|
The Publications
Result of the query in the list of publications :
245 Conference articles |
39 - Detection and tracking of threats in aerial infrared images by a minimal path approach. G. Aubert and A. Baudour and L. Blanc-Féraud and L. Guillot and Y. Le Guilloux. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, Texas, USA, March 2010.
@INPROCEEDINGS{ICASSP10,
|
author |
= |
{Aubert, G. and Baudour, A. and Blanc-Féraud, L. and Guillot, L. and Le Guilloux, Y.}, |
title |
= |
{Detection and tracking of threats in aerial infrared images by a minimal path approach}, |
year |
= |
{2010}, |
month |
= |
{March}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Dallas, Texas, USA}, |
pdf |
= |
{http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5495518}, |
keyword |
= |
{} |
} |
|
40 - Extraction of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and active contours. M. S. Kulikova and I. H. Jermyn and X. Descombes and E. Zhizhina and J. Zerubia. In Proc. IS&T/SPIE Electronic Imaging, San Jose, USA, January 2010. Keywords : Object extraction, Marked point process, Shape prior, Active contour, birth-and-death dynamics. Copyright : Copyright 2010 by SPIE and IS&T. This paper was published in the proceedings of IS&T/SPIE Electronic Imaging 2010 Conference in San Jose, USA, and is made available as an electronic reprint with permission of SPIE and IS&T. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
@INPROCEEDINGS{Kulikova10a,
|
author |
= |
{Kulikova, M. S. and Jermyn, I. H. and Descombes, X. and Zhizhina, E. and Zerubia, J.}, |
title |
= |
{Extraction of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and active contours}, |
year |
= |
{2010}, |
month |
= |
{January}, |
booktitle |
= |
{Proc. IS&T/SPIE Electronic Imaging}, |
address |
= |
{San Jose, USA}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/46/54/72/PDF/Kulikova_SPIE2010.pdf}, |
keyword |
= |
{Object extraction, Marked point process, Shape prior, Active contour, birth-and-death dynamics} |
} |
Abstract :
We extend the marked point process models that have been used for object extraction from images to arbitrarily shaped objects, without greatly increasing the computational complexity of sampling and estimation. From an alternative point of view, the approach can be viewed as an extension of the active contour methodology to an a priori unknown number of
objects. Sampling and estimation are based on a stochastic birth-and-death process defined on the configuration space of an arbitrary number of objects, where the objects are defined by the image data and prior information. The performance of the approach is demonstrated via experimental results on synthetic and real data. |
|
41 - High resolution SAR-image classification by Markov random fields and finite mixtures. G. Moser and V. Krylov and S.B. Serpico and J. Zerubia. In Proc. of SPIE (IS&T/SPIE Electronic Imaging 2010), Vol. 7533, pages 753308, San Jose, USA, January 2010. Keywords : SAR image classification, Dictionary, amplitude probability density, Stochastic EM (SEM), Markov random field, copula. Copyright : SPIE
@INPROCEEDINGS{moserSPIE2010a,
|
author |
= |
{Moser, G. and Krylov, V. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{High resolution SAR-image classification by Markov random fields and finite mixtures}, |
year |
= |
{2010}, |
month |
= |
{January}, |
booktitle |
= |
{Proc. of SPIE (IS&T/SPIE Electronic Imaging 2010)}, |
volume |
= |
{7533}, |
pages |
= |
{753308}, |
address |
= |
{San Jose, USA}, |
url |
= |
{http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=776565}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00442348/en/}, |
keyword |
= |
{SAR image classification, Dictionary, amplitude probability density, Stochastic EM (SEM), Markov random field, copula} |
} |
Abstract :
In this paper we develop a novel classification approach for high and very high resolution polarimetric synthetic aperture radar (SAR) amplitude images. This approach combines the Markov random field model to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done via a recently proposed dictionary-based stochastic expectation maximization approach for SAR amplitude probability density function estimation. For modeling the joint distribution from marginals corresponding to single polarimetric channels we employ copulas. The accuracy of the developed semiautomatic supervised algorithm is validated in the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed. |
|
42 - A marked point process model with strong prior shape information for extraction of multiple, arbitrarily-shaped objects. M. S. Kulikova and I. H. Jermyn and X. Descombes and E. Zhizhina and J. Zerubia. In Proc. IEEE SITIS, Publ. IEEE Computer Society, Marrakech, Maroc, December 2009. Keywords : Object extraction, Marked point process, Shape prior, Active contour, multiple birth-and-death dynamics.
