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Abstract

In this paper, we propose a methodology for the shape optimization of flexible
wings. This methodology is based on a loosely coupling between a high-fidelity aeroe-
lastic analyser and an aerodynamic optimizer. The shape update is formulated in a
CAD-free representation, and a transpiration-based optimization is performed using an
exact gradient method with a single adjoint state. The iterative process yields optimal
shapes in the at-rest condition (i.e. with the aeroelastic deformations substracted).
This shape optimization methodology is applied to the reduction of the sonic boom
production while preserving the aerodynamic performances of wings, taking into ac-
count the aeroelastic deformations suffered by wings in flight conditions. With this
end in view, the objective function model contains both aerodynamic parameters and
an acoustic term based on the sonic boom downwards emission. Applications to the
optimization of a supersonic civil jet wing and the AGARD Wing 445.6 are presented.
The aeroelastic effects on the final optimized shapes are clearly apparent. We also
observe that the convergence towards the optimal shapes is obtained after few opti-
mization/aeroelastic coupling iterations.

1 Introduction

The design process of aircrafts still remains a challenging task due to the many interre-
lated requirements and constraints relative to loads, flutter, stress, dynamics, weight,
etc. that enter in such complex problems [1, 2]. While the complete design of aircraft
in aerospace industry is mainly achieved through analyses, tests, databases and skill
of engineers, numerical optimization represents a promising approach for reducing cost
and time of aerospace design process [3].
Numerous algorithms are proposed in the literature for optimizing the shape of aircrafts
under aerodynamic analysis. However, such optimal shape design methods should con-
sider structural weight and aeroelastic effects in order to be more relevant, specially for
industrial aerospace design investigations. Structural weight affects lift and drag, and
aeroelastic deformations change the aerodynamic shape [4]. In order to compensate
the aeroelastic effect, a normal industrial practice is to design shapes using a jig-shape
approach, that is considering a-priori the aeroelastic deformations so that the desired
cruise shape is produced. This can be done by substracting the aeroelastic deformation
from the original “at-rest” shape. The resulting shape can then be optimized in order
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to satisfy the other design objectives. At first sight, this simplifies the multidisciplinary
optimization process, for which any simplification is wellcome because of the dramatic
complexity of aircraft design (see the authoritative [5]). However, jig-shape corrections
are likely to fall short in the case of very long-range flight or high-speed one. A clear
example concerns supersonic jets, where a trade-off between subsonic and supersonic
regimes design has to be done since the aeroelastic response is different for both flow
regimes.
In this paper, we propose a shape optimization methodology of flexible wings, which
takes into account the aeroelastic deformations suffered by wings in flight conditions.
This optimization methodology can be useful to analyze flexible wing performances,
particularly when integrated to a multipoint shape optimization process involving
aeroelastic analyses. In this work, we consider two situations: at-rest or landed (no
forces act on the structure), and at cruise flight (steady aerodynamic forces act on the
structure).
A common practical strategy to solve aeroelastic shape optimization problems is the
Multidisciplinary Design Optimization (MDO) approach [4], “a methodology for the
design of systems where the interaction between several disciplines must be considered,
and where the designer is free to significantly affect the system performance in more
than one discipline”. In this kind of multidisciplinary approach, the optimization prob-
lem is coupled in a tightly manner, that is the coupled aerodynamic and structural
problems are solved simultaneously [6, 7]. Mainly, three alternative formulations can
be found in the literature according to the feasibility maintained at each optimization
iteration of an MDO procedure [6] : the Multidisciplinary Feasible approach (MDF),
the Individual Feasible approach (IDF), and the All at Once approach (AAO). In the
MDF alternative, the complete multidisciplinary analysis is performed at each itera-
tion of the optimizer. In the IDF approach, the aerodynamic and structural analyses
are maintained at each optimization iteration, but the interdisciplinary coupling is not
correct until optimization convergence. In the AAO approach, the individual analysis
discipline equations are guaranteed only at optimization convergence. A drawback of
the AOO and IDF alternatives is that no meaningful information may be availabe if
the optimization procedure is stopped short of convergence.
An important and difficult point in MDO approach, is the efficient computation of the
coupled model sensitivities. Its evaluation for aeroelastic coupling is a very complex
matter (see for instance [8, 9, 10]). This point is common to all MDO problems: the
need for evaluating the dependence between the different disciplines acting in the opti-
mization process, which is expressed through an objective function. For instance, in the
case of aeroelastic optimization problems, this function typically contains aerodynamic
performance or flight condition related terms (lift/drag, sonic boom production, an-
gle of incidence, etc.) and it may also contain structural ones (internal stresses, elastic
model parameters, etc.). In [10], this sensitivity evaluation is simplified using a reduced
model for the structural behaviour based on the Global Sensitivity Equations (GSE)
proposed in [11] and which allows to evaluate the total sensitivity derivatives linking
loads and deformations. Optimization methods based on GSE approach are also used
in many other works [12, 13, 14]. One drawback of GSE based approaches is that all
source codes must be open to analysis and modification in order to properly evaluate
the off-diagonal sensitivities, which renders the schemes less flexible and limits their
migration out of academic environments (see for instance [15]).

In this paper, we propose a different approach in which the aeroelastic response is
detached from the optimization model in a loosely coupled way. The cost function to
minimize does not include structure related terms, being the optimization performed
only on the aerodynamic side and the aeroelastic response computed from the loads
evaluated on the optimized shape. Therefore, following the aforementioned definition
this kind of approach cannot be strictly considered as MDO since it performs multidis-
ciplinary anaysis but only single disciplinary optimization. These approaches have the
interesting feature to propose, at a rather low cost and implementation effort, solutions
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for shape optimum design problems which take into account aeroelastic effects without
computing the coupled aerodynamic-structural sensitivities. Moreover, in the proposed
optimization algorithm, the aeroelastic analyser and the aerodynamic optimizer can be
used as black-boxes, which renders this approach very modular and flexible. For these
reasons, they are preferred for complex problems, as noted in reviews like [3, 16, 17].
Other loosely coupled schemes are also applied for instance in [3, 18, 6].

