Native handling of M essage-Passing
communication in Data-Flow analysis
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Abstract Automatic Differentiation by program transformation ustatic data-
flow analysis to produce efficient code. This data-flow aralysist be adapted for
parallel programs with Message-Passing communicatianrtigg from a context-
sensitive and flow-sensitive data-flow analysis schemaillyitdevised for sequen-
tial codes, we extend this scheme for parallel codes. Thension is independent
of the particular analysis and does not require a modifinadfche code’s internal
representation, i.e. the flow graph. This extension reliearoaccurate matching of
communication points, which can’t be found automaticallgéeneral, and thus new
user directives prove useful.
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1 Introduction

Static data-flow analysis of programs is necessary for efftchutomatic transfor-
mation of codes. In the context of Automatic Differentiatid\D), most of the clas-
sical data-flow analyses prove useful as well as specifiyaeakuch as activity and
TBR analyses [5]. Parallel programs with message-passisg pdditional prob-
lems to data-flow analysis because they introduce a flow @f tthatt is not induced
by the control-flow graph (“flow graph” for short). We propcaeextension to data-
flow analysis that captures this communication-induced @bdata. This extension
applies in the very general framework of flow-sensitive gsialthat sweep over the
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flow graph, possibly using a worklist for efficiency. Thisexsion makes no partic-
ular hypothesis on the specific analysis and only introdunegsartificial variables
that represent communication channels, together with argemodification of the
flow-sensitive propagation strategy.

2 Context-sensitive and Flow-sensitive Data-Flow analysis

To reach the accuracy that is necessary to generate anrffreiesformed program,
data-flow analysis should be context-sensitive and flovsitiea. Context sensitiv-
ity operates at the call graph level. In a context sensitiayais, each procedure
uses a context that is built from the information availaltligsecall sites. Even when
making the choice of generalization, which means using ongycontext that sum-
marizes all call sites, this context allows the analysisnd fnore accurate results
inside the called procedure. Flow sensitivity operate$atfiow graph level. In a
flow-sensitive analysis the propagation of data-flow infation follows an order
compatible with the flow graph, thus respecting possible@ten order.

Data-flow analysis works by propagating information thrdowgll graphs and
flow graphs. Call graphs may be cyclic in general, due to s#eity. Flow graphs
may be cyclic, due to loops and other cyclic control. Compfebf the analysis
requires reaching a fixed point both on the call graph and oh #aw graph. The
most effective way to control this fixed point propagatioesisvorklists [7].

In a ndve implementation a data-flow analysis of a calling proceduould re-
quire a recursive data-flow analysis of each called proagdefore the analysis of
the calling procedure is completed. This would quickly eascombinatorial ex-
plosion in run-time and in memory. To avoid that, it is wisertvoduce a “relative”
version of the current analysis that summarizes the effieeach called procedure
on the information computed for any calling procedure. stance in the case of
Activity analysis, a variable is active if it depends on adépendent input in a dif-
ferentiable way (it is “varied”) and the same time it influest¢he dependent output
in a differentiable way (it is “useful”). This results in twaata-flow analyses, both
top-down on the call graph: The “varied” analysis goes fadhan the flow graph,
and the “useful” analysis goes backward on the flow graph. Wdmgnof the two
reach a procedure call, we don’t want to call the analysiarsieely on the called
procedure. Instead, we use a “differentiable dependenayihsarized information
that relates each output of the called procedure to each ofptits on which it de-
pends in a differentiable way. This relative informatiorcogies more space than
plain activity, typically the square of the number of vigiblariables, but it is eas-
ily and quickly used in place of the actual analysis of théechprocedure. It takes
a preliminary data-flow analysis to compute this “depenglenghich is this time
bottom-up on the call graph. This strategy may have a cossuimmarized relative
information may be less accurate than an explicit data-floalyesis of the callee. On
the other hand combinatorial behavior is improved, withratigl bottom-up sweep
on the call graph to compute the relative information, fokal by a top-down sweep
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to compute the desired information. Each sweep analységeacedure only once,
except for recursive codes.

