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bInstitut de Mathématiques et de Modélisation de Montpellier, Université Montpellier 2,
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Abstract

Variational-multiscale large-eddy simulations (VMS-LES) of the flow around

a circular cylinder are carried out at different Reynolds numbers in the sub-

critical regime, viz. Re=3900, 10000 and 20000, based on the cylinder di-

ameter. A mixed finite-element/finite-volume discretization on unstructured

grids is used. The separation between the largest and the smallest resolved

scales is obtained through a variational projection operator and finite-volume

cell agglomeration. The WALE subgrid scale model is used to account for

the effects of the unresolved scales; in the VMS approach, it is only added to

the smallest resolved ones. The capability of this methodology to accurately

predict the aerodynamic forces acting on the cylinder and in capturing the

flow features are evaluated for the different Reynolds numbers considered.

The sensitivity of the results to different simulation parameters, viz. ag-

glomeration level and numerical viscosity, is also investigated at Re=20000.

Keywords: Variational multiscale LES, circular cylinder, unstructured

grids

Preprint submitted to Computers and Fluids January 26, 2011



1. Introduction

Today large-eddy simulations (LES) are increasingly used for engineering

and industrial applications, at least for those flows for which the RANS

approach encounters difficulties in giving accurate predictions. Paradigmatic

examples of such flows are bluff-body wakes.

The present work is part of a research activity aimed at developing and

validating methodologies for the application of LES to flows of industrial or

engineering interest, i.e. characterized by complex realistic geometries and

a dynamics involving a wide range of time and space scales. The role and

interaction of closure modeling and numerical discretization (grid resolution

and schemes) in LES is much different than in RANS and, thus, for ap-

plication of LES in an industrial context, peculiar issues arise and ad-hoc

methodologies and strategies need to be developed and validated (see e.g.

[1, 2, 3] for recent reviews and discussions). Our strategy is based on the

following key ingredients : (i) unstructured grids, (ii) a second-order accu-

rate numerical scheme stabilized by a numerical viscosity proportional to

high-order space derivatives, and thus acting on a narrow band of smallest

resolved scales, and tuned by an ad-hoc parameter, (iii) Variational Multi-

Scale (VMS) formulation combined with eddy-viscosity subgrid scale (SGS)

models. The motivations of these choices are extensively discussed in our pre-

vious publications [4, 5, 6] and are not reported here for the sake of brevity.

We would just like to recall that a key feature of VMS-LES [7] is that the

SGS model is only added to the smallest resolved scales. This is aimed at
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reducing the excessive dissipation introduced by non-dynamic eddy-viscosity

SGS models also on the large scales and this has been shown to generally im-

prove the behavior of such models, such as for instance for the Smagorinsky

model in boundary layers [8]. Clearly, the VMS approach is a possible choice

among several strategies proposed in the literature to improve the behavior

of eddy-viscosity SGS models, such as, for instance, the dynamic procedure

[9] ([10, 11] for anisotropic grids) or the combination with scale-similarity

terms [12]. The VMS approach is particularly attractive for variational nu-

merical methods and unstructured grids, because it is easily incorporated in

such formulations [8, 13] and the additional computational costs with respect

to classical LES are very low, while other approaches may bring rather large

additional complexity and computational costs (see e.g. [4]).

In a previous work [6], we applied the VMS methodology, together with

three different eddy-viscosity SGS models, to the flow around a circular cylin-

der at a Reynolds number of 3900; the results were appraised against ex-

periments and LES simulations in the literature and compared with those

obtained with the same models and simulation parameters in classical LES.

In the present paper, a further contribution to the appraisal of the VMS

methodology is given by the application to the same flow configuration when

the Reynolds number is increased from 3900 to 20000.

