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Abstract Automatic Differentiation by program transformation usesstatic data-
flow analysis to produce efficient code. This data-flow analysis must be adapted for
parallel programs with Message-Passing communication. Starting from a context-
sensitive and flow-sensitive data-flow analysis scheme initially devised for sequen-
tial codes, we extend this scheme for parallel codes. This extension is independent
of the particular analysis and does not require a modification of the code’s internal
representation, i.e. the flow graph. This extension relies on an accurate matching of
communication points, which can’t be found automatically in general, and thus new
user directives prove useful.

Key words: Data-Flow Analysis, Activity Analysis, Automatic Differentiation,
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1 Introduction

Static data-flow analysis of programs is necessary for efficient automatic transfor-
mation of codes. In the context of Automatic Differentiation (AD), most of the clas-
sical data-flow analyses prove useful as well as specific analyses such as activity and
TBR analyses [5]. Parallel programs with message-passing pose additional prob-
lems to data-flow analysis because they introduce a flow of data that is not induced
by the control-flow graph (“flow graph” for short). We proposean extension to data-
flow analysis that captures this communication-induced flowof data. This extension
applies in the very general framework of flow-sensitive analysis that sweep over the
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flow graph, possibly using a worklist for efficiency. This extension makes no partic-
ular hypothesis on the specific analysis and only introducesnew artificial variables
that represent communication channels, together with a generic modification of the
flow-sensitive propagation strategy.

2 Context-sensitive and Flow-sensitive Data-Flow analysis

To reach the accuracy that is necessary to generate an efficient transformed program,
data-flow analysis should be context-sensitive and flow-sensitive. Context sensitiv-
ity operates at the call graph level. In a context sensitive analysis, each procedure
uses a context that is built from the information available at its call sites. Even when
making the choice of generalization, which means using onlyone context that sum-
marizes all call sites, this context allows the analysis to find more accurate results
inside the called procedure. Flow sensitivity operates at the flow graph level. In a
flow-sensitive analysis the propagation of data-flow information follows an order
compatible with the flow graph, thus respecting possible execution order.

Data-flow analysis works by propagating information through call graphs and
flow graphs. Call graphs may be cyclic in general, due to recursivity. Flow graphs
may be cyclic, due to loops and other cyclic control. Completion of the analysis
requires reaching a fixed point both on the call graph and on each flow graph. The
most effective way to control this fixed point propagation uses worklists [7].

In a näıve implementation a data-flow analysis of a calling procedure would re-
quire a recursive data-flow analysis of each called procedure, before the analysis of
the calling procedure is completed. This would quickly cause a combinatorial ex-
plosion in run-time and in memory. To avoid that, it is wise tointroduce a “relative”
version of the current analysis that summarizes the effect of each called procedure
on the information computed for any calling procedure. For instance in the case of
Activity analysis, a variable is active if it depends on an independent input in a dif-
ferentiable way (it is “varied”) and the same time it influences the dependent output
in a differentiable way (it is “useful”). This results in twodata-flow analyses, both
top-down on the call graph: The “varied” analysis goes forward on the flow graph,
and the “useful” analysis goes backward on the flow graph. Whenany of the two
reach a procedure call, we don’t want to call the analysis recursively on the called
procedure. Instead, we use a “differentiable dependency” summarized information
that relates each output of the called procedure to each of its inputs on which it de-
pends in a differentiable way. This relative information occupies more space than
plain activity, typically the square of the number of visible variables, but it is eas-
ily and quickly used in place of the actual analysis of the called procedure. It takes
a preliminary data-flow analysis to compute this “dependency”, which is this time
bottom-up on the call graph. This strategy may have a cost: the summarized relative
information may be less accurate than an explicit data-flow analysis of the callee. On
the other hand combinatorial behavior is improved, with an initial bottom-up sweep
on the call graph to compute the relative information, followed by a top-down sweep
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to compute the desired information. Each sweep analyses each procedure only once,
except for recursive codes.