Particularly, the proposed optimization strategy is based on a global cycle which in-
volves an aeroelastic analysis and optimization iterations over the aeroelastic deformed
shape of the current cycle. The chosen strategy can be compared to the previously
described MDF approach in the sense that the complete multidisiplinary analysis is
performed before the optimization phase, so that stopping this coupled aerodynamic
optimization/aeroelastic process short of convergence could yield useful design improve-
ment. The aerodynamic optimizer, which was introduced in [19, 20], uses transpiration
conditions and a “CAD-free” approach (according to the terminology given in [21]) to
minimize the sonic boom downwards emission and to improve the aerodynamic prop-
erties of the aeroelastically deformed shapes. The aeroelastic response is in turn com-
puted with a loosely coupled scheme in which high-fidelity aerodynamic and structural
analysers are used on dynamic meshes, which follows [22].

The proposed shape optimization methodology is applied to the minimization of an
objective function which is not only based on aerodynamic parameters but also on a
sonic boom production term. Sonic boom optimization is of the utmost importance for
future supersonic civil jets (and already for present ones: Concorde flights over land
were worldwide banned due to sonic boom).

Sonic boom is the ground signature of the pressure shock produced by an aircraft
flying at supersonic speed [23, 24]. Any solid body moving at supersonic speed develops
a shock ahead that moves with it. For airplanes, this feature becomes a complex
shock system (Fig. 1). This ground signature is responsible for structural damage in
buildings, strong environmental impact, psychological effects on human beings in the
area, and so on. It is not possible to escape to sonic boom production (except for
no-lift bodies, which are not an issue of aircraft industry...) because lift force has to
be transmited to the ground. Many solutions have been proposed to reduce it directly
or to reduce its effects. In [19, 20] we have used an optimal shape design approach
to reduce what we call Sonic boom downwards emission (SBDE) defined as the
pressure gradient strength, measured as a volume integral inside a “box” right below
the aircraft, namely it corresponds to the near field pressure shock system. We have
shown in previous works [19, 20] how a reduction in the SBDE results can result in a
reduction of the ground signature, based in our own results and from the analysis of
other works.
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Figure 1: The sonic boom (simplified case of a N-wave). Sketch of near and far field shock
wave patterns of a supersonic aircraft.
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The remainder of this paper is organized as follows. Section 2 presents the three
modules used in the coupled aerodynamic optimization/aeroelastic process: the aeroe-
lastic analyser, the aerodynamic optimizer and the remeshing module. Section 3 de-
scribes the optimization/aeroelastic coupling strategy. Applications to the optimization
of a flexible supersonic civil jet wing and the AGARD wing 445.6 are presented in Sec-
tion 4. Finally, we draw some conclusions and perspectives in Section 5.

2 Shape optimization methodology: main op-

tions

The problem to solve is formulated as follows:

- the central parameter is the shape of the at-rest obstacle Γ, surrounding a struc-
ture, and surrounded by a flow. By “at-rest”, we mean that the flow pressure will
finally deform the elastic obstacle.

- as a function of Γ, the state of the system to optimize is the solution (q(Γ), w(Γ))
of a static coupled fluid-structure interaction. The variable q(Γ) denotes the displace-
ment of the structure, defining a deformed obstacle, and the variable w(Γ) is made of
the flow variables, defined on a domain surrounding the deformed obstacle.

- an objective functional is computed in terms of the parameter Γ through the state
variables q and w:

j(Γ) = J(q(Γ), w(Γ)) .

- the target is to find the optimal at-rest shape Γopt = Argmin j(Γ) subject to
some contraints which can concern shape or state variables.

We observe that both shape update and structural deformation influence the do-
main occupied by the flow. It can be of interest to be able to handle in a common
representation both shape updates and elastic obstacle deformations.
The first fundamental option of the proposed method is to formulate shape update
in a CAD-free representation, as in [21, 20]. In short, this means that the shape is
described by the position of all the vertices of a surfacic mesh. With this option, the
elastic deformation will be also described by an update of the position of the same
vertices (although they can be computed with a finite-element analysis relying on a
different mesh).
As a result, we can make the sum of a shape update and an elastic deformation.

We now analyse further the state system. It writes in the continuous case as a two
field problem, the first field is the structure, and the second one the fluid. However, if
the structure can be set in a Lagrangian framework, this should not be done for the
fluid. In the case of an Euler fluid model, a fixed-domain tranpiration-condition can be
considered, but our experience is that this is not enough accurate. Taking the option
of a variable mesh computed by an extra system, the state of the system becomes a
three-field coupled aeroelastic system [25] involving:

- equations of structural equilibrium,

- fluid mesh equations,

- steady Euler fluid equations.

For a given shape parameter this system defines a state and we derive a value of
the objective functional. In order to minimize (at least locally) this functional, we
consider the application of an exact gradient method. The best strategy is to compute
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an adjoint. Now this adjoint is necessarily a coupled three-field adjoint:

- structural adjoint equilibrium,

- fluid mesh adjoint equations,

- linearised-Euler adjoint equations.

We refer to [12] for such a tightly coupled optimization approach. Now, in many
application the tightly coupled method can be costly and complex to develop. The
main idea of the present paper is to exploit the following point:

In order to solve the aeroelastic optimization problem, it is enough to compute a
couple of shapes (γ1, γ2) such that :

(i)- γ1 is a shape optimizing the functional in the limit case where elastic deforma-
tions are neglected (rigid fixed body),

(ii)- optimal shape γ1 is the result of aeroelastic deformations represented by shape
γ2.

Each of these steps can need a two-field adjoint system. Step (ii) is an inverse prob-
lem for the aeroelastic coupling. This can be solved simultaneously with optimization
Step (i):

Find γ1 solution of (i) with a single-disciplinary optimization while computing at
the same time its undeformed shape γ2 with an aeroelastic analysis.

