
A Framework for Proving Correctness of Adjoint

Message Passing Programs

Uwe Naumann1, Laurent Hascoët2, Chris Hill3, Paul Hovland4

Jan Riehme5, and Jean Utke4

1 Corresponding Author: LuFG Informatik 12 (Software and Tools for
Computational Engineering) Department of Computer Science

RWTH Aachen University, 52056 Aachen, Germany
www: http://www.stce.rwth-aachen.de

email: naumann@stce.rwth-aachen.de
2 Projet TROPICS, INRIA Sophia-Antipolis, France

3 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts
Institute of Technology, Cambridge, MA, USA

4 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, USA

5 Department of Computer Science, University of Hertfordshire, Hatfield, UK

Abstract. Adjoint programs play a central role in modern numerical
algorithms such as large-scale sensitivity analysis, parameter tuning, or
general nonlinear optimization. They can be generated automatically by
compilers. The data-flow of the original program needs to be reversed. If
message passing is used, then any communication needs to be reversed
too. Crucial properties of the original program such as deadlock-freeness
and determinism must be preserved in the adjoint code. A formalism for
proving the correctness of compiler-generated adjoints is required but
has been missing so far to the best of our knowledge.
We propose a proof technique that relies on data dependences in par-
titioned global address space versions of the adjoint message passing
program. Assuming that the original program is deadlock-free and de-
terministic, the transformation rules can be shown to be correct in the
sense that the automatically generated adjoint program exhibits the same
properties while implementing the mathematical mapping from given
independent inputs onto their corresponding adjoints correctly. As an
example we discuss asynchronous unbuffered send/receive using MPI.

1 Adjoint Numerical Programs

Numerical simulation and optimization in computational science and engineering
has gained significant importance over the last decades. Our ability to under-
stand, for example, physical, chemical, and biological processes has improved
with the growing computational resources as well as with the deepening insight
into mathematical and algorithmic issues. Numerical simulation programs map
n independent inputs onto m dependent outputs (also referred to as the objec-
tives). Often n is very large while m is much smaller. The classical numerical



approach to quantifying the sensitivities of those objectives with respect to the
inputs through finite difference quotients yields a computational complexity of
O(n). Note that certain high-end applications such as, for example, the simu-
lation of ocean circulation [15] may have a runtime of several days to produce
physically relevant results on the latest high-performance computing platforms.
The number of independent inputs may reach values of the order of n = 109.

Hence, forward sensitivity analysis would require n runs of the simulation pro-
gram, which is simply not feasible.

Adjoint methods and corresponding program transformation techniques have
been developed to replace the dependence on n with that on the number of
objectives m. If m = 1, then adjoint programs deliver the sensitivities of the
objective with respect to all independent inputs at O(1). Adjoint codes can be
generated from a given numerical simulation program by a semantic program
transformation technique known as automatic differentiation (AD) [11]. A large
number of successful applications of AD to real-world problems in science and
engineering have been reported on in the literature. Refer, for example, to the
proceedings of the five international conferences on AD held in 1991 [9], 1996
[2], 2000 [8], 2004 [4], and 2008 [3].

Adjoint numerical codes consist of two parts: The augmented forward sec-
tion is an instrumented version of the original program containing statements
to memorize certain intermediate values that are required for the correct (and
efficient) evaluation of the adjoint program variables. The reverse section propa-
gates values of adjoint program variables in the opposite direction of the original
data flow. Optimal data-flow reversal is NP-complete [16, 17]. It involves the re-
versal of the flow of control in addition to reversing the order of the statements
within basic blocks and the generation of the corresponding adjoint statements.
Proofs of correctness of sequential adjoint programs are based on the chain rule
of differential calculus and, in particular, on its associativity. Refer to [11] for a
comprehensive discussion of the mathematical foundations of adjoint programs.
The purpose of this paper is served best by introducing adjoint programs by
means of an example.

Example Consider the following simple code fragment that is assumed to imple-
ment a function y = f(x).

y = sin(x)

if(c)

x = y + 1

else

x = y − 1

y = cos(x)

As an input to the adjoint routine f̄(x, x̄, ȳ) that is shown in Figure 1 the variable
x̄ should be initialized to zero in order to obtain x̄ = ȳ · f ′(x) on output. The
gradient f ′(x) at point x (a single scalar partial derivative in this simple case)
is obtained by initializing ȳ = 1 on input to f̄ .

2



Two stacks are required in a store-all approach to data-flow reversal: Sd is
used to store values that are required for the evaluation of the partial derivatives
of some assignments and that are (possibly6) overwritten by some subsequently
executed assignment. For example, the value of x at input is required to compute
the partial derivative of the left-hand side of the first assignment with respect
to x as the argument of the intrinsic sine. Hence, it needs to be stored prior to
being overwritten by the second or third assignment. The value of y right before
the fourth assignment is not required for the evaluation of partial derivatives of
any preceeding assignment. It does not need to be stored.