This interval lies in the intermediate subcritical regime (see e.g. [14]). The

lower part of this interval has been the subject of many experimental studies,

summarized e.g. in [15]. In the Achenbach drag-vs-Reynolds curve [16, 18],

the interval 3900-20000 corresponds to a section of slow but continuous in-

crement of drag. The drag is reaching a minimum around Re=2000-3000 and
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increases slowly to a quasi-plateau attained around Reynolds 20000. Further-

more, noticeable variations of lift fluctuations and of the mean base pressure

have been observed when the Reynolds number is varied in this regime, while

the Strouhal number is only marginally decreasing (see the discussion and

the references in [15] and [17]). The changes in aerodynamic forces are cer-

tainly related to the instability of the separating shear-layers, which moves

upstream with increasing Reynolds number, leading to a significant reduction

of the formation length of the Karman vortices, firstly observed in [19]. Fur-

thermore, a crucial phenomenon occurring in this Reynolds number range

is the onset and the amplification of the Kelvin-Helmholtz (KH) instabil-

ity in the free shear layer formed from the surface of cylinder, producing

small-scale vortices (see [20], [21]). For reviews of the literature on shear-

layer instability/transition in the cylinder near wake, the reader is referred

to [15, 22, 23, 24]. Several observations do not detect KH small vortices at

Re=5000 (see for example [25]) but detect them at Re=10000. In contrast

to this, KH vortices are observed in DNS at Re=3900 by Dong et al., [24].

These differences may be due to the fact that in the subcritical regime, cor-

reponding more or less to a Reynolds number ranging from 1000 to 5000,

the KH vortical structures appear in avery intermittent way and, therefore,

it is difficult to observe them on instantaneous flow visualizations. However,

all the previous studies agree that, as the Reynolds number increases, the

high-frequency fluctuations in the velocity signals, caused by the KH vortices

become more and more important and eventually dominate the fluctuations

caused by the Karman vortex shedding. The ratio between the shear-layer

frequency and the vortex shedding frequency also increases as a power of
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Reynolds number, see [22, 23].

From a more general viewpoint, many measurements are available for this

interval of Reynolds number. For the interval 3900-4020, see for example

[26, 27, 28, 29, 24]. Also, several experiments have been carried out for

intermediate Reynolds number. Let us mention [17] for Reynolds number

8000. For a Reynolds number of 20000, results are reported in [30] and

[31]. Moreover, measures for Reynolds numbers of 16000 and 24000 are

documented in [33].

The aim of the present work is, thus, to investigate whether the method-

ology previously described is able to predict, on an unstructured grid as those

often used in industrial applications, the variation of aerodynamic forces and

base pressure and to capture the phenomena briefly recalled above, which

characterize the Reynolds number range under investigation. As previously

said, the study is carried out for the VMS-LES formulation and, among

the SGS models investigated in [6], the Wall-Adapting Local Eddy-viscosity

(WALE) SGS model proposed in [34] is used herein. Due to its design feature,

the WALE model exhibits the correct near-wall behavior while being a sim-

ple eddy-viscosity model. As noted earlier, this feature is not necessary if we

combine the WALE model with the VMS approach. However, in our study

[6] conducted at Reynolds number 3900, we observed that for the WALE

model the VMS approach was particularly effective in reducing the excessive

dissipation of WALE in classical LES formulation and improved the quality

of the predictions. This is in agreement with the findings of [35], in which a

high-pass filtered multiscale version of the WALE model was proposed in or-

der to reduce its dissipation for vortical flows. Finally, to our knowledge, the
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application of the VMS-LES approach and of the WALE SGS model to this

type of flow is not documented in the literature, except in [6]. In the present

paper, the results obtained at Reynolds numbers equal to 3900, 10000 and

20000 are presented.

The corresponding flow at Reynolds number 3900 has been well studied,

see, e.g., the LES computations in [36, 6, 27, 37] and the DNS studies in [24].