If the variable domain is implemented with a variable mesh, then the single-disciplinary
state system has to be formulated in terms of a coupled system of two fields, the flow
field, and the mesh deformation field. For Euler flows, a way to reduce it to a single
field state system, consists in representing the domain variation with a transpiration
condition. This approximation carries several disadvantages. The main disadvantage
is that the error is large when the domain variation is large. To overcome this, we
can either restrict to small domain variations, or to apply a fixed point transpiration-
deformation algorithm between:

- transpiration-based optimization,

- a remeshing by mesh deformation which produces a mesh fitted with the current
domain.

The output of this algorithm is two-fold, first a shape that is optimal with respect to
an infinitely-small transpiration perturbation, and, second, a flow that is computed on
this shape without any transpiration error. We can also notice that the transpiration-
based optimization step can be applied with an exact gradient method using a single
adjoint state, the adjoint to the Euler system.

Then we can imagine a loop involving an alternation between the aeroelastic anal-
ysis and the fixed point transpiration-deformation method.

For the sake of accuracy, we think it is mandatory to use deformation also into
the aeroelastic analysis (without any tranpiration step). Then, in the coupled algo-
rithm, we shall not couple a deformation-based aeroelastic phase with the above fixed
point transpiration-deformation optimization. Instead, without changing the final
optimal result, we can account for the deformation/remeshing subphase inside the
aeroelastic phase.
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The global algorithm then writes in short:

1- Start with an initial shape,

2- Aeroelastic analysis including remeshing,

3- Transpiration-based optimization.

4- If residuals of 2 and 3 are not small, go to 2.

REMARK 1: In an inverse identification of the non-deformed shape (jig shape
methods), the final shape may not satisfy some a priori specifications. In the proposed
approach, we can take into account some constraint on shape or a particular parame-
trization with CAD variables. It is enough to introduce this in the optimization phase.
But the whole algorithm turns on the CAD-free variables.

The next section is devoted to the practical implementation of this global algorithm.

3 A three modules scheme

The coupled optimization/aeroelastic problem involves two main phases, that repeat it-
eratively until a convergence criteria is achieved. Each phase corresponds to a different
module, a third module is used to link them together. To an aeroelastic analy-
sis phase follows an aerodynamic optimization one. The connecting module is
a remeshing tool, that translates the discretized surface corrections resulting from
the optimization phase into a modified fluid volumic mesh that feeds the aeroelastic
analysis module. In brief, the three modules that constitute the integrated aeroelastic
optimization scheme are:

• The aeroelastic analysis module: a loosely coupled fluid-structure solver
Φ(Ω, Σ).

• The aerodynamic optimization module: an aerodynamic optimizer Υ(n, Ω).

• The remeshing module: a remeshing tool Ξ(γ, Ω).

The inputs of all the previous modules contain Ω ∈ IR3×Nvol

. This notation is used
for the discretization of the complete fluid domain, where Nvol is the total number
of nodes in the volumic mesh. We will also distinguish the at-rest meshes from the
cruise ones, noted Ω̂ and Ω respectively. The former ones are equivalent to the shapes
at-rest, optimized or not. The cruise meshes are those following the shape aeroelastic
deformations, also optimized or not. This is very important, because by saving sepa-
rately optimization and aeroelastic modifications, the original shapes can be recovered
after the coupled optimization. In brief, we are interested in how the final shapes will

look like at-rest. An additional input item is Σ ∈ IR3×Nstru

which corresponds to the
structure grid The structural model is a linear one, like that of [12, 22]. Typically,
N stru << Nvol, which renders the structural problem much smaller and cheaper than
the fluid dynamics one. The grid notation is summarized as follows: the at-rest volu-
mic meshes are noted Ω̂, the at-rest structure meshes are noted Σ̂ and the cruise
volumic meshes are noted Ω. Let us depict each of the modules.
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3.1 The aeroelastic analysis module Φ(Ω, Σ)

Fluid-Structure Solver Φ(Ω̂, Σ̂)

Inputs:

Ω̂ ∈ IR3×Nvol

, at-rest fluid mesh

Σ̂ ∈ IR3×Nstru

, at-rest structure mesh

Output:

Ω ∈ IR3×Nvol

, cruise fluid mesh

Compute the deformed fluid mesh Ω, coming from the

fluid-structure coupling:

Ω = Φ(Ω̂, Σ̂)

The aeroelastic module, developed by Ch. Farhat’s group at the university of Colorado
at Boulder in cooperation with INRIA, is based on the methodology introduced in
[22, 25]. The solution of the coupled fluid-structure problem is computed by a staggered
solution procedure in time [26]. This scheme is also used in [12] for computing the
aeroelastic response of various wings in aeroelastic optimization problems. This kernel
yields a coupled fluid-structure static analysis based on a pseudo time advancing scheme
with two stages: a fluid evaluation stage followed by a structural computation, based
on the pressure distribution given by the preceding fluid simulation.

The problem of the motion of the fluid/structure interface that occurs in coupled
aeroelastic problems is addressed by solving the fluid equations on deformable dynamic
meshes. An Arbitrary Lagrangian Eulerian (ALE) [27],[22] formulation is used in order
to perform the integration of the fluid equations on a moving mesh. The coupled aeroe-
lastic problem to be solved can then be viewed as a three-field problem [25],[22]: the
fluid, the structure and the dynamic mesh which is represented by a pseudo-structural
system. The semi-discrete equations governing the three-way coupled problem can be
written as follows:

∂

∂t
(V (x, t)w(t)) + F

c(w(t), x, ẋ) = R(w(t), x)

M
∂2q

∂t2
+ f

int(q) = f
ext(w(t), x)

M̃
∂2x

∂t2
+ D̃

∂x

∂t
+ K̃x = Kcq

(1)

where t designates time, x the position of a moving fluid grid point, w is the fluid state
vector, V results from the finite element/volume discretization of the fluid equations,
F c is the vector of convective ALE fluxes, R is the vector of diffusive fluxes, q is
the structural displacement vector, f int denotes the vector of internal forces in the
structure, fext the vector of external forces, M is the finite element mass matrix of the
structure, M̃ , D̃ and K̃ are fictitious mass, damping and stiffness matrices associated
with the moving fluid grid and Kc is a transfer matrix that describes the action of the
motion of the structural side of the fluid/structure interface on the fluid dynamic mesh.