3 Impact of Message-Passing on Data-Flow analysis

The above framework for data-flow analysis is originally designed for sequential
programs. It does not handle message-passing communication, which introduces a
new flow of data unrelated to the flow graph, and that may even apparently go back-
wards the static flow graph, e.g. in a SPMD context, from asend to a receive
located several lines before. See also in Fig. 1 the data-flowfrom MPI SENDto
MPI RECVthat is unrelated to the static flow graph. The propagation algorithm
must be extended to capture this additional flow of data. Little research has been
done in the domain of static analysis of message-passing programs [3]. Bronewtsky
[1] defines parallel control-flow graphs, an extension of flowgraphs that is the finite
cross-product of the flow graphs of all the processes. This a theoretical framework
useful for reasoning about analyses but that does not easilylend itself to implemen-
tation in our tools.

In the context of AD, several methods have been tried to solvethis problem.
Odyss ée [2] introduced fictitious global communication variables but let flow
graph propagation unchanged. This alone cannot capture theeffect of communi-
cation that goes against the static flow graph order, and may give incorrect results.

A more radical method is to assign the analysis’ conservative default value to all
variables transmitted through message-passing. This leads to degraded accuracy of
data-flow results and a less efficient differentiated code that may contain unneces-
sary derivative computation, useless differentiated communications, or useless tra-
jectory storage in adjoint mode. This can be compensated partly with user directives
understood by the AD tool.

Strout, Kreaseck and Hovland [10] use an “interprocedural control-flow graph”
and augment it with communication edges between possiblesend /receive pairs
[9]. Heuristics keep the number of communication edges low,based on constant
propagation and theMPI semantics. This extended data-flow analysis improves the
accuracy, e.g. for activity analysis. However these extra edges in the flow graph
correspond to no control and have a special behavior: only the variables involved in
the communication travel through these edges.

4 Data-Flow analysis with Flow Graph local restart

We believe that introducing new global variables to represent communication chan-
nels as in [2] is an element of the solution. A channel is an artificial variable that
contains all values currently in transit. However to cope with communication that
goes against the flow graph we prefer to modify the data-flow propagation algorithm
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rather than modifying the flow graph itself. The arrows of theflow graph really rep-
resent an execution order, and adding arrows for communication may blur this useful
interpretation. Note that adding flow arrows requires an interprocedural control-flow
graph. In either case, modifying the propagation algorithmor modifying the graph it
runs on, this can be done in a way mostly independent from the particular analysis.

The run-time context in which a given procedure is executed contains in particu-
lar the state of the various channels. During static data-flow analysis the context in
which a given procedure is analyzed is an abstraction of thisrun-time context, only
it represents several actual run-time contexts together. Therefore this static anal-
ysis context also includes the information on channels. Whenanalysis of a given
procedure reaches a communication call that changes the status of a channel, this
change must be seen by all processes running in parallel and therefore possibly by
all procedures of the code. In particular the static analysis context for the given
procedure must change to incorporate the new channel status, and the analysis it-
self must restart from the beginning of the procedure. However this restart remains
local to the given flow graph, as shown by figure Fig. 1. The effect on the other
procedures’ analysis will be taken care of by the “relative”version of the analysis.
Thus this restart, illustrated by Fig. 1, remains local to the current flow graph: after
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Fig. 1 Flow Graph local restart after communication, in the case of the “varied” analysis

theMPI SENDis executed with a variedx , the artificial variablec that represents
this particular communication channel becomes varied. Thechanging “varied” sta-
tus ofc restarts the current propagation from the entry of the flow graph. This new
sweep, when reaching theMPI RECVthat reads the same channel, makesy varied
in turn. In the frequent case when propagation order of the data-flow analysis is
done with a worklist, the restart is achieved by just adding the entry block on top
of the worklist, or the exit block in case of a backward propagation. This results in
the framework Alg. 1, common to any forward data-flow analysis. Navigation in the
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Algorithm 1 Extension of forward analysis to message-passing communication
Given entryInfo:
01 ∀ Block b, in(b) := /0; out(b) := /0
02 out(EntryBlock) := entryInfo
03 worklist := succ(EntryBlock)
04 while [worklist 6= {ExitBlock}]
05 b := firstof(worklist) //i.e. the element with lowest dfst index
06 worklist := worklist\{b}
07 i := ∪p∈pred(b) out(p)
08 o := propagate i through b
09 if [o/channels> out(b)/channels
10 && out(EntryBlock) /> o/channels]
11 out(EntryBlock) := out(EntryBlock)∪ (o/channels)
12 worklist := worklist∪ succ(EntryBlock)
13 if [o > out(b)]
14 out(b) := o
15 worklist := worklist∪ succ(b)
16 exitInfo :=∪p∈pred(ExitBlock) out(p)