@INPROCEEDINGS{Kulikova09a,
|
author |
= |
{Kulikova, M. S. and Jermyn, I. H. and Descombes, X. and Zhizhina, E. and Zerubia, J.}, |
title |
= |
{A marked point process model with strong prior shape information for extraction of multiple, arbitrarily-shaped objects}, |
year |
= |
{2009}, |
month |
= |
{December}, |
booktitle |
= |
{Proc. IEEE SITIS}, |
publisher |
= |
{IEEE Computer Society}, |
address |
= |
{Marrakech, Maroc}, |
pdf |
= |
{http://hal.inria.fr/docs/00/43/63/20/PDF/PID1054029.pdf}, |
keyword |
= |
{Object extraction, Marked point process, Shape prior, Active contour, multiple birth-and-death dynamics} |
} |
Abstract :
We define a method for incorporating strong prior shape information into a recently extended Markov point process model for the extraction of arbitrarily-shaped objects from images. To estimate the optimal configuration of objects, the process is sampled using a Markov chain based on a stochastic birth-and-death process defined in a space of multiple
objects. The single objects considered are defined by both the image data
and the prior information in a way that controls the computational
complexity of the estimation problem. The method is tested via experiments
on a very high resolution aerial image of a scene composed of tree crowns. |
|
43 - Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics. C. Benedek and X. Descombes and J. Zerubia. In IEEE Workshop on Applications of Computer Vision (WACV), pages 100-105, Snowbird, Utah, USA, December 2009. Keywords : Marked point process, Change detection, Aerial images, Building extraction, Satellite images.
@INPROCEEDINGS{benedekWacv09,
|
author |
= |
{Benedek, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics}, |
year |
= |
{2009}, |
month |
= |
{December}, |
booktitle |
= |
{IEEE Workshop on Applications of Computer Vision (WACV)}, |
pages |
= |
{100-105}, |
address |
= |
{Snowbird, Utah, USA}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/42/66/18/PDF/benedekWACV09.pdf}, |
keyword |
= |
{Marked point process, Change detection, Aerial images, Building extraction, Satellite images} |
} |
Abstract :
In this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. The accuracy is ensured by a Bayesian object model verification, meanwhile the computational cost is significantly decreased by a non-uniform stochastic object birth process, which proposes relevant objects with higher probability based on low-level image features.
|
|
44 - Reconstruction 3D du bâti par la technique des ombres chinoises. P. Lukashevish and A. Kraushonak and X. Descombes and J.D. Durou and B. Zalessky and E. Zhizhina. In GRETSI Dijon, Dijon, France, November 2009. Keywords : 3D reconstruction.
@INPROCEEDINGS{luka09,
|
author |
= |
{Lukashevish, P. and Kraushonak, A. and Descombes, X. and Durou, J.D. and Zalessky, B. and Zhizhina, E.}, |
title |
= |
{Reconstruction 3D du bâti par la technique des ombres chinoises}, |
year |
= |
{2009}, |
month |
= |
{November}, |
booktitle |
= |
{GRETSI Dijon}, |
address |
= |
{Dijon, France}, |
url |
= |
{http://hal.inria.fr/inria-00399208/fr/}, |
keyword |
= |
{3D reconstruction} |
} |
|
45 - Combining meshes and geometric primitives for accurate and semantic modeling. F. Lafarge and R. Keriven and M. Brédif. In Proc. British Machine Vision Conference (BMVC), London, U.K., November 2009.
