-
K-means++
Beretta, L., Cohen-Addad, V., Lattanzi, S., & Parotsidis, N. (2023). Multi-swap k-means++. Advances in Neural Information Processing Systems, 36, 26069-26091.
-
Gaussian mixtures, generative denoising processes
Shah, K., Chen, S., & Klivans, A. (2023). Learning mixtures of gaussians using the ddpm objective. Advances in Neural Information Processing Systems, 36, 19636-19649.
-
Structural alphabets
Rosenberg, A. A., Yehishalom, N., Marx, A., & Bronstein, A. M. (2023). An amino-domino model described by a cross-peptide-bond Ramachandran plot defines amino acid pairs as local structural units. Proceedings of the National Academy of Sciences, 120(44), e2301064120.
-
Time lagged ICA, deep learning
Bonati, L., Piccini, G., & Parrinello, M. (2021). Deep learning the slow modes for rare events sampling. Proceedings of the National Academy of Sciences, 118(44), e2113533118.
-
Structural alignments
Van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M., Lee, J., Gilchrist, C. L., ... & Steinegger, M. (2024). Fast and accurate protein structure search with Foldseek. Nature biotechnology, 42(2), 243-246.
-
Normal modes, interpolation, SPD matrices
Batista, P. R., Robert, C. H., Marechal, J. D., Hamida-Rebaï, M. B., Pascutti, P. G., Bisch, P. M., & Perahia, D. (2010). Consensus modes, a robust description of protein collective motions from multiple-minima normal mode analysis—application to the HIV-1 protease. Physical Chemistry Chemical Physics, 12(12), 2850-2859.
-
Structural decompositions, community detection
Wells, J., Hawkins-Hooker, A., Bordin, N., Sillitoe, I., Paige, B., & Orengo, C. (2024). Chainsaw: protein domain segmentation with fully convolutional neural networks. Bioinformatics, 40(5), btae296.
-
Loop sampling, reinforcement learning
Barozet, A., Molloy, K., Vaisset, M., Siméon, T., & Cortés, J. (2020). A reinforcement-learning-based approach to enhance exhaustive protein loop sampling. Bioinformatics, 36(4), 1099-1106.
-
Trees, classification, regression
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... & Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nature machine intelligence, 2(1), 56-67.
-
Protein design, deep learning
Defresne, M., Barbe, S., & Schiex, T. (2023). Scalable coupling of deep learning with logical reasoning. arXiv preprint arXiv:2305.07617. IJCAI 2023
-
Correlations, information theory
Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., ... & Sabeti, P. C. (2011). Detecting novel associations in large data sets. science, 334(6062), 1518-1524.
-
Protein design, covid
Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., ... & Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 370(6515), 426-431.
-
Normal modes, cryo-electron miscroscopy
Vuillemot, R., Mirzaei, A., Harastani, M., Hamitouche, I., Fréchin, L., Klaholz, B. P., ... & Jonic, S. (2023). MDSPACE: Extracting continuous conformational landscapes from Cryo-EM single particle datasets using 3D-to-2D flexible fitting based on molecular dynamics simulation. Journal of molecular biology, 435(9), 167951.
-
Collective coordinates, dimensionality reduction, rare events
Belkacemi, Z., Gkeka, P., Lelièvre, T., & Stoltz, G. (2021). Chasing collective variables using autoencoders and biased trajectories. Journal of chemical theory and computation, 18(1), 59-78.
-
Conformer generation, diffusion processes
Wu, K. E., Yang, K. K., van den Berg, R., Alamdari, S., Zou, J. Y., Lu, A. X., & Amini, A. P. (2024). Protein structure generation via folding diffusion. Nature communications, 15(1), 1059.