flow graph only needs the EntryBlock, the ExitBlock, plus thesuccessor (succ) and
predecessor (pred) sets for every block of the flow graph. Blocks are labelled with
their dfst index, which is such that the index of a block is most often lower than the
index of its successors. Actual propagation of the data-flowinformation through a
given block is represented by the analysis-specific “propagate” operation. Operation
“o/channels” builds a copy of data-flow information o that concerns only communi-
cation channels. Alg. 1 lines01-08and13-16 is the usual sequential data-flow analysis.
Our proposed extension is exactly lines09-12.

Consider now the call graph level. During the bottom up computation of the “rel-
ative” analysis, every individual procedureQis analyzed with an extended algorithm
following Alg. 1, therefore taking care of channels. The relative information that is
built thus captures the effect of the procedure on the channels. For instance, the rel-
ative “differentiable dependency” information for the procedureQ of Fig. 1 will
contain in particular that the output values of both y and channel c depend on the
input values of x and of channelc. During analysis of a procedureP that callsQ,
analysis of the call toQ may modify the information attached to the channels ac-
cordingly. In other words, analysis of the call toQhas an effect similar to analysis
of a call to an elementary message-passing procedure. This triggers the local restart
mechanism of Alg. 1 at the level of the flow graph ofP, and eventually leads to
completion of the analysis inside procedureP.
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5 Performance discussion

We will discuss the consequences of introducing the Flow Graph local restart on
termination and execution time of the analyses. These questions partly depend on
the specific data-flow analysis, and each analysis deserves aspecific study. How-
ever, we saw that our proposed extension to message-passingis essentially done on
the general analysis framework Alg. 1 so that some general remarks apply to any
analysis.

About termination, the argument most frequently used is that the data-flow in-
formation, kept in the variables in(b) and out(b) for each block b, belong to a set of
possible values that is finite, with a lattice structure wrt the partial order> compat-
ible with the union∪. If one can show that propagation for the particular analysis
represented by line08:

o := propagate i through b
is such that propagation of a larger i returns a larger o, thentermination is granted.
This argument is still valid when we introduce the local restart. Every local restart
makes out(EntryBlock) grow, so that restarts are in finite number and the process
terminates.

The local restart clearly affects the execution time of the analysis. For each prop-
agation through one flow graph, the execution time on a non parallel code depends
on its nested loop structure. Classically, one introduces anotion of “depth” of the
flow graph which measures the worst-case complexity of the analysis on this graph.
On well-structured flow graphs, one can show that this “depth” is actually the depth
of the deepest nested loop. On a code with message-passing, extra propagation is
needed when the status of a channel variable changes. When theapproach chosen to
represent communication is to add extra flow edges, the “depth” of the flow graph
changes [6]. When these new edges make the graph irreducible,evaluation of the
depth even becomes NP-hard in general. Nevertheless, a reasonable rule of thumb is
to add the number of communication edges to the nested loop depth to get an idea of
the analysis complexity increase. With our approach, whichadds no communcation
edge but rather triggers restarts from the flow graph EntryBlock, the complexity ef-
fect is very similar. Local restart can occur once for each individual channel, so that
the “depth” is increased by the number of channels. Not surprisingly, an increased
number of channels may yield more accurate analysis results, but may increase the
analysis time. In practice, this slowdown is quite tolerable. To be totally honest,
local restart incurs some redundant propagation compared to [10]: since restart is
done from the EntryBlock rather than from the destinations of communication, it
goes uselessly through all blocks between the EntryBlock and these destinations.
However, this does not change the degree of complexity.