Sc contains information on the original flow of control that is to be reversed.
For example, we need to remember which branch of the if-statement is executed.
One solution is to push one or zero depending on the condition c being true
or false. The augmented forward section is shown in Figure 1 (a). The adjoint

y = sin(x)

if(c)

push(Sd, x)

x = y + 1

push(Sc, 1)

else

push(Sd, x)

x = y − 1

push(Sc, 0)

y = cos(x)

x̄+= − sin(x) · ȳ; ȳ = 0

if(pop(Sc))

y = pop(Sd)

ȳ+=x̄; x̄ = 0

else

y = pop(Sd)

ȳ+=x̄; x̄ = 0

x̄+=cos(x) · ȳ; ȳ = 0

(a) (b)

Fig. 1. Adjoint Code = Augmented Forward Section (a) + Reverse Section (b)

statements that correspond to a given original assignment (e.g. the last one) in-
crement the adjoints of all program variables on the original right-hand side (x̄)
with the product of the adjoint of the program variable on the original left-hand
side (ȳ) with the corresponding local partial derivative (cos(x)). The adjoint
of the left-hand side needs then to be reset to zero. Correctness of these rules
follows immediately from the chain rule applied to program variables that can
represent various instances due to overwrites. The order of the statements is
reversed in the reverse section. Correct reversal of the flow of control is achieved
through Sc. The reverse section of the example code is shown in Figure 1 (b).

This paper is motivated by the need for automatically generated adjoint ver-

6 Substantial conservative static data-flow analysis is usually involved in the process
of deciding which values to store. See, e.g., [12].

3



sions of parallel programs that use message passing. Related work comprises
[5–7, 13, 14, 20]. We describe a proof technique that allows us to show the cor-
rectness of adjoint message passing programs. Usually a number of semantically
equivalent adjoint versions can be generated for a given message passing pro-
gram. As developers of adjoint code compilers we consider the scenario of a given
transformation algorithm that needs to be proved right or wrong in the sense
that correct adjoints are computed for arbitrary inputs.

2 Correctness of Adjoint Communication Patterns

We consider the partitioned global address space (PGAS) [10] version Ps of a
message passing program P involving n processes p1, . . . , pn. In order for Ps

to operate on the union of the n memory spaces all program variables are aug-
mented with an additional dimension of length n. Communications are translated
into assignments between the augmented program variables. Auxiliary variables
are introduced for buffered communication. Barriers in asynchronous communi-
cation yield a set of PGAS versions for a given message passing program.

Example The program

s0

if (myrank == 1) isend(a, r); s1; if (myrank == 2) irecv(b, r); s2; wait(r)

s3

with unspecified sequences of statements si ≡ (s1
i ; s2

i ) = (s2
i ; s1

i ) for i = 0, . . . , 3
yields the following six PGAS codes

s0; b2 = a1; s1; s2; s3

s0; s2
1; b2 = a1; s1

1; s2; s3

s0; s1; b2 = a1; s2; s3

s0; s1; s2
2; b2 = a1; s1

2; s3

s0; s1; s1
2; b2 = a1; s2

2; s3

s0; s1; s2; b2 = a1; s3

The statements executed in the j-th section by the i-th processor are denoted
by s

j
i . Note that (s1

i ; s2
i ) = (s2

i ; s1
i ) as a result of the disjoint address spaces.

Hence, the PGAS code si; si+1 yields the following six semantically equivalent
sequential codes:

s1
i ; s1

i+1; s2
i ; s2

i+1

s2
i ; s2

i+1; s1
i ; s1

i+1

s1
i ; s2

i ; s1
i+1; s2

i+1

s1
i ; s2

i ; s2
i+1; s1

i+1

s2
i ; s1

i ; s1
i+1; s2

i+1

s2
i ; s1

i ; s2
i+1; s1

i+1

4



The partial order of the statements is induced by s
j
i < s

j
i+1. Assignments that

replace the original communication pattern yield further data dependences. An
exponential number of possible actual execution orders needs to be taken into
account when proving properties of PGAS programs. For this example we ob-
serve that the original program’s determinism implies that a1 is not written by
s1 nor s2. Similarly, b2 is not read by s2.

In order to prove the correctness of an adjoint of a message passing program
we need to show that its adjoint PGAS versions are semantically equivalent to
the PGAS versions of its adjoint. This is done by looking at all possible actual
execution orders.