The intermediate Reynolds number of 8000 has been computed by LES in

[38]. For Reynolds number 10000, we refer to DNS simulations in [24]. The

same flow at Reynolds number 20000 has been computed in [32] through LES

with different SGS models, and in [39] with a TVD numerical method with-

out a subgrid scale model. These studies are used for comparison, together

with the experimental data previously cited. We first compare the results

obtained at the different Reynolds numbers without changing any simula-

tion parameter; in particular, the same grid, having approximately 1.8× 106

nodes is used in all the simulations. Finally, in analogy with the investiga-

tion carried out at Re=3900 in [6], the sensitivity of the results to different

simulation parameters, viz. agglomeration level and numerical viscosity, is

investigated at Re=20000.

2. Methodology

A more complete description of the methodology can be found in [5] and

in [6]; we just briefly recall its main features.

The filtered Navier-Stokes equations for compressible flows and in con-

servative form are considered. The WALE SGS eddy-viscosity model [34] is

used to close the equations. The governing equations are discretized in space
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through a mixed finite-element/finite-volume method applicable to unstruc-

tured grids. The resulting scheme is second-order accurate and is stabilized

through a very low numerical diffusion built with a sixth-order spatial deriva-

tive, weighted by the 5th power of local mesh size and by a tunable coefficient

γ. The impact of this stabilizing term has been evaluated as very low (see

e.g. [5] and [6]). A key ingredient is the VMS formulation. In short, a

splitting is introduced between the large resolved scales (LRS), i.e. those

resolved on a virtual coarser grid (roughly of size 2∆x, ∆x being the local

grid resolution) and the small resolved ones (SRS, of size ∆x). The scale

separation is obtained through a projector operator in the LRS space, which

is based on spatial average on macro-cells, obtained through agglomeration

of the finite-volume cells associated to the used grid [13]. The SGS WALE

model is then restricted to the SRS, the larger ones being influenced by the

introduced SGS viscosity only through the coupling with the SRS. Finally,

we adopt herein the so called small-small formulation, i.e. the SGS term is

computed as a function of the SRS only.

3. Test-case and numerical set-up

Simulations are carried out for the flow around a circular cylinder, at

Reynolds numbers, based on the cylinder diameter, D, and the freestream

velocity, equal to 3900, 10000 and 20000 respectively. The computational

domain is such that −10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and −π/2 ≤ z/D ≤

π/2, where x, y and z denote the streamwise, transverse and spanwise direc-

tions respectively, the cylinder center being located at x = y = 0. No-slip

conditions are applied on the cylinder surface. In the spanwise direction,
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periodic boundary conditions are imposed, while characteristic based condi-

tions are used at the inflow and outflow as well as on the lateral boundaries

(y/D = ±20). The freestream Mach number is set equal to 0.1 in order

to make a sensible comparison with incompressible simulations in the liter-

ature. Preconditioning is used to deal with the low Mach number regime

[6]. As discussed in the Introduction, we decided first to compare the results

obtained in simulations carried out at different Reynolds numbers using the

same parameters and computational conditions. Thus, the same grid is used,

namely an unstructured tetrahedral grid of approximately 1.8 × 106 nodes

(GR1). The averaged distance of the nearest point to the cylinder bound-

ary is 0.001D, and 100 nodes are present in the spanwise direction near the

cylinder, with an approximately uniform distribution. This grid has been

designed to have a reasonable resolution at all the considered cases, without

ad-hoc adaptation, as often is the case in engineering applications. More-

over, as for modeling, the free parameter in the WALE SGS model is set

equal to 0.5, as suggested in [34], the filter width is defined as the third root

of the volume of the grid elements, as in [6], and the macro-cells used in the

VMS procedure are obtained from the finite-volume cells associated to the

computational grid by means of one level of agglomeration. Finally, as for

numerics, the parameter controlling the amount of numerical viscosity is set

to 0.3 (see also [6]).

