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Abstract

This paper proposes a strategy to derive an adjoint-based optimization code from a numerical
simulation code. The strategy involves utilization of Automatic Differentiation (AD), and in fact
was a motivating application for several studies and improvements of AD. The strategy gives best
results when interfaced with modern optimization methods, such as “one-shot” or “multi-level”.
This paper presents a set of application examples where this strategy was used, and gives some
experimental results. We also discuss some theoretical questions related to the computation of
gradients and the optimization process in general.
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1 INTRODUCTION

For a long time, industrial CFD numerical stud-
ies have been addressing simulation quasi-exclusively.
Now more and more studies address the next step,
i.e. Optimal Control problems, starting from some
existing simulation code. This can be done with any
kind of simulation code, although nowadays this is
still limited in most cases to steady models. Optimal
Control on genuine unsteady simulations still proves
too expensive in an industrial context. Furthermore,
Optimal Control methods can also address other ques-
tions, such as the control of numerical errors that we
will describe below.

Development of an Optimal Control application
starts from an existing Simulation application, and
reuses key parts of it. Let us identify these parts.
Given a set of parameters, a simulation software gives
a prediction of a physical process. For instance a nu-
merical wind tunnel predicts the flow of air around a
plane shape, using only computation. The predicted
flow is the unique solution of a (set of) mathematical
equation which we call the state equation, according
to Optimal Control terminology. Numerical resolution
of the discretized state equation involves in fact two
important parts.
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• One is the assembling part: for given arbitrary val-
ues of the state variables W , and using values of
external parameters γ (e.g. the geometry), it com-
putes a residual array, which reflects how the state
variables satisfy the state equation. It is therefore

state-assembler: (γ, W ) 7→ Ψ(γ, W )

where Ψ is in fact the left-hand side of the dis-
cretized state equation

Ψ(γ, W ) = 0 .

• The other is the resolution algorithm: For the given
fixed external parameters γ, it uses the residual re-
turned by the state-assembler to produce the state
solution W (γ) that nullifies the residual (or at least
makes it sufficiently small).

state-resolution: γ 7→W (γ)

such that Ψ(γ, W (γ)) = 0.

This is most often done iteratively, by incremen-
tal modifications of an arbitrary initial state, each
modification driven by the residual for the current
state.

To turn a simulation application into an Optimal
Control application requires an additional ingredient,
the objective functional that will evaluate a scalar cost
for any possible parameters and state. Given a set of
parameters γ, which we now view as control parame-
ters, and given the corresponding solution state W (γ),
it computes one (or several) optimization criterion, i.e.
the value of the objective functional for these control
parameters and state. This objective functional takes
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into account all industrial targets and constraints for
a given process or product.

objective-assembler:(γ, W ) 7→ J(γ, W )

The goal of Optimal Control is to find control pa-
rameters γ which will make the objective functional
smaller.

When the size of the parameter array is small,
many methods can find the minimum easily enough.
However for large numbers of control parameters, ap-
proaches that use analytic gradients become necessary.
We advocate the following strategy to obtain these
gradients:

• from the state-assembler, develop a gradient-

assembler that computes the residual correspond-
ing to derivatives of the state equation. This part
of the strategy relies on Automatic Differentiation
(AD).
• develop an adequate resolution algorithm for the

gradient, that uses the gradient-assembler to itera-
tively find the requested gradient.

In this paper we analyze this strategy to compute
gradients, which ultimately yields an Optimal Con-
trol loop. One objective is to maximize the re-use
of code from simulation codes into the optimization
code. This strategy strongly relies on Automatic Dif-
ferentiation and especially on the ability of its “reverse
mode” to produce efficient adjoint codes. It motivated
a lot of improvements and research in AD, that we will
describe in part. We demonstrate the strategy on a
few illustrative applications. The outline is as follows:
in section 2, we describe our model of optimal con-
trol problems, and the general strategy to solve them.
Section 3 describes several example problems which
can be expressed in the general framework of optimal
control. Section 4 discusses some points specific to
the Automatic Differentiation technique that is used
in particular to build the gradient-assembler. In par-
allel, section 5 discusses the resolution algorithms that
we use to obtain the gradients. Finally section 6 shows
the results obtained on the example problems of sec-
tion 3.