@INPROCEEDINGS{lafarge_bmvc09,
|
author |
= |
{Lafarge, F. and Keriven, R. and Brédif, M.}, |
title |
= |
{Combining meshes and geometric primitives for accurate and semantic modeling}, |
year |
= |
{2009}, |
month |
= |
{November}, |
booktitle |
= |
{Proc. British Machine Vision Conference (BMVC)}, |
address |
= |
{London, U.K.}, |
url |
= |
{http://recherche.ign.fr/labos/matis/pdf/articles_conf/2009/bmvc_final_09.pdf}, |
keyword |
= |
{} |
} |
|
46 - A markov random field model for extracting near-circular shapes. T. Blaskovics and Z. Kato and I. H. Jermyn. In Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, November 2009. Keywords : Segmentation, Markov Random Fields, Shape prior.
@INPROCEEDINGS{Blaskovics09,
|
author |
= |
{Blaskovics, T. and Kato, Z. and Jermyn, I. H.}, |
title |
= |
{A markov random field model for extracting near-circular shapes}, |
year |
= |
{2009}, |
month |
= |
{November}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
pdf |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5413472}, |
keyword |
= |
{Segmentation, Markov Random Fields, Shape prior} |
} |
|
47 - Object extraction from high resolution SAR images using a birth and death dynamics. F. Arslan and X. Descombes and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, November 2009. Keywords : High resolution SAR images, Object extraction, Marked point process, birth and death process.
@INPROCEEDINGS{Fatih09,
|
author |
= |
{Arslan, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Object extraction from high resolution SAR images using a birth and death dynamics}, |
year |
= |
{2009}, |
month |
= |
{November}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
url |
= |
{http://dx.doi.org/10.1109/ICIP.2009.5413907}, |
keyword |
= |
{High resolution SAR images, Object extraction, Marked point process, birth and death process} |
} |
Abstract :
We present a new approach to extract predefined objects, such as trees and oil tanks for instance, from high resolution SAR images. We consider a stochastic approach based on an object process also called marked point process. The objects represent trees or oil tanks which are modeled by disks in the image. We first define a Gibbs density that takes into account both prior information and the data. The energy we define is composed of two terms, one is a prior, penalizing overlaps between objects, and the other is a data term, which measures the suitability of an object in the SAR image. The problem is then reduced to an energy minimization problem. We sample the process to extract the configuration of objects minimizing the energy by a fast birth-and-death dynamics, leading to the total number of objects (trees or oil tanks in our case). This approach is much faster than manual counts and does not need any preprocessing or supervision of a user. |
|
48 - Multi-class SVM for forestry classification. N. Hajj Chehade and JG. Boureau and C. Vidal and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, November 2009. Keywords : Support Vector Machines, texture segmentation, Haralick feature, remote sensing, Forest vegetation.
@INPROCEEDINGS{Nabil09,
|
author |
= |
{Hajj Chehade, N. and Boureau, JG. and Vidal, C. and Zerubia, J.}, |
title |
= |
{Multi-class SVM for forestry classification}, |
year |
= |
{2009}, |
month |
= |
{November}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
url |
= |
{http://dx.doi.org/10.1109/ICIP.2009.5413395}, |
keyword |
= |
{Support Vector Machines, texture segmentation, Haralick feature, remote sensing, Forest vegetation} |
} |
Abstract :
In this paper we propose a method for classifying the vegetation types in an aerial color infra-red (CIR) image. Different vegetation types do not only differ in color, but also in texture. We study the use of four Haralick features (energy, contrast, entropy, homogeneity) for texture analysis, and then perform the classification using the one-against-all (OAA) multi-class support vector machine (SVM), which is a popular supervised learning technique for classification. The choice of features (along with their corresponding parameters), the choice of the training set, and the choice of the SVM kernel highly affect the performance of the classification. The study was done on several CIR aerial images provided by the French National Forest Inventory (IFN). In this paper, we will show one example on a national forest near Sedan (in France), and compare our result with the IFN map. |
|
top of the page
These pages were generated by
|