As for computational costs, for 30 vortex shedding cycles and with 64

cores, the CPU time is approximately 100 hours over a SGI Altix ICE com-

puter.
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4. Results at different Reynolds numbers

Let us consider, first, the main bulk flow parameters. For all the simu-

lations, statistics are computed by averaging in the spanwise homogeneous

direction and in time for at least 30 vortex-shedding cycles, after having

discarded the initial transient after the impulsive start-up. The bulk flow

parameters for Re=3900 are presented in Tab. 1. They are compared with

the LES calculations of [27, 36, 37] and the measurements of [24, 26, 27]. We

also report the results of the simulations in [6], carried out with the same

modeling and parameters, but on two different grids having 2.9 × 105 and

1.46× 106(see [6] for more details). The bulk flow parameters for Re=10000

are presented in Tab. 2 and compared with the direct numerical simulations

of [24] and the measurements of [28, 17, 40, 41]. Finally, the bulk flow pa-

rameters for Re=20000 are presented in Tab. 3. They are compared with

the LES calculations of [39, 32] and the measurements of [17, 33, 30, 31].

As for the Strouhal number associated to vortex shedding, St, Tabs. 1-3

show that the slight decrease with increasing Reynolds number, observed in

the experiments, seems to be correctly captured in the VMS-LES simula-

tions. In [17] a review of the fluctuating lift acting on circular infinitely-long

cylinders at Reynolds numbers ranging from 47 to 2×105 was carried out and

empirical functions were proposed for the Reynolds number dependence of

St and of the r.m.s. of the lift coefficient. Fig. 1(a) shows that the results

of the present simulations, also reported in Tabs. 1-3, agree well with the

proposed empirical functions.

Another feature which seems to be correctly reproduced in the present

VMS-LES simulations is the fact that the formation length of the Karman
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vortices decreases as the Reynolds number increases, as observed in the liter-

ature for the considered Reynolds number range (e.g. [19]). This is qualita-

tively shown by the instantaneous vorticity isocontours obtained at different

Reynolds numbers and shown in Figs. 2-4. More quantitatively, this is also

indicated by the decrease of the mean recirculation bubble length, lr with

increasing Reynolds number. Indeed, the smaller is the formation length of

the Karman vortices, the smaller is the mean recirculation bubble length.

This trend is captured in the present simulations and, for all the considered

Reynolds numbers, the obtained values are in very good agreement with the

available experimental and/or numerical data in the literature.

As a consequence of the reduced length of formation of the Karman vor-

tices, the absolute value of the mean base pressure coefficient, and, conse-

quently, the mean drag coefficient increase with the Reynolds number, as

can be seen in Tabs. 1-3. Furthermore, the amplitude of the oscillations in

time of the lift coefficient also increase with the Reynolds number. All these

trends are again captured in the present simulations. As for the r.m.s. of the

lift coefficient, the quantitative agreement with the available numerical and

experimental data in the literature is good for all the considered Reynolds

numbers. Fig. 1(b) shows a comparison of the present results with the em-

pirical functions proposed in [17]. An overestimation of the r.m.s. of the lift

coefficient is observed at Re = 10000 and Re = 20000; however, a significant

scatter of the experimental data reviewed in [17] is observed in this range

of Reynolds numbers and the present results seem to be in good agreement

with the experimental data giving the highest values of CLrms (see Fig. 2 in

[17]).
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At Re=3900, the mean pressure drag and the base pressure are well pre-

dicted (Tab. 1), while they are both slightly overestimated at Re=10000,

the errors being of 2.5% for Cd and of 3.6% for Cpb. Note that there is close

agreement with the range of the predictions obtained in the DNS of [24] for

different grid resolutions. At Re=20000 the overprediction of the mean drag

coefficient is slightly larger than at Re=10000 (5.8% with respect to the high-

est limit of the experimental range), while the value of the base pressure is

rather good.