2 THE OPTIMAL CONTROL MODEL

Our framework is the following general constrained
minimization problem:

Arg Min J(γ, W ), subject to Ψ(γ, W ) = 0 (1)

where the minimum is taken with respect to the com-
posite variable x = (γ, W ). In other words, we want
to find the xopt = (γopt, Wopt) that minimizes the ob-
jective functional J(x), where xopt must in addition
satisfy the equality constraint Ψ(x) = 0.

If we define the reduced objective functional

j(γ) = J(γ, W (γ)), (2)

where W (γ) is the unique W solution of equation
Ψ(γ, W ) = 0 , our problem is equivalent to minimiz-
ing the reduced objective functional j:

Arg Min j(γ). (3)

Let us assume that the Jacobian

A =
∂Ψ

∂W
(4)

is always invertible. Then the minimum we are look-
ing for is the solution of the following Karush-Kuhn-
Tucker (KKT) system:
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∗

·Π = j′(γ) = 0

(Optimality)

(5)

This is the system that the Optimal Control loop
must solve. Formally, this involves as usual an assem-
bly step and a resolution step. The assembly step will
take as input the current value of the variables that
will eventually hold the result, which are:

• the control parameters γ,
• the state variables W ,
• the co-state or adjoint variables Π.

The assembly step will compute each left-hand-side in
system (5), and the resolution step will use them to
update the variables until the residual is zero. Since
the system is non-linear, this process will be iterative.
Thus assembly and resolution will be called repeat-
edly.

We observe that parts of both steps are already
available in the existing simulation code. Specifically,
the assembly of the Ψ residual, and the resolution for
W , i.e. what concerns the non differentiated symbols.

For the assembly part, What is missing is the terms
that involve derivatives of Ψ and J . We will derive
their code from the assembly code of Ψ and the com-
putation code of J , using Automatic Differentiation
(AD). We remark that the two terms that involve
derivatives of Ψ are indeed of the transposed-Jacobian-
times-vector kind. The same holds for the terms that
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involve derivatives of J , only in the degenerate case
of a single row Jacobian. Therefore, we will use the
so-called reverse mode of AD which is able to produce
code that computes transposed-Jacobian-times-vector
derivatives in remarkably few computations. We will
detail this in section 4.

For the resolution part, we need a composite algo-
rithm that will combine

1. the existing resolution of the state equations, yield-
ing W ,

2. with a resolution algorithm for the adjoint state
equations, yielding Π,

3. and with a minimization algorithm for the optimal-
ity equations, yielding the optimal control parame-
ters γopt

We must develop the algorithms for Π and γ. In the-
ory, the algorithm for Π and its usage in the assembly
of j′(γ) could be generated automatically, by reverse-
mode AD of the existing algorithm for j(γ). How-
ever, for efficiency reasons explained in section 5, we
think it is better to write the resolution for Π by hand.
Moreover, the resolution for Π can make use of cru-
cial parts of the existing resolution for W , and is itself
a key component to be reused in many places, as we
show for the second-order derivatives that are needed
for robust optimization, cf section 3.2.

3 EXAMPLES

We choose three example applications of our strategy,
for optimal shape design, robust optimal design, and
mesh optimization.

3.1 Shape design

This example was presented in [16, 12]. The goal is
to evaluate and minimize the sonic boom downwards
emission (SBDE), modeled as the volume integral of
the squared pressure gradient in an observation box
ΩB below a supersonic aircraft, as shown in Fig. 1.
The objective functional j combines this integral of
the pressure gradient with deviations from prescribed
lift L0 and drag D0, with relative coefficients α1, α2

and α3.

j(γ) = α1(D−D0)
2 +α2(L−L0)

2 +α3

∫

ΩB

|∇p|2 (6)

Values of L, D, and p are derived simply from W ,
which is the solution of Ψ(γ, W ) = 0, the 3D Euler
equations around the geometry specified by the con-
trol parameters γ. Practically, ΩB is a part of the
computational domain placed just below the airplane.
Of course, in presence of shocks, the value of the SBDE
term is infinite in the continuous case, but it is finite
(and mesh dependent) in the discrete case.
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Fig.1: The sonic boom problem

3.2 Second derivatives for robust

optimization

In this example, we suppose again that we simulate
some state W that depends on some control parame-
ters γ through a state equation, and search the γ that
minimizes a given objective functional J . In addition,
we want to study the influence of the uncertainties
on (a part of) γ on the optimal J . This requires the
second derivative j ′′(γ). For example, the objective
functional may somehow incorporate the goal of min-
imizing j′′(γ), thus making the optimum found more
robust or tolerant to small variations of γ.