At the discrete level, a mesh conforming to the structure deformation is built by
moving the vertices with a pseudo-structural model [28]. Then the flow is advanced
on this mesh. More specifically, the compressible flow Euler equations are discretized
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by a Mixed Element-Volume method (see for instance [29]) which involves a second-
order space-accurate scheme based on Roe’s solver. Next, at the structural stage, the
pressure loads are applied to the structure and the resulting structural displacements
are computed. In this work, the structure is represented by a finite element model of a
flat plate embedded in the wing, which is a simplified model of the internal structure.
The displacements are finally transferred to the wet surface of the wing, producing a
deformed volumic mesh. After convergence towards the static aeroelastic response, this
volumic mesh is the output of the aeroelastic analysis module.

3.2 The aerodynamic optimization module Υ(n, Ω̄)

Aerodynamic Optimizer Υ(n, Ω̄)

Inputs:

n, number of optimization iterations

Ω ∈ IR3×Nvol

, cruise fluid mesh

Output:

γn ∈ IRNskin

, shape correction

Do nc = 1, n

– Compute state w(Ω) and adjoint Π(Ω), compute the

gradient g(γnc, w(Ω), Π(Ω))

– Compute the preconditioner P ∗

– Compute ρ (internal cycle)

– Update the shape correction:

γnc = γnc−1 − ρ P
∗

g(γnc, w(Ω), Π(Ω))

Next nc

The optimization algorithm is designed to reduce the sonic boom downwards emis-
sion while preserving some aerodynamic performances (basically lift and/or drag), see
[19, 20]. It is a CAD-Free based algorithm (these algorithms are also known as “dis-
crete approaches” [30]) : the design parameters space is set by the physical positions
of each of the skin discretization nodes placed on the shape to be optimized. Here,
the shapes derived from the iterative optimization process are characterized using a
transpired perturbation, noted as γ. A scalar which corresponds to a (small) dis-

placement in the normal direction is assigned to each skin node. Therefore γ ∈ IRNskin

,
where N skin is the number of skin nodes on the optimization’s target shape. In order
to handle a larger number of design parameters, an adjoint problem is built (see [31])
based on the computation of a discrete adjoint ([32], [33]). It is of paramount im-
portance that the optimization process has a mesh-size independant convergence for
dealing efficiently with large design problems. To this end, we apply the multilevel
preconditioner analysed and developed in [34] and successfully used in [19, 20], which
filters high-frequency oscillations typically seen in other CAD-free approaches.

The optimizer inputs are the number n of iterations and a given initial volumic
mesh Ω. As for the aeroelastic analysis module, the optimizer can be fed either with a
at-rest mesh Ω̂ or a cruise one Ω. We have designed the full scheme considering that the
input mesh of the optimizer is a cruise one Ω. Indeed, it is expected that the surface
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deformations related to the optimization will be smaller than those coming from the
aeroelastic coupling. The cruise mesh Ω is then optimized as if was a rigid body.

After n iterations, a shape correction γn is produced, which represents a displace-
ment of the boundary defining an optimum shape by means of the transpiration con-
ditions (see [35] for instance). For each iteration nc, the state w(Ω), its adjoint Π(Ω)
state and the cost functional gradient g(γnc, w(Ω), Π(Ω)) are sequentially computed. In
order to get w(Ω), the discretized compressible flow Euler equations are solved by
means of a Finite-Volume method and integrated using a second order space accurate
Roe upwind scheme. The cost functional gradient is then calculated. The original cost
functional was proposed in [19]. Here we have introduced some modifications to render
it more efficient. It evaluates both the aerodynamic properties and what we call sonic
boom downwards emission (SBDE):

j(γ) = α1 fD

2 + α2 fL

2 + α3

∫

Ω
B

∂p

∂xi

∂p

∂xi

dV (2)

where

fD =





CD − C
target
D

if CD ≥ C
target
D

0 otherwise

fL =





CL − C
target
L

if CL ≤ C
target
L

0 otherwise

in which α1, α2 and α3 are constants that allow to vary the relative weight between
the cost functional terms. These terms are related respectively to the aerodynamic
performance (drag, lift) and SBDE. At least α1 and α2 should be both non-zero in
order to avoid a trivial optimization problem. In practice, several refinements are
necessary. In particular, moment should be maintained and drag should be minimized.

The integration volume Ω
B

is a control box defined as a part of the computational
domain located below the airplane. The functions fD and fL are zero when the drag is
smaller than the target drag and when the lift is larger than the lift target, respectively.

The shape volume is conserved by sections, projecting the gradient on a volume
preserving space [19]. In order to avoid volume “migration” from one end to the other
for the optimized shapes, the whole volume can be divided in a certain number of
sections, in general transversal to the spanwise direction. Therefore, each node i can
be assigned to a section which contains N(i) of them. The volume is then preserved
individually for each section.