The mean drag prediction is clearly related to that of the pressure distri-

bution over the cylinder. Figs. 5-7 show the mean pressure coefficient distri-

bution at the cylinder obtained at the different Reynolds numbers, compared

to reference experimental data [29, 24, 30]. Although the overall agreement

is good, at all the considered Reynolds numbers there is a slight overestima-

tion of the mean Cp at the stagnation point. This is due to the fact that

a compressible flow solver is used; even if the Mach number is low (M=0.1)

and ad-hoc preconditioning is used, small compressibility effects are present

at the stagnation point. The same slight overestimation can be observed in

the results reported in [6]. The agreement in the separated wake is excellent

at Re = 3900, while some discrepancies can be observed at Re = 10000 and

Re = 20000, and this explains the small errors in the prediction of the mean

drag coefficient. If we consider, as often done in the literature, the point

at which the slope of the mean Cp curve changes (after the minimum) as

an indicator of the location of boundary-layer separation, this seems to be

correctly captured in the present simulations for all the considered Reynolds

number. For the present simulations, the separation point has also been de-

11



tected from the averaged velocity field and the results are reported in Tabs.

1-3; it slightly moves upstream as the Reynolds number increases, but there

are not significant variations.

As previously discussed in the Introduction, another characteristic feature

in the considered Reynolds number range is the onset of the KH instability

of the detaching shear layers, leading to the formation of small-scale vortices.

Looking at the instantaneous vorticity iso-contours at Re=3900 in Fig. 2,

there is no evidence of small-scale vortical structures. This is consistent with

the vorticity visualizations in [25] (Re=5000) and in [24] (Re=4000). In [24]

these structures are identified at Re=4000 by instantaneous velocity vectors

and spectral analysis of velocity time signals recorded in the shear layers.

The lack of KH vortical structures in our vorticity snapshots at Re=3900

may also be due to the intermittency of these structures at this Reynolds

number value, which makes difficult to detect them on instantaneous flow

visualizations. More surprisingly, the small-scale structures are not clearly

visible even at Re=10000 and Re=20000 (Figs. 3 and 4a). In order to inves-

tigate whether this is due to a lack of grid resolution, we have transfered our

established (vortex shedding) solution on a 3.8 million nodes grid, obtained

by local division of the tetrahedra located in the boundary layer and in the

shear layers, and a few shedding cycles have been simulated on this finer

grid. The instantaneous iso-contours of vorticity obtained in this simulation

are shown in Fig. 4b and the small-scale KH vortices are clearly detectable.

This indicates that for an accurate description of the K-H shear-layer insta-

bility a finer grid resolution is probably needed, as it could be expected since

these instabilities are associated with frequency which significantly increase
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with the Reynolds number [24, 15, 23] and thus they are related to pro-

gressively smaller scales. Note, however, that although these structures are

not well resolved in the present simulations, their effects on the bulk quanti-

ties of practical interest, such as the aerodynamic loads on the cylinder, are

satisfactorily reproduced.

5. Parameter sensitivity analysis at Re=20000

Finally, an analysis of the sensitivity to different simulation parameters is

carried out at Re=20000. The effect of numerical diffusion is first investigated

by varying the value of the parameter γ, which directly multiplies the upwind

part of the numerical convective fluxes [5, 6]. In all the previously analyzed

simulations this parameter was set to 0.3. We consider now a simulation

carried out at Re=20000 with γ = 0.2 and Tab. 4 show the percent variation

of the bulk parameters obtained in this simulation with respect to those in

Tab. 3. Note that the simulation in Tab. 4 and the one in Tab. 3 only

differ for the value of γ, all the remaining parameters being unchanged. It

can be seen that the sensitivity of the predictions to γ, i.e. the parameter

controlling the numerical diffusion, is very low. This is in agreement with

the findings at Re=3900 and of our previous works [4, 5, 6] and confirms that

the numerical diffusion introduced by the present numerical scheme does not

play a predominant role, also when used in the VMS-LES approach, in which

the SGS viscosity is lower than in classical LES and is applied to a limited

range of scales. It is also confirmed that a fine tuning of the parameter γ is

not needed in order to limit the spurious effects of the numerical diffusion.