3 Impact of M essage-Passing on Data-Flow analysis

The above framework for data-flow analysis is originallyigesd for sequential
programs. It does not handle message-passing commumicafich introduces a
new flow of data unrelated to the flow graph, and that may evparaptly go back-
wards the static flow graph, e.g. in a SPMD context, frosead to areceive
located several lines before. See also in Fig. 1 the datafflom MPI_SENDto
MPI_RECVthat is unrelated to the static flow graph. The propagatigorghm
must be extended to capture this additional flow of datale_ittsearch has been
done in the domain of static analysis of message-passiyants [3]. Bronewtsky
[1] defines parallel control-flow graphs, an extension of fgpaphs that is the finite
cross-product of the flow graphs of all the processes. Thiearetical framework
useful for reasoning about analyses but that does not dasitself to implemen-
tation in our tools.

In the context of AD, several methods have been tried to stiligeproblem.
Odyss ee [2] introduced fictitious global communication variablest et flow
graph propagation unchanged. This alone cannot captureffiset of communi-
cation that goes against the static flow graph order, and rvayirgcorrect results.

A more radical method is to assign the analysis’ consematefault value to all
variables transmitted through message-passing. This keadiegraded accuracy of
data-flow results and a less efficient differentiated codé ey contain unneces-
sary derivative computation, useless differentiated camipations, or useless tra-
jectory storage in adjoint mode. This can be compensately path user directives
understood by the AD tool.

Strout, Kreaseck and Hovland [10] use an “interproceduvatrol-flow graph”
and augment it with communication edges between possénid /receive  pairs
[9]. Heuristics keep the number of communication edges lmged on constant
propagation and thIP1 semantics. This extended data-flow analysis improves the
accuracy, e.g. for activity analysis. However these extlges in the flow graph
correspond to no control and have a special behavior: oelydhiables involved in
the communication travel through these edges.

4 Data-Flow analysiswith Flow Graph local restart

We believe that introducing new global variables to represemmunication chan-
nels as in [2] is an element of the solution. A channel is aifical variable that

contains all values currently in transit. However to copghvdommunication that
goes against the flow graph we prefer to modify the data-fl@pagation algorithm
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rather than modifying the flow graph itself. The arrows offiloev graph really rep-
resent an execution order, and adding arrows for commuaicatay blur this useful
interpretation. Note that adding flow arrows requires agerjmmocedural control-flow
graph. In either case, modifying the propagation algoritmmmodifying the graph it
runs on, this can be done in a way mostly independent fromatteplar analysis.
The run-time context in which a given procedure is executedains in particu-
lar the state of the various channels. During static data-#onalysis the context in
which a given procedure is analyzed is an abstraction oftimisime context, only
it represents several actual run-time contexts togethesréfore this static anal-
ysis context also includes the information on channels. Warelysis of a given
procedure reaches a communication call that changes ttus stha channel, this
change must be seen by all processes running in parallehanefore possibly by
all procedures of the code. In particular the static analgsintext for the given
procedure must change to incorporate the new channel statdghe analysis it-
self must restart from the beginning of the procedure. Hewévis restart remains
local to the given flow graph, as shown by figure Fig. 1. Theatften the other
procedures’ analysis will be taken care of by the “relativef'sion of the analysis.
Thus this restart, illustrated by Fig. 1, remains local @ ¢arrent flow graph: after

if ( ) if ( )
1$AD CHANNEL [ '$AD CHANNEL [
I$AD CHANNEL ¢ MPI_RECV(Y. - - ) 194D CHANNEL ¢ RECV(Y. - - -)
v |WPI_SEND(X, .. .) END( X, . . .) e
| \ /

o

Fig. 1 Flow Graph local restart after communication, in the case of vaeiéd” analysis

the MPI_SENDiIs executed with a varied, the artificial variablec that represents
this particular communication channel becomes varied.chamging “varied” sta-
tus ofc restarts the current propagation from the entry of the flaspr This new
sweep, when reaching tiPI_RECWhat reads the same channel, makegried

in turn. In the frequent case when propagation order of tha-flew analysis is
done with a worklist, the restart is achieved by just addhmg éntry block on top
of the worklist, or the exit block in case of a backward pragtém. This results in
the framework Alg. 1, common to any forward data-flow anaysiavigation in the
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Algorithm 1 Extension of forward analysis to message-passing comratioic

Given entrylnfo:

01 V Block b, in(b) := 0; out(b) := 0
02 out(EntryBlock) := entrylnfo

03 worklist := succ(EntryBlock)

04 while [worklist # { ExitBlock}]

05 b :=firstof(worklist) //i.e. the element with lowest dfst index
06  worklist := worklist\{b}
07 i= Upepredb) out(p)

08 0 :=propagate i through b
09 if [o/channels> out(b)/channels

10 && out(EntryBlock) # o/channels

11 out(EntryBlock) := out(EntryBlock)J (o/channels)
12 worklist := worklistU succ(EntryBlock)

13 if [0 > out(b)]

14 out(b) :=0

15 worklist := worklistU succ(b)

16 exitlnfo := UpepredExitBlock) out(p)

flow graph only needs the EntryBlock, the ExitBlock, plus sluecessor (succ) and
predecessor (pred) sets for every block of the flow graphci&l@re labelled with
their dfst index, which is such that the index of a block is most oftendothan the
index of its successors. Actual propagation of the data-ffdarmation through a
given block is represented by the analysis-specific “prapeigperation. Operation
“o/channels” builds a copy of data-flow information o thahcerns only communi-
cation channels. Alg. 1 lines-osandi3-16is the usual sequential data-flow analysis.
Our proposed extension is exactly lines2

Consider now the call graph level. During the bottom up cotatien of the “rel-
ative” analysis, every individual proceduggs analyzed with an extended algorithm
following Alg. 1, therefore taking care of channels. Thatigke information that is
built thus captures the effect of the procedure on the cHanRer instance, the rel-
ative “differentiable dependency” information for the pealureQ of Fig. 1 will
contain in particular that the output values of both y andnclehc depend on the
input values of x and of channel During analysis of a procedufethat callsQ,
analysis of the call t@Q may modify the information attached to the channels ac-
cordingly. In other words, analysis of the call@has an effect similar to analysis
of a call to an elementary message-passing procedure.riggsts the local restart
mechanism of Alg. 1 at the level of the flow graphRfand eventually leads to
completion of the analysis inside procedire
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5 Performance discussion

We will discuss the consequences of introducing the FlowpGHlacal restart on
termination and execution time of the analyses. These ignsspartly depend on
the specific data-flow analysis, and each analysis deserspsdific study. How-
ever, we saw that our proposed extension to message-péssisgentially done on
the general analysis framework Alg. 1 so that some genenahnies apply to any
analysis.

About termination, the argument most frequently used is tiwa data-flow in-
formation, kept in the variables in(b) and out(b) for eaabcklb, belong to a set of
possible values that is finite, with a lattice structure \we partial order> compat-
ible with the unionu. If one can show that propagation for the particular analysi
represented by lines:

0 := propagate i through b
is such that propagation of a larger i returns a larger o, themination is granted.
This argument is still valid when we introduce the local agistEvery local restart
makes out(EntryBlock) grow, so that restarts are in finitebar and the process
terminates.

The local restart clearly affects the execution time of thalysis. For each prop-
agation through one flow graph, the execution time on a noallphcode depends
on its nested loop structure. Classically, one introducesten of “depth” of the
flow graph which measures the worst-case complexity of tlaéyais on this graph.
On well-structured flow graphs, one can show that this “dejgthctually the depth
of the deepest nested loop. On a code with message-passirggpeopagation is
needed when the status of a channel variable changes. Whapgteach chosen to
represent communication is to add extra flow edges, the hdeftthe flow graph
changes [6]. When these new edges make the graph irreduevialielation of the
depth even becomes NP-hard in general. Nevertheless,anedas rule of thumb is
to add the number of communication edges to the nested lquip tkeget an idea of
the analysis complexity increase. With our approach, whids no communcation
edge but rather triggers restarts from the flow graph EntogBlthe complexity ef-
fect is very similar. Local restart can occur once for eachvidual channel, so that
the “depth” is increased by the number of channels. Not singly, an increased
number of channels may yield more accurate analysis refuitsnay increase the
analysis time. In practice, this slowdown is quite toleeabllo be totally honest,
local restart incurs some redundant propagation compargtdl: since restart is
done from the EntryBlock rather than from the destinatiohscammmunication, it
goes uselessly through all blocks between the EntryBlockthase destinations.
However, this does not change the degree of complexity.