Although we prefer not to vary the incidence angle and therefore gaining lift only
by cambering, we have also implemented a variable incidence equation , based on that
of [36]. At each iteration n, the incidence angle θ is updated according to

θ
nc+1 = θ

nc −
1

2
f

nc
L . (3)

It takes profit of the linear dependence between the incidence angle and the lift coeffi-
cient for small incidences. It increases the incidence angle only when lift is lost between
two iteration steps, namely when cambering fails to recover it.
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3.3 The remeshing module Ξ(γ, Ω)

Remeshing Algorithm Ξ(γp
n, Ω

p
)

Inputs:

γp
n ∈ IRNskin

, optimized shape correction at coupling iteration p

Ω
p
∈ IR3×Nvol

, cruise fluid mesh at coupling iteration p

Output:

Ω
p

OPT ∈ IR3×Nvol

, optimized cruise fluid mesh at coupling iteration p

Move the input mesh Ω
p
according to γp

n:

Ω
p

OPT = Ξ(γp
n, Ω

p
)

The remeshing module works as an interface between the aeroelastic module and the op-
timization one. The aeroelastic module already includes the same remeshing algorithm
to take into account the shape deformations. They are transferred to the optimization
module as a modified volumic grid, called the cruise mesh Ω

p
for a coupling itera-

tion p, suitable to be the optimizer input. On the other hand, the optimizer’s output
is a shape correction γp

n defined on the surface nodes according to the transpiration
condition. Through a remeshing algorithm (e.g. [26] and [28]), a corrected volumic
grid is produced, which will be used in turn as input by the aeroelastic module. The
algorithm generates a new mesh by moving the nodes of the input mesh Ω

p
with a

pseudo-structural model, under the constraint that the new boundary nodes are moved
from the input ones according to the input shape correction γp

n.
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4 The integrated aeroelastic optimization scheme

Optimization/Aeroelastic Coupling Algorithm

Ω̂0 = initial (pre-optimized) at-rest mesh

Do p (coupling iterations)

– Compute the aeroelastic coupling from the at-rest fluid

mesh Ω̂p−1 and the at-rest structure mesh Σ̂, and obtain the

intermediate cruise mesh Ω
p
:

Ω
p

= Φ(Ω̂p−1
, Σ̂)

– Compute the optimum boundary correction γp
n by optimizing

Ω
p
, through n optimization iterations:

γ
p
n = Υ(n, Ω

p
)

– Compute the optimized cruise fluid mesh Ω
p

OPT:

Ω
p

OPT = Ξ(γp
n, Ω

p
)

– Evaluate the at-rest optimized fluid mesh, namely Ω̂p
OPT

:

∆Ω̂p
OPT = Ω

p

OPT − Ω
p

Ω̂p
OPT

= Ω̂p−1 + ∆Ω̂p
OPT

– Set Ω̂p = Ω̂p
OPT

Next p

As shown in the box above, the integrated scheme works through an iterative process
that links at each iteration p the three modules (Φ, Υ, Ξ). There are two nested iterative
cycles: a global coupling cycle and a nested optimization cycle. In the coupling
cycle, the Aeroelastic Module Φ evaluates the shape’s structural response to the surface
pressure distribution, i.e. it computes the cruise configuration from the at-rest one.
Then, the Optimization Module Υ modifies the cruise shape coming from Φ by per-
forming n optimization iterations. That is to say, it optimizes the cruise configuration
considering the wing as rigid and only under SBDE and aerodynamic constraints. The
Remeshing Module Ξ is then applied to transform the transpired shape modifications γ

in a fluid volumic grid. The final update is done by substracting the current structural
deformation in order to obtain the new optimized at-rest grid, which is in turn given
to the Aeroelastic Module to start a new coupling iteration p + 1. For a faster conver-
gence, the new iteration takes as initial geometry for the aeroelastic analysis the newly
optimized at-rest configuration plus the aeroelastic deformation of the precedent step.

The fact that, on one side the aeroelastic analyser is based on an ALE formulation
and dynamic meshes and on the other side the aerodynamic optimizer uses transpiration
conditions and so fixed meshes, is not a weakness of the proposed approach. On the
contrary, we show in this way that a viable optimization/aeroelastic coupling procedure
can be built even when an aeroelastic analyser and an aerodynamic optimizer do not
share the same description of the fluid equations, leading to handle dynamic and fixed
computational grids in the coupling process.

In [12], an aeroelastic optimization scheme is divided in three stages: optimization,
design and analysis. In our scheme, optimization and design stages are fused in one
because the CAD-free optimization output is already an aerodynamic shape with the
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required characteristics.
¿From the implementation side, we have observed that, at each coupling iteration

p, it is very advantageous to keep the optimization modifications corresponding to it-
eration p − 1 to evaluate the optimized γp

n = Υ(n, Ω
p
). In this way Υ’s input Ω

p

corresponds to the p − 1 optimized shape with the corresponding p aeroelastic defor-
mation. The starting point for the current Υ cycle is therefore closer to the following
optimized state.

After n optimization iterations that introduce surface modifications γn through
transpiration conditions, the Remeshing Module Ξ is called to deform the whole mesh
while keeping the original topology. Then, Φ and Υ can be linked. As a bonus, their
output mesh deformations can be saved independently at each iteration to keep track
of the separate effects of aeroelasticity and optimization. This is particularly important
in order to see what is the final shape of the at-rest optimized wing. The number of
optimization iterations n can vary in order to improve the scheme’s turnaround time.
Indeed, a complete optimization convergence is not necessary in the first full scheme
cycles.

By construction, the method that we propose seeks an optimal shape for the coupled
fluid-structure system. Any fixed point of the algorithm will satisfy the optimality
condition for the deformed shape. Furthermore, this optimality condition is checked
with a mesh following the deformed geometry, and with, at convergence, a vanishing
transpiration displacement. This implies that the transpiration approximation has
only an influence on the optimality fulfilled condition, and not on the flow evaluation.
Indeed, the flow evaluation does not suffer from transpiration inaccuracies since, with
a zero displacement at convergence, the transpiration condition reduces to the usual
slip boundary condition.

5 Numerical Examples

The scheme behavior is evaluated through two optimization problems: the delta wing
of a Supersonic Business Jet (SBJ) projected by Dassault Aviation, and the AGARD
wing 445.6.