For propagation through the call graph, though, the number of times one given
procedure is analyzed does not change with message-passingand still depends only
on the structure of recursive calls. The restarts are local to each flow graph, and
do not change the behavior at the call graph level. To summarize, the local restart
method introduces an extra complexity only into the data-flow analysis of proce-
dures that call message passing communication, directly orindirectly. However,
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after implementation of the local restart into all the data-flow analyses of the AD
tool Tapenade , we observe no particular slowdown of the differentiation process.

6 Choosing a good set of channels

Channel extraction depends on the message-passing communication library, in our
case we use theMPI library [4, 8]. Collective communication functions such as
broadcast do not need channels as all message-passing communications are done in
one function call. We just have to focus on point-to-point communications functions.

We first define a test to match send’s with receive’s. ForMPI point-to-point com-
munication, this matching uses the source and destination,plus when possible the
“tag” and “communicator” arguments of the message-passingfunction calls. If the
communicators are identical, if the source and destinationprocesses correspond,
and if finally the tags may hold the same integer value, then the send and the receive
match, which means that a value may travel from the former to the latter. The quality
of this matching, i.e. the lowest possible number of false matches found, clearly de-
pends on the quality of the available static constant propagation. Expressed in terms
of channels, a match just means that there must be at least onedefined communica-
tion channel that is common to the send and the receive.

Unfortunately, this matching depends on many parameters, and these are often
computed dynamically in a way that is untractable statically, even with a powerful
constant propagation. Static detection of matching send and receives will most often
find too many matches, and we’d better resort to the user’s knowledge of the code.
This is done with a directive that the user can place in the code to designate explicitly
the channel(s) affected by any communication call.

This preliminaries done, we end up with a bipartite graph that relates the send’s
to the matching receive’s. We shall use Fig. 2 as an illustration. The question is to
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Fig. 2 A minimal biclique edge cover of a communication bipartite graph

find a good set of channels that will exactly represent this communication bipartite
graph:
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• First, a good set of channels must not introduce artificial communication. On Fig. 2,
we see we must not use a single channel to represent communications between
s1,s2,s3 to r1,r2, because this would imply e.g. a spurious communication from
s2 to r2. The rule here is that the bipartite subgraph induced by nodes that share
a given channel must be complete.

• Second, a good set of channels must be as small as possible. Wesaw that the
number of channels conditions the extra complexity of the analyses. In particular,
the trivial choice that assigns one new channel for each edgeof the bipartite graph
is certainly correct, but too costly in general. On Fig. 2, wecould introduce two
channels for the two edges(s1,r1) and(s2,r1), but one channel suffices.

This question is already known as the “minimal biclique edgecover”, a known NP-
complete problem. We have thus a collection of available heuristics to pick from.
On Fig. 2, 3 channels suffice.

Even when all channels were specified by the end-user by meansof directives,
it is good to run the above minimization problem. The user mayhave in mind a
“logical” set of channels that may be reduced to a smaller set. On Fig. 2, suppose the
user defined two channelsc4 andc5, corresponding to send’ss4 ands5 respectively,
and that receive’sr3 andr4 can receive from both channels. It turns out that channel
minimization will mergec4 andc5 into a single one, because this captures the same
communication pattern.

In general, there is not a unique minimal biclique edge cover. Different solutions,
although yielding the same number of channels, may imply a marginally different
number of iterations in the analyses. On Fig. 3, we have two minimal covers of a
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Fig. 3 Two different minimal covers. Channels shown between parentheses

communication bipartite graph. The cover on the left has a send node labelled with
two channels. If a forward data-flow analysis reaches this node first, then both chan-
nels are affected at once and no other fixpoint iteration willbe necessary when later
reaching the other send nodes. Conversely, the cover of the right is more efficient
for a backward data-flow analysis, as the node with two channels is now a receive
node.