The sensitivity to the level of agglomeration, which controls the range of
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the scales at which the SGS model is added, has also been investigated by

carrying out a simulation in which the LRS space is defined by the projection

onto macrocells obtained through two agglomeration steps. This means that

the large resolved scales in the VMS-LES WALE with two levels of agglom-

eration in Tab. 4 are roughly those having a dimension three times larger

than the local grid resolution. Thus, the SGS model is acting on a wider

range of scales than in all the previous VMS-LES simulations. Nonetheless,

the sensitivity to this parameter is also low, as shown in Tab. 4.

6. Concluding Remarks

Variational-multiscale large-eddy simulations of the flow around a circular

cylinder carried out at different Reynolds numbers in the subcritical regime,

viz. Re=3900, 10000 and 20000, have been presented and analyzed. The

key ingredients of the used numerics and modeling are : unstructured grids,

a second-order accurate numerical scheme stabilized by a tunable numerical

diffusion proportional to high-order space derivatives and the VMS formula-

tion combined with the WALE subgrid model. The simulations are carried

out at different Reynolds numbers without any change in the parameters.

This is useful to investigate the capabilities of the used methodology to cap-

ture Reynolds number effects in the subcritical regime without any ad-hoc

adjustement. For all the main bulk flow quantities, viz. the vortex-shedding

Strouhal number, formation length of Karman vortices, mean recirculation

bubble length, aerodynamic loads and pressure distribution, the trends ob-

served in the literature for Reynolds numbers in the considered range are

correctly reproduced in the present simulations. The quantitative agreement
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with available experimental and numerical data is generally good. Small dis-

crepancies observed at Re=10000 and 20000 can be explained by the lack

of resolution, which obviously becomes coarser as the Reynolds number in-

creases. In particular, a finer grid resolution is needed for an accurate de-

scription of the KH small-scale vortices, which are associated with frequencies

which are significantly larger than the vortex-shedding ones and increase with

the Reynolds number, and thus with progressively smaller scales. However, it

may be concluded that, although these structures are not well resolved in the

present simulations, their effects on the bulk quantities of practical interest,

such as the aerodynamic loads on the cylinder, are satisfactorily reproduced.

Finally, a sensitivity analysis to the numerical diffusion and the agglom-

eration level, was carried out at Re=20000. The agglomeration level controls

the dimension of the LRS in VMS-LES and, hence, the range of scales on

which the SGS model is acting. By increasing the dimension of LRS in each

direction, no significant effects were observed on the results. The sensitivity

to the value of the parameter controlling the amount of introduced numerical

diffusion has also been found to be very low. This is in agreement with the

conclusions drawn for the same flow at Re=3900 in [6] and in our previous

works [5] for different flows, and confirms that the numerical diffusion intro-

duced by the used numerical scheme does not play a predominant role, also

when used in the VMS-LES approach, in which the SGS viscosity is lower

than in classical LES and is applied to a limited range of scales.
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List of tables:

Table 1: Bulk flow parameters at Re=3900. Cd is the mean drag coefficient,

CLrms is the r.m.s. of the time variation of the lift coefficient, lr is the mean

bubble recirculation length, Cpb is the value of the mean pressure coefficient

in the rear part of the cylinder, θsep the mean separation angle, and St the

Strouhal number.

Table 2: Bulk flow parameters at Re=10000. The meaning of the symbols

is the same as in Tab. 1.

Table 3: Bulk flow parameters at Re=20000. The meaning of the symbols

is the same as in Tab. 1.

Table 4: Bulk flow parameters obtained at Re=20000 by varying some sim-

ulation parameters. See the caption of Tab. 1 for the meaning of symbols.