The two main scheme features on which we focus are the following ones. On one
hand, the scheme must be convergent in the sense that, as the coupling iterations go
on, the geometries produced should converge to a limit shape. Both Φ and Υ deform
shapes: Φ evaluates the structural response to a stationary flow solution and Υ corrects
the surfaces after a given minimization objective. The goal is that, at the end, each
of Φ and Υ must not undo what the other module has done before. A priori, this is
not an obvious point. The wing downwards twist (the washout) in flight produces (i) a
lift loss and (ii) a SBDE reduction. Then, the optimization process will try to recover
from (i) while keeping an eye on (ii). Point (i) could be compensated by two means:
cambering and incidence angle variation. But of course, this shape modification will
have effects on the following structural response. We will show to which extent this
combined effects are entangled. On the other hand, it is obvious that the scheme must
be useful. What is the point in including the aeroelastic effects in an aerodynamic
and sonic boom production optimization process? Clearly, both torsion and flexion do
have an effect on the aerodynamic performance. The point is to assess its effect on the
reduction of the sonic boom production.

For both applications,we first carry out some optimization iterations on the rigid
wings, namely without aeroelastic deformations. The optimized (rigid) wings illustrate
the performance of our aerodynamic and sonic boom production optimizer and its
ability to reduce the SBDE while keeping the aerodynamic properties. As a second
stage, we start a coupled aerodynamic optimization / aeroelastic analysis computation
taking these initial geometries as initial condition.
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Figure 2: Dassault Aviation’s Supersonic Business Jet. Side and upper views.

5.1 Dassault’s Aviation Supersonic Business Jet wing

This first application concerns the SBDE reduction of the wing of a Supersonic Business
Jet (SBJ) projected by Dassault Aviation, whom we are indebted for providing the
geometry (Fig. 2). The aircraft isolated wings are depicted in Fig. 3.

As pointed out in our previous works, we proceed by optimizing the wings separately
from the plane, as a first step. Then, we integrate the results to the full plane. In this
paper, we will show the result of the optimization of the aircraft isolated wings depicted
in Fig. 3.

Figure 3: Dassault Aviation’s Supersonic Business Jet. Left: Isolated wing discretization,
showing the cross-sectional shapes (airfoils) considered (the thick horizontal lines): outboard,
mid and inboard. Right: structural mesh (flat plate finite element model).

The baseline wings provided by the constructor for this generic geometry are hori-
zontally symmetrical, with two different sweep angles of 17◦ and 38◦ respectively, and
a rather smooth transition between them. The Mach angle for M = 1.8 is around
34◦. Then, while the inboard part of the wings falls within the Mach cone (viz. [37]),
producing a lower wave drag, the outboard wing cuts through the Mach cone. As a con-
sequence, the sharpest pressure gradients are produced ahead of the outboard portion
of the wing, being the main source of SBDE. The wing volumic mesh corresponding to
Fig. 3 is made of 65418 tetrahedra (12963 nodes) and its surface mesh contains 4692
triangles (2408 nodes, which is the number of design parameters). The Mach number
is set to 1.8 and the initial incidence angle is 3◦.

For the aeroelastic simulations, we use a thin plate finite element model of the
wing which contains 1286 triangular shell elements (Fig. 3, right). The properties of
the material (Young modulus, Poisson coefficient, thickness and density) have been
calibrated so that realistic displacements, eigenmodes and eigenvalues are recovered.
This simple structural model is sufficient for our purpose since, in our design process,
we are interested by taking into account the aeroelastic effect but not the structural
optimization of the wing.
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5.1.1 Initial rigid optimization

The double delta wing renders optimized shapes that are very different than those of
more simple forms. The fact is that the wing inboard produces a much lower pressure
gradient due to its sweep angle, which is smaller than that of the Mach cone. Therefore,
while the shape modifications that reduce the SBDE tend to focus on the outboard
half, the lift can be recovered by cambering the inboard region. This effect is naturally
developed by our algorithm. After optimization, the wing profiles at different locations
in the wing-span direction show different forms, depending on its position relatively to
the fuselage. Fig. 4 shows the three wing cros-sectional cuts of Fig. 3, left. After 30
optimization cycles and using a volume preserving projected gradient (VPGP)
strategy [19] that preserves the volume per-wingspan-section (40 sections in this case),
the outboard profile develops a flattened downwards half and a sharp leading edge. On
the other hand, in the inboard one this effect is much less evident. The mid-section
profile shows a combination of those effects, stronger perhaps for the SBDE reduction
than for the lift recovery. Some very slight wiggles appear on the optimal shapes. that
would be easily mastered with a smoother parametrization as in [38].

Fig. 5 illustrates the SBDE reduction, as the pressure distribution in a plane below
the wing. Note the pressure peak location for the original wings. As addressed in [19],
this is a strong reason for not using a propagation code, in order to evaluate the ground
pressure signature, that only considers as input what happens in a line contained in the
aircraft symmetry plane in order to evaluate the ground pressure signature . Unless a
refined volumic grid is used, adapted to follow the strong shock produced below the wing
and out of the symmetry plane, the pressure signature so computed will be only that
of the fuselage. This point leads us to believe that this kind of propagation methods
present an important drawback: they are strongly sensitive to the position of the line
used to take the input pressure distribution.

5.1.2 Optimization/Aeroelastic coupling

We proceed to compute the coupled optimization from the optimized rigid wing as
initial geometry. As said above, the flexion and torsion of the delta wing is stronger
in the outboard part, which is in turn responsible for the largest amount of SBDE
production. In fact, this deformation reduces it. Fig. 7 shows the evolution of different
parameters with the coupling iterations. Each of the curves is plot from the values taken
at the optimization iterations performed by the aerodynamic optimizer. These plots
clearly illustrate the effect of aeroelasticity. The rigid wing optimization is labelled
as the “Coupling iteration 1”. This first iteration carries the heaviest part of the
optimization, because it runs the full way from the original wing to the optimized
one. Approximately after 20 optimization iterations, the lift is stabilized at the target
value and the SBDE cost (defined as the third term of cost functional definition (2)) is
reduced by almost 40%. As said above, the incidence angle does not change because
cambering is enough to recover the lift.