For propagation through the call graph, though, the numbémes one given
procedure is analyzed does not change with message-passlrggill depends only
on the structure of recursive calls. The restarts are lac&ach flow graph, and
do not change the behavior at the call graph level. To sunzmattie local restart
method introduces an extra complexity only into the date-#malysis of proce-
dures that call message passing communication, directindirectly. However,
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after implementation of the local restart into all the déta+ analyses of the AD
tool Tapenade , we observe no particular slowdown of the differentiatioogess.

6 Choosing a good set of channels

Channel extraction depends on the message-passing conationilibrary, in our
case we use th®IPI library [4, 8]. Collective communication functions such as
broadcast do not need channels as all message-passing ogatiuns are done in
one function call. We just have to focus on point-to-pointheounications functions.

We first define a test to match send’s with receive’s.MBi point-to-point com-
munication, this matching uses the source and destingilas,when possible the
“tag” and “communicator” arguments of the message-padsingtion calls. If the
communicators are identical, if the source and destingtimtesses correspond,
and if finally the tags may hold the same integer value, thersémd and the receive
match, which means that a value may travel from the formdrdddtter. The quality
of this matching, i.e. the lowest possible number of falséches found, clearly de-
pends on the quality of the available static constant pratiaig. Expressed in terms
of channels, a match just means that there must be at leadefined communica-
tion channel that is common to the send and the receive.

Unfortunately, this matching depends on many parametadsilaese are often
computed dynamically in a way that is untractable statjcalen with a powerful
constant propagation. Static detection of matching seddeteives will most often
find too many matches, and we’d better resort to the userwltye of the code.
This is done with a directive that the user can place in the todesignate explicitly
the channel(s) affected by any communication call.

This preliminaries done, we end up with a bipartite grapl tektes the send’s
to the matching receive’s. We shall use Fig. 2 as an illustmafThe question is to

sends: receives: channel 1: channel 2: channel 3:
sl sl Sle Sle
orl orl orl orl
2 Qe Qe
r2 r2 r2 r2
. 3 . §./'. S .
or3 Ae or3 Ae or3 4 or3
:g.l’4 S5e ord Se ord §Zor4

Fig. 2 A minimal biclique edge cover of a communication bipartite graph

& R & B

find a good set of channels that will exactly represent thisroanication bipartite
graph:
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e First, a good set of channels must not introduce artificiedwmnication. On Fig. 2,
we see we must not use a single channel to represent comrniangchetween
sl,s2,s3torl,r2, because this would imply e.g. a spurious communicatiom fr
s2 tor2. The rule here is that the bipartite subgraph induced bgstiat share
a given channel must be complete.

e Second, a good set of channels must be as small as possiblkeaw\nat the
number of channels conditions the extra complexity of theyaes. In particular,
the trivial choice that assigns one new channel for each eftpe bipartite graph
is certainly correct, but too costly in general. On Fig. 2,aeeld introduce two
channels for the two edgésl,r1) and(s2,r1), but one channel suffices.

This question is already known as the “minimal biclique edgeer”, a known NP-
complete problem. We have thus a collection of availableikgcs to pick from.
On Fig. 2, 3 channels sulffice.

Even when all channels were specified by the end-user by nwatisectives,
it is good to run the above minimization problem. The user aye in mind a
“logical” set of channels that may be reduced to a smalleiGefig. 2, suppose the
user defined two channedd andc5, corresponding to sendsd andsb respectively,
and that receive’s3 andr4 can receive from both channels. It turns out that channel
minimization will mergec4 andc5 into a single one, because this captures the same
communication pattern.

In general, there is not a unique minimal biclique edge cdviierent solutions,
although yielding the same number of channels, may imply egimally different
number of iterations in the analyses. On Fig. 3, we have twumal covers of a

(1) sle—(1 (1) sle—(1
1 orl (1) 1 erl (1,2
(1) s2 (1) 2
E. r2 (2) E r2 (2)
(1,2) s3 2) (2 s3 2)

Fig. 3 Two different minimal covers. Channels shown between parerghese

communication bipartite graph. The cover on the left hand s®de labelled with
two channels. If a forward data-flow analysis reaches thikeriost, then both chan-
nels are affected at once and no other fixpoint iterationlelhecessary when later
reaching the other send nodes. Conversely, the cover ofgheis more efficient
for a backward data-flow analysis, as the node with two cHariseow a receive
node.