We can differentiate the equation of j ′(γ) in the
KKT system (5), which yields equation (7). We took
away the evaluation point (γ, W ) for readability.

j′′(γ) =
d

dγ

(

∂J

∂γ

)

−
d

dγ

(

∂Ψ

∂γ

∗
)

·Π−
∂Ψ

∂γ

∗

·
dΠ

dγ
(7)

Every term in equation (7) can be computed in the
manner presented in section 2: using a suitable reso-
lution algorithm to solve linear equations whose right-
hand side are assembled through Automatic Differen-
tiation of existing code.

Let’s focus for example on the term
dΠ

dγ
. The

adjoint state equation in the KKT system (5)
is an implicit definition of Π, which we can dif-
ferentiate with respect to γ. Thus we obtain

(

∂Ψ

∂W

)

∗

·
dΠ

dγ
=

d

dγ

(

∂J

∂W

)

−
d

dγ

(

∂Ψ

∂W

∗

· Πγ

)

B1 B2
B3 B4

B5

in which we observe that terms in boxes B3 and
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B5 already appeared in the adjoint state equation
of the KKT system (5), and we know already that
the reverse mode of Automatic Differentiation will
provide the code for them. The terms in boxes B2

and B4 are tangent derivatives that will be obtained
by AD in tangent mode of the code for boxes B3 and
B5 respectively. This introduces a new usage of AD,
which we call the “tangent-on-reverse” mode, which
is presently under development.

We observe finally that the resolution in box B1 is
the same as the resolution for Π in our general frame-
work, only with a different right-hand side. We can
therefore reuse the same specific resolution algorithm
as we used for Π. Notice however that one invocation

will only return one column of
dΠ

dγ
, which is now a

matrix. This must be iterated for each component of
γ. This is not surprising since second derivatives are
indeed larger objects than adjoint states.

3.3 Numerical error control by mesh

optimization

A good mesh adaption requires a good optimization
criterion, i.e. a good measure of the quality of a given
mesh. The goal of this application example is to find,
for a given numerical problem, the optimal mesh den-
sity (a scalar function on the computation domain Ω)
that minimizes the approximation error.

However, the approximation error is a complex non-
local function of mesh fineness. To overcome this dif-
ficulty, our idea is to define the error as the solution
of a linear error system whose right hand side is the
truncation error and therefore depends only on the
local quality of the mesh. This is based on a priori
estimates.

Call u the continuous solution of a Dirichlet prob-
lem:

∆u = f on Ω ; u = 0 on ∂Ω. (8)

Consider a family of meshes Mh of Ω, each of them
following a mesh density dh. Each dh is derived from
a fundamental d by dh = h × d. Thus increasing h
means uniformly increasing the mesh fineness.

For a givenMh, we get a discrete solution uh. The
approximation error function can be split in two:

u− uh = (u−Πhu) + (Πhu− uh) (9)

where we introduce Πhu, the projection of u on Vh.
Vh is the subspace of functions that are P1 on Mh,
i.e. continuous, and linear on each cell of Mh.

We choose the implicit error uh−Πhu as our model
for the approximation error. Many studies have cho-
sen the interpolation error u−Πhu instead. We shall
see in the results part 6.2 the advantages of our choice.

In any case, the behavior of the two terms is similar
in the following respect: for all test function v on Ω,
one can show that
∫

Ω

∇(uh−Πhu) ·∇Πhv dΩ =

∫

Ω

∇(u−Πhu) ·∇Πhv dΩ

(10)
A truncation error analysis shows that the right-hand
side of (10) is in turn equal to

∫

Ω

h2g v dΩ + O(h3) , (11)

where g is a long but simple expression involving 4th

derivatives of u and d. In practice, derivatives of u
will be evaluated from the discrete uh. Finally if we
define W as the solution of the Dirichlet problem

∆W = −g on Ω ; W = 0 on ∂Ω , (12)

the expression (11) is in turn equal to

∫

Ω

h2∇W · ∇v dΩ + O(h3) . (13)

Comparing the left-hand side of (10) and expression
(13), we boldly choose as our error model the L2-norm
of W. Full justification is out of the scope of this paper
and is available in [4, 5].