The next coupling iteration takes into account the aeroelastic deformation suffered
by the optimized rigid wing. The convergence is in this case much faster. In five
optimization iterations, the lift and SBDE terms of the cost functional stabilize. The
lift is in this case regained by changing the incidence. In any case, this parameter is
also stable after five iterations. This optimization stage has to recover about 20% of
the lift, lost because of the aeroelastic deformations. On the other hand, the SBDE
has accordingly been reduced. Then, the objective is double: to recover the lift up to
the value of the rigid optimized one and to further reduce the SBDE of the deformed
wing. The SBDE reduction will not be so intense because most of the work has been
done in the initial optimization, namely the rigid one. Basically, it can be said that
the rest of the work consists in recovering the lift under the SBDE constraints. The
next 4 coupling iterations have progressively smaller effect, converging to the lift target,
effectively reducing the SBDE and stabilizing the incidence angle around 3.1◦.

On the aeroelastic analysis side, we have observed that the loosely coupled scheme
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Figure 4: Dassault Aviation’s Supersonic Business Jet. Non-coupled optimization of a rigid
wing. From left to right and from top to bottom: inboard, midboard and outboard aircraft
wing airfoils.

Figure 5: Dassault Aviation’s Supersonic Business Jet. Non-coupled optimization of a rigid
wing. Pressure distribution for a plane below the original and optimized wings, left and
right respectively.

we used allows to obtain a convergent displacements norm, as seen in Fig. 6. We name
||MAD|| the Mean Aeroelastic Displacement Norm, that is to say the L2 norm
of the aeroelastic displacements divided by the number of the moving surface nodes,
which is equal to the dimension of the optimization parameters space. In the same
figure, we have also plotted the ||MOD||, the Mean Optimization Displacements
Norm to see the scheme convergence and also to compare it with the ||MAD||.
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Figure 6: Dassault Aviation’s Supersonic Business Jet. Convergence of the coupled algo-
rithm. Evolution of the mean aeroelastic displacements (||MAD||) and the mean optimiza-
tion displacements (||MOD||) with the coupling iterations.
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Figure 7: Dassault Aviation’s Supersonic Business Jet. Convergence of the coupling algo-
rithm. Evolution of different parameters with the coupling iterations.

The three optimized wing cross-sectional shapes of Fig. 4 are again shown in Fig. 8,
but now including the plots corresponding to the coupling problem, in the “at-rest” and
“cruise” configuration. Recall that the configuration “at-rest” is constructed from the
“cruise” one (optimized or not) by substracting the aeroelastic displacements. In this
way, the airfoil at-rest compares to the rigid one. The optimized inboard airfoil now
presents a larger cambering to gain part of the lift lost by the wing torsion and flexion.
The flattened down side is due to the combination of the upper side spread-out (because
the volume must be conserved locally for the corresponding section) and the SBDE
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Figure 8: Dassault Aviation’s Supersonic Business Jet. Optimized flexible wing. Clockwise:
inboard, mid-wing and outboard cross-sectional cuts.

reduction. At this wing location, the aeroelastic deformation is very small. The middle
section is much more influenced by the deformations, and the negative twist (smaller
angle of attack at the tip than at the root of the wing) becomes apparent. ¿From
the comparison of both at-rest airfoils, we observe how the method has compensated
the twist effect (the wrinkled look is due to both the cutting process and the mesh
coarseness). This fact is even clearer in the outboard airfoil. The optimized down
sides for both the cruise-coupled and the rigid problems present almost parallel shapes.
Consequently, the at-rest coupled-optimized airfoil is very different from that of the
rigid problem.

5.2 AGARD wing 445.6

Figure 9: AGARD wing 445.6. Surface grid (left) and the three cross-sectional cuts.
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We consider now the AGARD wing 445.6 whose geometry is described in details in
[39]. Flows around this structure have been measured for Mach as high as 1.14.

Due to the high flexibility of the weakened structural model 3 of [39], this second
calculation represents a relevant test case for evaluating the method behavior in the
case of larger displacements, from the fluid standpoint.

¿From the structural standpoint, the linear structural analysis is chosen identical
to the one applied in the previous case. However, for a real world application, the
non-linear approximation would be more appropriate.

The three dimensional unstructured CFD mesh contains 9505 nodes and 43973
tetrahedra. The wing surface (Fig. 9) to optimize contains 5488 triangles and 2782
grid points, which is in turn the dimension of the parametrization space according to
our CAD-free approach. The Mach number is set to 1.8 and the initial incidence angle
is 3◦.

For the aeroelastic analysis, the structure of the wing is discretized by a thin plate
finite element model which contains 800 triangular composite shell elements and is
based on the information given in [39].

5.2.1 Initial rigid optimization

In this first step, we have performed 20 optimization iterations. As in the previous
application, this does not exhaust the optimization process for the rigid wing, but
provides a good initial geometry for the coupled case. We have applied the VPGP
strategy defined in Sec. 4.1.1, in order to keep constant the volume of 60 wingspan
sections. Unlike the delta wing, the rigid AGARD wing produces basically the same
shock strength all along its length. Therefore there is no outboard-inboard volume
migration. However, this is very important for the aeroelastic case, and therefore the
VPGP-by-sections solution is always adopted. We let the incidence angle vary according
to (3), although for the rigid optimization the optimizer manages to preserve the lift
only by cambering the wing. The α weight parameters in the cost functional (2) are
set to α1 = 10.0, α2 = 100.0 and α3 = 1.0. The target lift and drag coefficients are
respectively that of the original wing and half of it, evaluated at the initial incidence
angle.