There is an unfortunate interaction between this channel mechanism and the
choice of generalization during data-flow analyses. If the code is such that native
MPI calls are encapsulated into wrapper procedures, then attaching the channel to
the nativeMPI calls may leave us with only one channel, as there is only one tex-
tual MPI SENDpresent. On the other hand, we probably want to attach different
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channels to different wrapper calls, as if the wrapper procedures were the primitive
communication points. We did not address this problem, which would either require
to attach the channel to the wrapper call, or the possibilityto opt for specialization
instead of generalization for the analysis of each wrapper call, which means that a
wrapper procedure will be analyzed once for each of its call sites.

7 Implementation and outlook

We have implemented a prototype native treatment ofMPI communication calls
in Tapenade following the ideas of this paper. Implementation amounts to the
following:

• define the basic properties ofMPI procedures inTapenade ’s standard library.
• make the tool recognize theMPI calls as message-passing calls, identify them as

send, receive, collective . . . and distinguish in their arguments those defining the
channel and those containing the communicated buffer.

• implement flow graph local restart into the single parent class of all data-flow
analyses.

• adapt each individual data-flow analysis at the point of propagating data-flow
information through one message-passing call

We also updated tangent mode AD to introduce differentiatedcommunication when
the communication channel is active. Notice that this also introduces a notion of dif-
ferentiation for parameters such as “tag”, “request”, and error “status”. For instance,
the “tag” of the differentiated communication call must be distinct from the original
call’s to make sure the receives are done in the correct order. Similar remarks hold
between the “request” of nonblocking communication, and also for error “status”.

We obtained correct data-flow information on a set of representative small exam-
ples, for all data-flow analyses.

We extended validation to a much larger CFD code calledAERO, which im-
plements an unsteady, turbulent Navier-Stokes simulation. The code is more that
100,000 lines long, and SPMD parallelization is necessary for most of its appli-
cations. Message-passing is done withMPI calls. In addition to point-to-point non-
blocking communicationMPI ISEND, MPI IRECV, andMPI WAIT, the code uses
collective communicationMPI BCAST, MPI GATHER, andMPI ALLREDUCE.

Given the current stage of development inTapenade about message-passing
communication, we could only apply tangent differentiation on the code. The re-
sulting derivatives were validated by comparison of the parallel tangent code with
divided differences between two runs of the original code, each of them parallel. At
the source level, 10 of the 32 calls toMPI were detected active, causing 10 differ-
entiated message-passing calls. On a relatively small testcase, average run time per
processor of the tangent code was 0.49 second, compared to anoriginal run time per
processor of 0.38 second. This increase of 30% is in line withwhat we observe on
sequential codes.
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The adjoint mode is still under development. However, we plan to validate soon
an adjoint built semi-automatically, using the data-flow information which is already
available, and hand-coding the appropriate adjoint communication calls.

We foresee a few extra difficulties for the adjoint mode of AD.As the adjoint dif-
ferentiation model we have devised [11] exchanges the rolesof pairedMPI ISEND
or MPI IRECV on one hand, andMPI WAIT on the other hand, we need a way of
associating those. A solution might be to wrap theMPI WAIT’s into special-purpose
MPI WAIT SEND’s or MPI WAIT RECV’s containing all the necessary parame-
ters. Another manner would be to run another static data-flowanalysis. Matching
MPI ISEND or MPI IRECV to MPI WAIT is local to each process, unlike match-
ing MPI ISEND to MPI IRECV. Therefore all we need is a local analysis, akin to
data-dependence analysis on the “request” parameter. Considering thatMPI ISEND
or MPI IRECV write into their “request” parameter, and thatMPI WAIT reads its
“request” then resets it, the two will match when there is a true dependency between
them. User-directives may also be of help as a fallback option.

This work was not done with the one-sided communications of MPI-2 in mind.
Although its new synchronization primitives may prove difficult to handle, we be-
lieve the remote memory of one-sided communications can be treated like a channel.
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