour, Gas of circles, Higher-order, Shape, Prior, Tree Crown Extraction} |
} |
Abstract :
We present a model of a ‘gas of circles’, the ensemble
of regions in the image domain consisting of an
unknown number of circles with approximately fixed
radius and short range repulsive interactions, and
apply it to the extraction of tree crowns from aerial
images. The method uses the re- cently introduced
‘higher order active contours’ (HOACs), which
incorporate long-range interactions between contour
points, and thereby include prior geometric
information without using a template shape. This makes
them ideal when looking for multiple instances of an
entity in an image. We study an existing HOAC model
for networks, and show via a stability calculation
that circles stable to perturbations are possible
for constrained parameter sets. Combining this prior
energy with a data term, we show results on aerial
imagery that demonstrate the effectiveness of the
method and the need for prior geometric knowledge. The
model has many other potential applications. |
|
top of the page
These pages were generated by
|