Fig. 10 (left) shows the optimized wing mid-section compared to the original one.
Fig. 11 illustrates the effect of optimization on the SBDE by depicting the pressure
distribution in a plane below the wing. Fig. 10 (right) shows the pressure along a line
below the wing mid-section (Fig. 9, right). Although the final converged state is not yet
completely reached, because this first rigid optimization is no more than a first iterate
for the coupled process, the tendency can be clearly seen. By minimizing the SBDE,
the resulting shapes have flattened downwards faces and sharper leading edges. The
SBDE, measured as the integral of the pressure gradient below the wing, has diminished
by rounding the main pressure peak and the following undershot. As reported in our
previous works, this has the combined effect of (i) reducing the pressure impulse, (ii)
reducing the initial pressure peak and (iii) introducing a time delay in the pressure
rise. As shown in [19], this fact can be highlighted by computing the Euler flow around
two 2-D profiles corresponding to the original and the optimized (rigid) wings.

5.2.2 Optimization/Aeroelastic coupling

The optimized rigid wing of the previous section is taken as an initial geometry for the
coupled process.

Due to the imposed structural properties, this wing undergoes large and rather un-
realistic displacements under the action of such a supersonic flow. Though a non linear
analysis would have been more appropriate, the structural discretization is achieved
by a linear finite element approach. Indeed, the main purpose of this application is to
assess the method behavior, in particular its robustness and convergence, in the case
of large displacements.
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Figure 10: AGARD wing 445.6. Non-coupled optimization. Left, original and optimized
(rigid) mid cross-sectional shapes or airfoils. Right, pressure below the original and the
optimized rigid airfoils.

Figure 11: AGARD wing 445.6. Non-coupled optimization. Pressure distribution for a plane
below the original and optimized (rigid) wings, left and right respectively.
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Figure 12: AGARD wing 445.6. Evolution of the mean aeroelastic displacements (||MAD||)
and the mean optimization displacements (||MOD||) with the coupling iterations.

Fig. 12 shows the evolution of the mean aeroelastic displacement norm and the mean
optimization displacement norm. As in the previous case, these norms are stabilized
after some coupling iterations. The plots in Fig. 13 show the effects of the aeroelastic
coupling in the optimization process. As for delta wing, the “target” lift is that of the
original wing at initial incidence angle 3◦. The curve labelled as “Coupling iteration
1” corresponds to the initial rigid wing optimization. After each of the 9 coupling
iterations, the target is progressively reached. This is done by the combined effect
of cambering and incidence angle variation. The final incidence angle is almost three
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Figure 13: AGARD wing 445.6. Evolution of different parameters with the coupling itera-
tions.

times as much as the initial one. This is the consequence of the large lost in lift due
to the wing aeroelastic twist. The importance of this strong twist is obvious through
the SBDE evolution (Fig. 13, bottom). Additionally to the lift loss, the aeroelastic
twist produces a strong reduction in SBDE, independently of the deformation coming
from the optimization method. Then, the algorithm tries to recover the lift while
keeping the SBDE reduction. It is obvious that for this highly deformable wing, a
much larger incidence angle is needed in order to recover the lift, which rises in turn
the SBDE production. This results in a final SBDE that is very close to that of the
rigid optimized wing, with a rather different at-rest geometry. In any case, the relative
weights of these effects are controlled by the α’s set. We have preferred to keep them
equal to those of the delta wing for comparison purposes. The high flexibility of the
wing at this supersonic regime is seen in Fig. 14.

6 Concluding remarks

In this paper, we have proposed a methodology for the shape optimization of flexible
wings. This methodology is based on a two-step iterative procedure. At each cou-
pling iteration an aeroelastic analysis is followed by an aerodynamic optimization. The
second step takes the aeroelastic deformed shapes produced by the first step to com-
pute the optimized shape. Both steps are connected through a controled deformation
of the fluid volumic mesh in order to conform it to the optimized surface. The two-
step iteration is repeated until the target is reached. The aeroelastic analysis is based
on a classical loosely-coupled method which involves high fidelity aerodynamic and
structural analysers. The shape optimizer is a “CAD-free” approach combined with
a multi-level preconditioner which has good smoothing properties and transpiration
conditions which characterize the shape optimization modifications.
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Figure 14: AGARD wing 445.6. Optimized wing. Clockwise: inboard, mid-wing and out-
board cross-sectional cuts.

In contrast to a fully coupled optimization algorithm, the management of a three-
field state system and thus a three-field adjoint one is avoided. On the aeroelastic
side, no sensitivities are computed and a well-known fluid/structure interaction solver
is virtually used as a black-box for performing the aeroelastic analysis. We have ob-
served a convergent behavior of the scheme, which is reached after no more than 10
optimization/aeroelastic coupling iterations.

The proposed shape optimization methodology is applied to the reduction of the
sonic boom production while preserving the aerodynamic performances of wings, taking
into account the aeroelastic deformations suffered by wings in flight conditions. First
a double-delta wing for a projected supersonic business jet is optimized in order to re-
duce its sonic boom downwards emission. The optimized shapes present very different
transversal sections, according to their relative wing-span position. The influence of the
aeroelastic deformations on the aerodynamic and sonic boom production optimization
process is apparent. This fact can not be neglected, particularly when different flight
regimes of a supersonic aircraft are considered. The aeroelastic effect is clearly seen
when both rigid and coupled “at-rest” optimized shapes are compared. As a second
application, the AGARD 445.6 is considered in order to demonstrate the robustness of
the proposed optimization/aeroelastic coupling algorithm in the case of larger defor-
mations. As for the delta wing, we also observe the aeroelastic effects on the coupled
optimized shape.

The optimized shapes so-obtained are evaluated with the corresponding mesh de-
formation, which means that the transpiration approximation does not influence the
evaluation of the flow and its performances, but only the identification of an optimum.

Since the shape at rest remains the central variable of the process, our algorithm
extends to multi-point optimization, while traditional jig-shape methods do not apply
well to that context.
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We believe that the proposed methodology is also well-adapted to the cooperation
between departmental tools in industrial context. Methods of this kind open the door
to accurate multipoint shape optimization thanks to a complete, but not communi-
cation-intensive coupling, in a multidisciplinary cooperative optimization.
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