The percent variation with respect to the reference simulation in Tab. 3 is

reported.
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Table 1: Bulk flow parameters at Re=3900. Cd is the mean drag coefficient, CLrms is

the r.m.s. of the time variation of the lift coefficient, lr is the mean bubble recirculation

length, Cpb is the value of the mean pressure coefficient in the rear part of the cylinder,

θsep the mean separation angle, and St the Strouhal number.

Simulation Cd CLrms lr -Cpb θsep St

Present VMS-LES 0.99 0.108 1.45 0.88 89 .21

VMS-LES [6] (coarser grid) 1.03 0.377 0.94 1.01 – .22

VMS-LES [6] (finer grid) 0.94 0.092 1.56 0.83 – .22

LES [27, 36, 37] [0.99-1.38] – [1.0-1.56] [0.89-1.23] – [0.19-0.21]

Experiments [24, 26, 27, 36] [0.94-1.04] – [1.47-1.51] [0.82-0.93] – [0.20-0.22]
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Table 2: Bulk flow parameters at Re=10000. The meaning of the symbols is the same as

in Tab. 1.

Simulation Cd CLrms lr -Cpb θsep St

VMS-LES WALE 1.22 0.476 0.87 1.15 87 0.20

DNS [24] [1.11-1.21] [0.45-0.57] 0.82 [1.06-1.20] – [0.19-0.21]

Experiments [24, 28, 17, 40, 41] 1.19 [0.38-0.53] 0.78 1.11 – [0.19-0.20]
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Table 3: Bulk flow parameters at Re=20000. The meaning of the symbols is the same as

in Tab. 1.

Simulation Cd CLrms lr -Cpb θsep St

VMS-LES WALE 1.27 0.60 0.80 1.09 86 0.19

LES [39] – – 1. [1.04-1.25] – –

LES [32] [0.94-1.28] [0.17-0.65] [0.7-1.4] [0.83-1.38] – –

Experiments [17, 33, 30, 31] [1.10-1.20] [0.4-0.6] – [1.03-1.09] – 0.194
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Table 4: Bulk flow parameters obtained at Re=20000 by varying some simulation param-

eters. See the caption of Tab. 1 for the meaning of symbols. The percent variation with

respect to the reference simulation in Tab. 3 is reported.

Simulation γ cell agglom. ∆Cd ∆lr ∆St -∆Cpb

VMS-LES WALE 0.2 1 level +2.2 % <1% -1.5 % +3.7%

VMS-LES WALE 0.3 2 levels +1.5% +1.5% + 1% +2.2%
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List of figures:

Figure 1: Comparison of the present results with the empirical functions

proposed in [17]; (a) Strouhal number; (b) r.m.s. of the lift coefficient.

Figure 2: Snapshot of vorticity modulus at Re=3900.

Figure 3: Snapshot of vorticity modulus at Re=10000.

Figure 4: Snapshot of vorticity modulus at Re=20000. (a) coarse grid; (b)

refined grid.

Figure 5: Mean pressure coefficient distribution at the cylinder at Re=3900.

Figure 6: Mean pressure coefficient distribution at the cylinder at Re=10000.

Figure 7: Mean pressure coefficient distribution at the cylinder at Re=20000.
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Figure 1: Comparison of the present results with the empirical functions proposed in [17];

(a) Strouhal number; (b) r.m.s. of the lift coefficient.
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Figure 2: Snapshot of vorticity modulus at Re=3900.
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Figure 3: Snapshot of vorticity modulus at Re=10000.

30



(a) (b)

Figure 4: Snapshot of vorticity modulus at Re=20000. (a) coarse grid; (b) refined grid.
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Figure 5: Mean pressure coefficient distribution at the cylinder at Re=3900.
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Figure 6: Mean pressure coefficient distribution at the cylinder at Re=10000.
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Figure 7: Mean pressure coefficient distribution at the cylinder at Re=20000.
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