We end up with an Optimal Control problem: find
the (parameterized) mesh density function d that min-
imizes the objective functional

j(d) = J(d, W (d)) , (14)

where J probably involves the norm of its second ar-
gument, and where this second argument W is de-
fined implicitly as the solution of the Dirichlet prob-
lem (12). Although the theoretical justification relies
on the fact that we solve a Dirichlet problem, exten-
sion is possible to more general equations and indeed
practical application is already in progress on realistic
CFD equations.

4 REVERSE-MODE AUTOMATIC

DIFFERENTIATION

In this section we describe Automatic Differentiation
(AD), focusing on the so-called reverse mode, which
will be used intensively. As we saw in section 2, it
turns out that Optimal Control problems make an
intensive use of derivatives of the form transposed-
Jacobian-times-vector, or, equivalently when the func-
tion has a scalar result, the whole Jacobian row vector.
We will show why the reverse mode of AD is the most
efficient way to get these derivatives.



Optimization Loops for Shape and Error Control 5

Then we shall discuss the time-memory tradeoffs
that must be made to use reverse-mode AD on large
industrial-size applications. We shall show how spe-
cific data-flow analyses on the program to be differen-
tiated can help create an efficient differentiated pro-
gram.

In general, it requires an AD tool to perform AD.
Several AD tools propose the reverse mode. For the
applications presented in this paper, we used the tool
tapenade [11], which is developed and distributed by
our research team. The data-flow analyses that we de-
scribe are implemented and tested inside tapenade.

4.1 Principles of reverse AD

Given a source program P that evaluates a function
F that goes from input x to result y = F (x), AD is
able to create a new source program that computes
analytical derivatives of F . In particular the reverse
mode of AD creates a source program P that computes
F ′∗(x) · y for any given vector y. In the special case
where y is scalar, if we just take y to be one, P returns
the row vector F ′(x), i.e. the gradient.

To explain the principle of the reverse mode, let’s
suppose for the sake of simplicity that P is a simple
list of elementary statements Ik , k ∈ [1..p]. Calling fk

the function implemented by Ik , the F computed by
P is

F = fp ◦ fp−1 ◦ · · · ◦ f1 .

Using the chain rule, the Jacobian F ′ of F is:

F ′(x) = (f ′

p ◦ fp−1 ◦ fp−2 ◦ · · · ◦ f1(x))

. (f ′

p−1 ◦ fp−2 ◦ · · · ◦ f1(x))

. . . .

. (f ′

1(x)) .

(15)

Let us call for short x0 = x and xk = fk(xk−1).
The transposed-Jacobian-times-vector product that
we need writes:

F ′∗(x).y = f ′∗

1 (x0).f
′∗

2 (x1). . . . .f
′∗

p (xp−1).y (16)

The reverse differentiated program P will evaluate
equation (16), for any given x and y, from right to left,
because matrix×vector products are much cheaper
than matrix×matrix products. In theory, the compu-
tation cost of P is only a very small constant multiple
of the cost of P.

In contrast, evaluating the expression in (16) from
left to right would result in computing F ′∗(x) ex-
plicitly, and this has a cost which is proportional to
the dimension of x. In our examples, this can be a
large number. This explains why reverse AD is def-
initely the most efficient way to compute the deriva-
tives needed for our Optimal Control problems.

Evaluating (16) from right to left results in the fol-
lowing structure of the reverse differentiated program:

yp−1 := f ′∗

p (xp−1).y

. . .

yk−1 := f ′∗

k (xk−1).yk

. . .

y0 := f ′∗

1 (x0).y1

return y0

On this structure the main drawback of reverse AD be-
comes apparent: the intermediate values xk are used
in the reverse of their computation order in P . A typ-
ical way to handle this is to run P first, this time stor-
ing the intermediate values xk. This defines the for-

ward sweep
−→
P , which must be run first. Then comes

the backward sweep
←−
P , which consists of the differen-

tiated instructions above, with additional instructions
inserted to progressively restore the intermediate val-
ues xk.

The forward and backward sweeps interact using a
stack, and we shall call restoration of a variable the
couple of statements that push this variable to the

stack in
−→
P and pop it from the stack in

←−
P . Before each

instruction Ik in
−→
P , we consider the few variables that

Ik may overwrite. For each such variable, if its present
value is required in the derivatives of I1; . . . ; Ik, then it
must be restored. Detection of the variables required
by the derivatives of instructions from I1 to any Ik is
called the TBR (To Be Restored) analysis, and is a
standard data-flow analysis for AD.