There is an unfortunate interaction between this channehamsm and the
choice of generalization during data-flow analyses. If thdecis such that native
MPI calls are encapsulated into wrapper procedures, therhattathe channel to
the nativeMPI calls may leave us with only one channel, as there is only exe t
tual MPI_SENDpresent. On the other hand, we probably want to attach difter
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channels to different wrapper calls, as if the wrapper ptaoces were the primitive
communication points. We did not address this problem, vhiculd either require
to attach the channel to the wrapper call, or the possilititypt for specialization
instead of generalization for the analysis of each wrappkywhich means that a
wrapper procedure will be analyzed once for each of its dals

7 Implementation and outlook

We have implemented a prototype native treatment® communication calls
in Tapenade following the ideas of this paper. Implementation amountshie
following:

o define the basic properties BIPI procedures iTapenade ’s standard library.

e make the tool recognize tidPI calls as message-passing calls, identify them as
send, receive, collective ...and distinguish in their argnts those defining the
channel and those containing the communicated buffer.

e implement flow graph local restart into the single parens<laf all data-flow
analyses.

e adapt each individual data-flow analysis at the point of pgaing data-flow
information through one message-passing call

We also updated tangent mode AD to introduce differentiatedmunication when
the communication channel is active. Notice that this altmduces a notion of dif-
ferentiation for parameters such as “tag”, “request”, amdré'status”. For instance,
the “tag” of the differentiated communication call must ligtidct from the original
call's to make sure the receives are done in the correct.d&it@ilar remarks hold
between the “request” of nonblocking communication, aiso &br error “status”.

We obtained correct data-flow information on a set of repregize small exam-
ples, for all data-flow analyses.

We extended validation to a much larger CFD code caleeo, which im-
plements an unsteady, turbulent Navier-Stokes simulafible code is more that
100,000 lines long, and SPMD parallelization is necessaryrfost of its appli-
cations. Message-passing is done vitRI calls. In addition to point-to-point non-
blocking communicatioiMPI_ISEND, MPI_IRECV, andMPI_WAIT, the code uses
collective communicatioMP|_BCAST MPI_GATHERandMPI_ALLREDUCE

Given the current stage of developmentTiapenade about message-passing
communication, we could only apply tangent differentiatmn the code. The re-
sulting derivatives were validated by comparison of theajp@lrtangent code with
divided differences between two runs of the original codeheof them parallel. At
the source level, 10 of the 32 callsMP| were detected active, causing 10 differ-
entiated message-passing calls. On a relatively smaltésst, average run time per
processor of the tangent code was 0.49 second, compareatigaral run time per
processor of 0.38 second. This increase of 30% is in line witat we observe on
sequential codes.
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The adjoint mode is still under development. However, wa pavalidate soon
an adjoint built semi-automatically, using the data-flofermation which is already
available, and hand-coding the appropriate adjoint conication calls.

We foresee a few extra difficulties for the adjoint mode of A3.the adjoint dif-
ferentiation model we have devised [11] exchanges the oflpairedMPI_ISEND
or MPI_IRECV on one hand, antPI1_WAIT on the other hand, we need a way of
associating those. A solution might be to wraptfiel_WAIT's into special-purpose
MPI_WAIT_SENDs or MPI_WAIT_RECVs containing all the necessary parame-
ters. Another manner would be to run another static data-floalysis. Matching
MPI_ISEND or MPI_IRECV to MPI_WAIT is local to each process, unlike match-
ing MPI_ISEND to MPI_IRECV. Therefore all we need is a local analysis, akin to
data-dependence analysis on the “request” parameterideoing thatMPI1_ISEND
or MPI_IRECYV write into their “request” parameter, and thdPI_WAIT reads its
“request” then resets it, the two will match when there isia ttependency between
them. User-directives may also be of help as a fallback optio

This work was not done with the one-sided communications Bf-®lin mind.
Although its new synchronization primitives may prove difiit to handle, we be-
lieve the remote memory of one-sided communications carebéetd like a channel.
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