2.1 Case Study: Asynchronous Unbuffered Send/Receive

In this section we present a case study to illustrate the use of the proposed
formalism. Similar proofs are required for a large number of communication
patterns. We are in the process of analyzing all communication patterns used
by our main target application including the MITgcm (mitgcm.org) as well as
ICON (...).

Proposition 1 Let P be a message passing program that involves two processes
p1 and p2 and let the integer variable myrank contain the respective process
identifiers. The communication pattern

si−1; if (myrank == 1) isend(a, r); si+1

. . .

sj−1; if (myrank == 2) irecv(b, r); sj+1

. . .

sk−1; wait(r); sk+1

in the forward section of the adjoint code yields

s̄k+1

if (myrank == 2) isend(b̄, r)

if (myrank == 1) irecv(ā, r)

s̄k−1

. . .

s̄j+1; if (myrank == 2) wait(r); b̄ = 0; s̄j−1

. . .

s̄i+1; if (myrank == 1) wait(r); ā+=t; s̄i−1

in the reverse section, where s̄k is the adjoint statement corresponding to sk.

5



Proof. The forward PGAS codes are given as

si−1; si+1; . . . sj−1; b2 = a1; sj+1; . . . sk−1; sk+1

si−1; si+1; . . . sj−1; s2
j+1; b2 = a1; s1

j+1; . . . sk−1; sk+1

. . .

si−1; si+1; . . . sj−1; sj+1; b2 = a1; . . . sk−1; sk+1

. . .

si−1; si+1; . . . sj−1; sj+1; . . . s1
k−1; b2 = a1; s2

k−1; sk+1

si−1; si+1; . . . sj−1; sj+1; . . . sk−1; b2 = a1; sk+1

The reverse sections of the adjoint PGAS codes become

s̄k+1; s̄k−1; . . . s̄j+1; ā1+=b̄2; b̄2 = 0; s̄j−1; . . . s̄i+1; s̄i−1

s̄k+1; s̄k−1; . . . s̄1
j+1; ā1+=b̄2; b̄2 = 0; s̄2

j+1; s̄j−1; . . . s̄i+1; s̄i−1

. . .

s̄k+1; s̄k−1; . . . ā1+=b̄2; b̄2 = 0; s̄j+1; s̄j−1; . . . s̄i+1; s̄i−1

. . .

s̄k+1; s̄2
k−1; ā1+=b̄2; b̄2 = 0; s̄1

k−1; . . . s̄j+1; s̄j−1; . . . s̄i+1; s̄i−1

s̄k+1; ā1+=b̄2; b̄2 = 0; s̄k−1; . . . s̄j+1; s̄j−1; . . . s̄i+1; s̄i−1

The variable a1 is not written by any of the statements in si+1; ... sk−1 as the
original message passing program is assumed to be deterministic. Similarly, b2

is neither read nor written by sj+1; ... sk−1. However, the value of a1 may be
read by statements in si+1; ... sk−1 implying that while ā1 may be incremented
by s̄k−1; ... s̄i+1 it is not read or written otherwise. The order of two successive
increment operations can be switched if the incremented variable is neither read
nor written in between the two increment operations.7 Moreover, the placement
of theses increment operations is arbitrary as long as the value of the increments
do not change. The value of b̄2 is neither read nor written by s̄k−1; ... s̄j+1.

Hence, the statement ā1+=b̄2 can be inserted at any position between s̄k+1 and
s̄j−1. In other words, the adjoints of all PGAS versions of the given message
passing program are equivalent.

7 For a given use of a variable we distinguish between reads, writes, and increment
operations as a special case of a read-write combination.

6



The PGAS versions of the adjoint message passing program are

s̄k+1; s̄k−1; . . . s̄j+1; t = b̄2; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1+=t; s̄i−1

s̄k+1; s̄k−1; . . . s̄1
j+1; t = b̄2; b̄2 = 0; s̄2

j+1; s̄j−1; . . . s̄i+1; ā1+=t; s̄i−1

. . .

s̄k+1; s̄k−1; . . . t = b̄2; s̄j+1; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1+=t; s̄i−1

. . .

s̄k+1; s̄2
k−1; t = b̄2; s̄1

k−1; . . . s̄j+1; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1+=t; s̄i−1

s̄k+1; t = b̄2; s̄k−1; . . . s̄j+1; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1+=t; s̄i−1

As a compiler-generated auxiliary variable, t can be guaranteed not to be read
or written by any of the statements s̄k−1; ... s̄i+1. From our previous argument
we recall that ā1 may be incremented by s̄k−1; ... s̄i+1 but it is not read or
written otherwise. Hence, the increment operation of ā1 with t can be placed
in between s̄i+1 and s̄i−1. As the value of b̄2 is neither read nor written by
s̄k−1; ... s̄j+1 the fixed placement of b̄2 = 0 in between s̄j+1 and s̄j−1 does not
change the program’s semantics either. The auxiliary variable t can be removed
as the result of copy-propagation [1] yielding

t = b̄2; . . . ā1+=t == ā1+=b̄2 .