This way, the stack grows reasonably slowly with
the size, i.e. execution time, of P. Yet the growth is
linear, and for a very large P, radical time-memory
tradeoffs must come into play, which we discuss in the
next section.

4.2 Data-flow analyses for time-memory

tradeoffs

The general time-memory tradeoff is called check-
pointing, illustrated on Fig. 2. The forward sweep

forward  sweep

backward  sweep

CHECKPOINTING

U C D
Snp

PUSH

POP

Fig.2: The Checkpointing time-memory tradeoff

goes from left to right, the backward sweep goes from
right to left. Each Ik is vertically aligned with its
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derivative I ′

k . Suppose P is split in three successive
fragments U, C, and D. Checkpointing C amounts to
running C without any restoration push. When the
backward sweep reaches back fragment C, the inter-
mediate values are missing. To keep things going, C is
run a second time, now like a real forward sweep with
the push statements, and then the backward sweep
can resume execution till the end.

Duplicated execution of C obliges us to save a suf-
ficient number of variables, called a Snapshot (Snp).
Snapshots are usually smaller than the total number
of push performed by C. All in all a good choice of
checkpoints, most probably nested, results in a stack
size that grows only like the logarithm of the size of
P, at the cost of repeated executions that make the
execution time increase, by a factor which is also of
the order of the logarithm of the size of P [9].

Because it is essential to keep the stack size low, we
studied the checkpoint mechanism, looking for mini-
mal snapshots. Let’s go back to Fig. 2 and find what
must be in the snapshot Snp. The goal is that the sec-
ond execution of C runs exactly like the first. Using
standard data-flow analysis terminology, a sufficient
condition is that the use set of C is not overwritten be-
tween its two executions. In other words, execution of

push(Snp); C;
−→
D ;
←−
D ; pop(Snp), must modify no vari-

ables in use(C). Introducing the out set of variables
possibly modified by a piece of code, the constraint
writes:

out
(

push(Snp); C;
−→
D ;
←−
D ; pop(Snp)

)

∩ use(C) = ∅

(17)
Classically, the out sets of successive code fragments
accumulate. However, the push and pop pairs remove
variables from the out sets. Therefore equation (17)
rewrites as:

(

out(C) ∪ out(
−→
D ;
←−
D )

)

\ Snp ∩ use(C) = ∅ (18)

And the smallest Snp that obeys this constraint is:

Snp = (out(C) ∪ out(
−→
D ;
←−
D )) ∩ use(C) (19)

Now, we observe that the out set of a forward-

backward pair such as
−→
D ;
←−
D depends on the set req of

required variables imposed on it by the TBR analysis.
Indeed, if variable v is added into req, then if D modi-

fies v,
−→
D ;
←−
D must restore it. In any case, v is removed

from out(
−→
D ;
←−
D ). Therefore we have two options:

• eager snapshot: we keep the req set before D to

the req before C, i.e. the variables required by
←−
U

derivatives of U.

• lazy snapshot: we add to the req set before D all
the variables in use(C), and then we know that

out(
−→
D ;
←−
D ) ∩ use(C) = ∅ (20)

and Snp is reduced to out(C) ∩ use(C), at the ex-

pense of more restorations inside
−→
D ;
←−
D .

Experimental measurements show that the lazy snap-
shot option generally performs better, although this
depends on the code. Table 1 shows the effect of the
two options on the computation of the gradient of a
classical 2D Navier-Stokes solver. We observe an in-

Snapshot: eager lazy

Memory (Mbytes) 248.1 184.7

CPU (seconds) 25.2 22.3

Table 1: Comparison of eager and lazy snapshot
strategies on the gradient of a 2D Navier-Stokes solver

teresting 25% gain in memory for the lazy snapshot
option. CPU time is also improved marginally, prob-
ably because less memory traffic also means less CPU
time.

Whatever the option chosen, this definition of
the snapshot correctly handles successive checkpoints.
Suppose that the D program fragment is split again, to
feature a second checkpoint C2. Suppose that C uses
a variable v but doesn’t modify it, whereas C2 uses
and modifies v. v is not modified elsewhere. In other
words:

v ∈ use(C); v /∈ out(C); v ∈ use(C2); v ∈ out(C2)

Equation (19) tells us that v ∈ Snp(C2). If we use
eager snapshots, then with the help of a good “out”

analysis, we find that v /∈ out(
−→
D ;
←−
D ) because v ∈

Snp(C2), and thus v /∈ Snp(C). On the other hand
if we use lazy snapshots, v /∈ Snp(C) simply because
Snp(C) is now only out(C)∩ use(C), even without the

need for a good “out” analysis on
−→
D ;
←−
D .

This is particularly important for the derivatives of
the assembly phases, in which the current state vari-
ables are in general used at several places to compute
the residuals, and are only modified once, at the end
of the (pseudo-)time step, to hold the next state.

5 RESOLUTION ALGORITHMS

Assume that, with the help of Automatic Differenti-
ation applied to the assembly routines of the origi-
nal simulation code, we have obtained the assembly
routines for the different ingredients of the KKT sys-
tem (5). Specifically, we now have routines that, given
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a γ and a W , compute efficiently

∂J

∂W
(γ, W ) and

∂J

∂γ
(γ, W ) ,

and given an additional argument Π,

(

∂Ψ

∂W
(γ, W )

)

∗

·Π and

(

∂Ψ

∂γ
(γ, W )

)

∗

·Π .

In section 5.1 we will discuss the manners to obtain
the gradient j′(γ). We can then use an optimization
algorithm to minimize the functional j. This can be
any“from the shelf” optimization software, which will
iteratively call our routines for j(γ) and j ′(γ). Sec-
tions 5.2 and 5.2 review two important improvements
for a better efficiency.

5.1 Computing the gradient of the objective

functional

Our goal is now to compute the gradient j ′(γ). We
will apply a procedure that follows from system (5)
line by line:

1. first solve the state equations, yielding W
2. then solve the adjoint state equations, yielding Π
3. finally assemble the residual of the optimality equa-

tions, yielding j′(γ).

In this section we do not address the topmost opti-
mization loop that reduces j ′(γ) to zero.

Resolution of the state equations (step 1) is of
course already available in the initial simulation code.
We assume, as it is generally the case, that this resolu-
tion uses a matrix-free iterative solver which repeat-
edly calls the assembly of the state residual Ψ. For
example, it can be a pseudo-unsteady explicit time-
stepping or a GMRES quasi-Newton iteration.

It is important to understand why we choose to go
through step 2, i.e. explicitly solve for the adjoint
state Π. Why don’t we instead ask directly the AD
tool to reverse-differentiate the routine that computes
j(γ)? This would return the gradient j ′(γ). In fact,
this has been done before with success, e.g. in [13].
But this straightforward approach has several severe
drawbacks, that we shall put in two categories for dis-
cussion.

The first category of drawbacks is about efficiency.
The differentiated code uses an enormous amount
of memory, related to the reverse mode principle
sketched in section 4.1. Essentially, each of the non-
converged iterates of the state W need be stored.
In the present state of the art, even with data-flow
analyses such as those in section 4.2, radical manual
post-processing of the differentiated code is necessary.

Moreover, the systematic approach differentiates com-
putations that are in fact irrelevant, such as evaluation
of the time-step, and this hampers efficiency, requir-
ing manual post-processing. The last drawback in this
category is the fact that we cannot expect the deriva-
tives to converge at the same rate as W . In other
words, it is questionable to perform the same number
of iterations to converge on the derivatives during the
backward sweep, than to converge on W during the
forward sweep. Unfortunately, this is exactly what
straightforward AD does.

One can think of an elegant way to overcome these
drawbacks, which we might call “fixpoint-conscious-
AD”. We could modify the reverse-AD model for fix-
point iterations so that none of the iterates Wk of W is
stored, except the final WN , which is converged up to
the prescribed ε. The backward sweep of the differen-
tiated program would repeatedly use the values from
WN , even when reversing the computations of another
time step k 6= N . This clearly solves the memory
question. Moreover, this allows the backwards sweep
to perform a different number of iterations, and in
particular to use a specific stopping criterion for the
backward iterative loop, involving convergence of the
derivatives themselves. Fixpoint-conscious AD could
even be automated inside AD tools, freeing us from
the tedious and error-prone post-processing task. An-
other approach in [10], computes W and the deriva-
tives simultaneously, thus saving storage.