Consequently, the adjoint PGAS versions of the message passing program are
semantically equivalent to the PGAS versions of the adjoint message passing
program. �

3 Conclusion and Outlook

A formalism for proving the correctness of adjoint message passing programs
has been illustrated by means of an asynchronous unbuffered send/receive com-
munication between two processes. This method is applied to a large number
of transformation rules that are being implemented in OpenAD [21] and the
differentiation-enabled NAGWare Fortran compiler [18]. It is based on analyz-
ing the data dependences in the PGAS versions of the original message passing
program. Rigorous proofs can thus be constructed that rely only on program
analysis techniques used in classical compiler construction. We intent to con-
sider ideas presented in [19] in order to investigate a potential automatization
of this proof technique.

One of our long-term goals is to build an adjoint message passing library
on top of MPI. Such an extension is desirable for achieving satisfactory effi-
ciency. The ability to prove the correctness of given communication patterns is
a fundamental ingredient of this ambitious research and development project.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

7



2. M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differ-
entiation: Techniques, Applications, and Tools, Proceedings Series. SIAM, 1996.

3. C. Bischof, M. Bücker, P. Hovland, U. Naumann, and J. Utke, editors. Advances
in Automatic Differentiation, LNCSE, Berlin, 2008. Springer. To appear.

4. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors. Automatic
Differentiation: Applications, Theory, and Tools, number 50 in LNCSE, Berlin,
2005. Springer.

5. A. Carle and M. Fagan. Automatically differentiating MPI-1 datatypes: The com-
plete story. In [8], chapter 25, pages 215–222. Springer, 2002.

6. C.Faure and P.Dutto. Extension of Odyssée to the MPI library – reverse mode.
Rapport de recherche 3774, INRIA, Sophia Antipolis, Oct. 1999.

7. C.Faure, P.Dutto, and S.Fidanova. Odysée and parallelism: Extension and valida-
tion. In Procceedings of The 3rd European Conference on Numerical Mathematics
and Advanced Applications, Jyväskylä, Finland, July 26-30, 1999, pages 478–485.
World Scientific, 2000.

8. G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Auto-
matic Differentiation of Algorithms – From Simulation to Optimization, New York,
2002. Springer.

9. G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Imple-
mentation, and Application, Proceedings Series. SIAM, 1991.

10. T. El-Ghazawi. Partitioned global address space (pgas) programming languages.
Tutorial at SC07. See http://sc07.supercomputing.org/.

11. A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation. SIAM, Apr. 2000.

12. L. Hascoët, U. Naumann, and V. Pascual. To-be-recorded analysis in reverse mode
automatic differentiation. Future Generation Computer Systems, 21:1401–1417,
2005.

13. P. Heimbach, C. Hill, and R. Giering. Automatic generation of efficient adjoint
code for a parallel Navier-Stokes solver. In P. Sloot et al., editor, Proceedings of
ICCS 2002, volume 2330 of LNCS, pages 1019–1028, Berlin, 2002. Springer.

14. P. Hovland and C. Bischof. Automatic differentiation of message-passing parallel
programs. In Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing, pages 98–104,
Los Alamitos, CA, 1998. IEEE Computer Society Press.

15. J. Marotzke, R. Giering, K. Zhang, D. Stammer, C. Hill, and T. Lee. Construction
of the adjoint MIT ocean general circulation model and application to Atlantic
heat transport variability. J. Geophysical Research, 104, C12:29,529–29,547, 1999.

16. U. Naumann. Call tree reversal is NP-complete. In [3]. 2008. To appear.
17. U. Naumann. DAG reversal is NP-complete. J. Discr. Alg., 2008. To appear.
18. U. Naumann and J. Riehme. A differentiation-enabled Fortran 95 compiler. ACM

Transactions on Mathematical Software, 31(4), 2005.
19. D. Shasha and M. Snir. Efficient and correct execution of parallel programs that

share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.
20. M. Mills Strout, B. Kreaseck, and P. Hovland. Data-flow analysis for MPI pro-

grams. In ICPP ’06: Proceedings of the 2006 International Conference on Parallel
Processing, pages 175–184, Washington, DC, USA, 2006. IEEE Computer Society.

21. J. Utke, U. Naumann, C. Wunsch, C. Hill, P. Heimbach, M. Fagan, N. Tallent, and
M. Strout. OpenAD/F: A modular, open-source tool for automatic differentiation
of Fortran codes. ACM Transactions on Mathematical Software, 34(4), 2008. To
appear.

8