The second category of drawbacks comes from the
iteration algorithm itself. If explicit pseudo-time step-
ping is used, the state iteration is a linear fixed point,
and the transposed iteration performed by the differ-
entiated code will also be stable and converging. On
the other hand, if the state iteration is far from linear,
typically because of line-searches or orthonormaliza-
tion, then there is no guarantee that the differentiated
(i.e. transposed) iteration is stable nor convergent, let
alone efficient. Finally, in the case of non-linear iter-
ations, there is very little mathematical insight of the
consequences of freezing the state to WN .

therefore we recommend in general not to differenti-
ate the fixed point iteration itself. We recommend in-
stead to re-use the iteration algorithm, possibly chang-
ing the pre-conditioner which has to be simply trans-
posed. In [3], this strategy is applied, using a first-
order simplified Jacobian as a pre-conditioner.

5.2 One-shot optimization

Modern finite-dimensional optimization methods re-
lying on adjoints are issued from the Sequential
Quadratic Programming (SQP) methodology. A pop-
ular prototype is the Byrd-Omojokun algorithm, see
[14]. This algorithm in its basic form assumes that
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the resolution of the different linearizations of state
systems (Newton iteration of state and solution of ad-
joint) are not expensive However, this assumption is
not valid in Optimal Shape Design. This fact has lead
some authors to attack the problem using one-shot (or
progressive, or simultaneous) algorithms [15, 6], which
are based in the following two principles:

• Use discipline-specific iterative, maybe nonlinear
solvers (for example, pseudo unsteady solvers for
Fluid Mechanics) for state and co-state.
• Iterate simultaneously the three equations of the

KKT system.

The cost by iteration of these algorithms is much
lower with a comparable convergence. Assuming they
converge in a number of iterations independent from
the discretization fineness, it follows that they are po-
tentially able to reach optimal complexity, in the sense
that the solution costs k times the resolution of the
state equation, k being independent from the number
of control parameters. The efficiency of this method
is shown for example in [4, 7]. But the question of
independence from the discretization fineness remains
to be addressed.

5.3 Multi-level Optimization

Large scale problems coming from Partial Differential
Equations generally result in a conditioning which is
poor and getting poorer as the number of degrees of
freedom grows. The reason for this can be found either
through a direct analysis of discrete eigenvalues as the
number of unknowns increases, or through an analysis
of the continuous -functional- problem and the contin-
uous version of the algorithm. Shape design problem
possess a continuous formulation and the correspond-
ing sensitivity has been analyzed by Hadamard about
one century ago. It appear that the gradient is a non-
bounded operator. Its usage leads to ill-conditioned
iterations. This problem can be tackled by applying
an additive multilevel pre-conditioner B, which
is applied to the iterative procedure:

γn+1 = γn − ρBg
L

2 , (21)

At each iteration n the correction coming from the
optimization process is updated. The correction con-
sists of a step-length factor ρ multiplying the precon-
ditioned gradient. The self-adjoint invertible operator
B is chosen in order to recover the degree of regularity
lost by the L2 gradient g

L
2 . We refer to [2, 1, 7] for

theoretical aspects and applications.

6 SOME RESULTS

The application to second derivatives for robust opti-
mization is not yet implemented and no results can be
shown for it.

6.1 Shape design

To begin with, here are the results of the optimal
shape design example described in section 3.1.

Our optimal control model takes as input the sim-
ulation code that computes W. This code uses an up-
wind Euler solver, running on an unstructured mesh
made of 981822 tetrahedra. During optimization, the
shape is changed by moving the nodes on the bound-
ary of the mesh along normals to that boundary, but
this is implemented by a transpiration condition in or-
der to avoid costly remeshings.

Although we target only optimization of the shape
of the wings, the flow W , the adjoint Π, and the gra-
dient j′(γ) are computed on the complete geometry.
Fig. 3 shows the resulting gradient of the objective
functional (6) on the skin, at first optimization cy-
cle. Darker colors indicate the places where moving

Fig.3: Gradient of the Objective Functional on the
skin

the shape along the normal to the skin improves the
objective functional more strongly.

Fig. 4 shows the evolution of the pressure in box
ΩB after 8 optimization cycles. We observe that the
shock produced by the outboard part of the wings is
dampened. However, close to the fuselage, the pres-
sure peak has slightly increased after the optimization
process. This increase is tolerable, compared to the re-
duction obtained on the end of the wings. Physically,
this is coherent with the fact that the Mach cone is 34◦

wide for the speed considered, and therefore only the
outboard part of the wings cuts through this cone, so
that the sharpest pressure gradient is produced ahead
of the outboard portion of the wing.
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Fig.4: Pressure in a plane below the aircraft.
Left:original. Right:optimized.

As far as performance is concerned, we observe that
computation of the gradient j ′(γ) is about four times
as slow as the computation of the state W . This is
quite reasonable indeed, and is consistent with the
results shown in [3, 8]. It is true that the ratio between
the assembly of the state residual and the assembly
of the adjoint residual is more of the order of seven,
which is about the average ratio for codes generated
by reverse AD. But this slowdown is dampened by
the fact that each assembly of the state residual is
followed by the pre-conditioned iteration algorithm,
which takes about the same time, and also the same
time for the adjoint state Π. One step of the state
resolution costs therefore 2, whereas one step of the
adjoint resolution costs 8, and therefore the overall
factor of 4.

6.2 Numerical error control by mesh

optimization

For this numerical study of our mesh optimization
method of section 3.3, we suppose we know the exact
solution of the numerical problem. On the domain Ω
equal to the unit square, we choose

u(x, y) = (x2 − x)(y2 − y) . (22)

The objective functional to minimize is simply the
norm of our approximation error model W . Several
simplifications are made on the function g, which we
will not detail here.

The gradient of the discrete functional is obtained
by an adjoint method and developed with the help of
the tapenade AD tool [11]. A nonlinear conjugate
gradient method converges to a (possibly local) min-
imum in a hundred iterations. In these preliminary
experiments, we are only interested in finding the op-
timal mesh density d: we do not regenerate a new
mesh from d, as should be done in real situations. The
density d is parameterized by its values on a Cartesian
grid of 11× 11 vertices.

All figures show the values of the slice y = 0.5.

We start with a uniform node density. At the end

of the Optimization cycle, the objective functional has
decreased by 50%, and the resulting mesh density d
is shown on Fig. 5. It increases in the center and de-
creases on the boundary. As a result of this optimiza-
tion, the approximation error W is reduced at every
point of Ω, as shown on Fig. 6.
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Fig.5: Minimization of L2 error over the whole do-
main: initial (line) and final (dashes) mesh densities
d
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Fig.6: Minimization of L2 error over the whole do-
main: initial (line) and final (dashes) approximation
errors W

A particular interest of this adjoint based error for-
mulation with respect to local truncation error is that
we can modify the objective functional, e.g. minimize
the approximation error measured on a specified sub-
set of Ω. Let us for example restrict the objective
functional to the integral over the right half part ΩR

of the domain (x > 0.5).

If we worked only with a local truncation model,
then we would obtain an optimal mesh without nodes
on the left part of the domain. This is good for the
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interpolation error over ΩR, but not so good for the
approximation error in ΩR: for the approximation er-
ror, values over the mesh are strongly correlated. The
optimal mesh density given by our algorithm on Fig. 7
shows only a slight concentration of nodes in the right
part of computational domain. Accordingly, the ap-
proximation error itself, shown on Fig. 8 is noticeably
decreased on the right side, and marginally increased
on the left.
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Fig.7: Minimization of L2 error over right half-
domain: initial (line) and final (dashes) mesh densities
d
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Fig.8: Minimization of L2 error over right half-
domain: initial (line) and final (dashes) approxima-
tion errors W

7 CONCLUSION

This paper addresses adjoint-based optimization.
This topic concerns a large range of applications in
mechanical simulation, optimal control, and optimal
design.

In this paper, we present one possible strategy

which, starting from simulation tools, derives an
adjoint-based optimization suite. This strategy relies
in part on Automatic Differentiation to build the as-
sembly routines for adjoint states, and in part on mod-
ern optimization techniques. Another possible strat-
egy is presented in [8].

This strategy is illustrated on a set of examples com-
ing from different fields of numerical science.

Adjoint-based methods are particularly interesting
because they compute gradients in a time which is in-
dependent of the number of control parameters, unlike
other methods based on divided differences or even
evolutionary approaches. The present strategy ad-
vocates other techniques to gain efficiency, by using
one-shot or multi-level optimization algorithms which
reduce dramatically the number of state and adjoint
state evaluations required to minimize the objective.

Although it partly relies on hand-coding, this strat-
egy has the interest of re-using many parts of the given
simulation code: the solvers and pre-conditioners used
to solve the state equations are re-used to solve the
adjoint equations.

The adjoint assembly routines are built with Au-
tomatic Differentiation, which amounts in a sense to
code re-use. In particular, a complex assembly rou-
tine, e.g. higher-order approximation, results in an
adjoint assembly routine of the same approximation
order at a very low programming cost.
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