
Tangent-on-Tangent vs. Tangent-on-Reverse for
Second Differentiation of Constrained Functionals

Massimiliano Martinelli and Laurent Hascoët

INRIA, TROPICS team, 2004 route des Lucioles 06902 Sophia-Antipolis France
{Massimiliano.Martinelli,Laurent.Hascoet}@sophia.inria.fr

Summary. We compare the Tangent-on-Tangent and the Tangent-on-Reverse strategies to
build programs that compute second derivatives (a Hessian matrix) using Automatic Differ-
entiation. In the specific case of a constrained functional,we find that Tangent-on-Reverse
outperforms Tangent-on-Tangent only above a relatively high number of input parameters.
We describe the algorithms to help the end-user apply the twostrategies to a given application
source. We discuss the modification needed inside the AD toolto improve Tangent-on-Reverse
AD.

Key words: Automatic Differentiation, Gradient, Hessian, Tangent-on-Tangent, Tangent-on-
Reverse, Software Tools, TAPENADE

1 Introduction

As computational power increases, Computational Fluid Dynamics evolves towards more
complex simulation codes and more powerful optimization capabilties. However these high
fidelity models cannot be used only for deterministic design, assuming perfect knowledge of
all environmental and operational parameters. Many reasons, including social expectations,
demand accuracy and safety control and even high fidelity models remain subject to errors
and uncertainty. Numerical error for instance, need be controlled and partly corrected with
linearized models. Uncertainty arises everywhere, e.g. inthe mathematical model, in man-
ufacturing tolerances, and in operational conditions thatdepend on atmospheric conditions.
Techniques for propagating these uncertainties are now well established [16; 13; 5]. They re-
quire extra computational effort, but really improve the robustness of the design [9], and can
help the designer sort out the crucial sources of uncertainty from the negligible.

We consider uncertainty propagation for acost functional

j : γ 7→ j(γ) = J(γ ,W) ∈ R (1)

with uncertainty affecting thecontrol variablesγ ∈ R
n, and where thestate variables W=

W(γ) ∈ R
N satisfy a (nonlinear)state equation

Ψ (γ ,W) = 0. (2)

2 Massimiliano Martinelli and Laurent Hascoët

Equation (2) expresses the discretisation of the PDE governing the mathematical model of the
physical system e.g. the stationary part of the Euler or Navier-Stokes equations. We view (2)
as anequality constraintfor the functional (1).

The two main type ofprobabilisticapproaches for propagating uncertainties are the Monte
Carlo methods [10; 4] and the perturbative methods based on the Taylor expansion (Method of
Moments [13] and Inexpensive Monte-Carlo [5]). The straightforward full nonlinear Monte-
Carlo technique can be considered the most robust, general and accurate method, but it proves
prohibitively slow since it converges only with the square root of the number of nonlinear
simulations. In contrast, the Method of Moments gives approximate values of the mean and
variance at the cost of only one nonlinear simulation plus a computation of the gradient and
Hessian of the constrained functional. This requires far less runtime than the full nonlinear
Monte-Carlo, but at the (high) cost of developing the code that computes the gradientj ′ and
Hessianj ′′ of the constrained functional.

Hessians also occur in the context ofrobust design[1], in which the optimization cost
functionals involve extra robustness terms such asjR(γ) = j(γ)+ 1

2 ∑ j ′′i jCi j , where theCi j are
elements of the covariance matrix of uncertain variables.

Writing the code for the gradient and Hessian by hand is tedious and error-prone. A
promising alternative is to build this code by Automatic Differentiation (AD) of the program
that computes the constrained functional. This program hasa general structure sketched in

Initialize γh,W0

ComputeΨ i =Ψ (γh,Wi)

ComputeδWi = F(Ψ i) (implicit or explicit)

UpdateWi+1 = Wi +δWi

Test||δWi || = 0
False

i = i +1

flow solver(gamma,w)

True

state(psi,gamma,w)

Wh = Wi+1

Computej = J(γh,Wh)

func(j,gamma,w)

Fig. 1. Program structure for evaluating a constrained functionalwith a fixed-point algorithm

Fig. 1: a flow solver computes iteratively the stateWh satisfying (2) from a givenγh, then
computes j . This program can be seen as adriver that calls application-specific routines
state(psi,gamma,w) for the state residualΨ andfunc(j,gamma,w) for the func-
tional J. Let us contrast two ways of building the program that computes j ′ and j ′′ using
AD:

ToT vs. ToR for Second Differentiation 3

• Brute-force differentiation:Differentiate directly the functionj as a function ofγ . This
means that the entire program of Fig. 1 is differentiated as awhole. This takes little ad-
vantage of the fixed-point structure of the algorithm. Performance is often poor as the dif-
ferentiated part contains the iterative state equation solver flow solver(gamma,w).
To be reliable, this strategy requires a careful control of the number of iterations, which
is out of the scope of AD tools [6; 2]. A small change of the input may radically change
the control flow of the program, e.g. the iteration number inflow solver. The com-
puted function is thus only piecewise-continuous, leavingthe framework where AD is
fully justified. Regarding performances, sincej is scalar,reverse modeAD [7, Sec. 3-4]
is recommended overtangent modeto computej ′, and for the same reason Tangent-on-
Reverse is recommended over Tangent-on-Tangent forj ′′.

• Differentiation of explicit parts:Do not differentiate the driver part, but only the routines
for Ψ andJ, then plug the resulting routines into a new, specialized driver to compute the
gradient and Hessian. This sophisticated way proves more efficient and we will focus on
it in the sequel. Notice that the derivatives forΨ andJ need to be computed only at the
final stateWh, which results in a cheaper reverse mode because fewer intermediate values
must be restored in reverse order during the computation of the derivatives.

For the gradient, several works advocate and illustrate this second way [3]. For the Hes-
sian, the pioneering works of Taylor et al. [14; 15] define themathematical basis and examine
several approaches, of which two apply to our context of a constrained functional with a scalar
output j . Following Ghate and Giles [5], we also call these approaches Tangent-on-Reverse
(ToR) and Tangent-on-Tangent (ToT). The general complexity analysis provided in [14] finds
linear costs with respect to the sizen of γ . This leads to the conclusion that ToT is uncon-
ditionally better than ToR. This is slightly counter-intuitive compared to the general case of
brute-force differentiation. However in our context wherematrices can be too large to be
stored, every linear system must be solved using a matrix-free method (e.g. GMRES) with an
ILU(1) preconditioner. This paper revisits the Hessian evaluation problem in this context. The
full mathematical development can be found in [11; 12].

Section 2 studies the ToR approach while Sec. 3 studies the ToT approach, both sections
going from the mathematical equations to the algorithm and to a refined complexity analysis.
Section 4 compares the two approaches and gives first experimental measurements. We claim
that ToT is no longer linear with respect ton, and for large enough, yet realisticn, ToR does
outperform ToT. Section 5 discusses the ToR approach from the point of view of the AD tool.

2 Tangent-on-Reverse Approach

Following [14], the projection of the Hessian along a direction δ ∈ R
n is given by

(

d2 j

dγ2

)

δ =
∂

∂γ

(

∂J
∂γ

)T

δ +
∂

∂W

(

∂J
∂γ

)T

θ −
∂

∂γ

[(

∂Ψ
∂γ

)T

Π
]

δ −
∂

∂W

[(

∂Ψ
∂γ

)T

Π
]

θq−

(

∂Ψ
∂γ

)T

λ

where vectorsΠ , θ , andλ are the solutions of

(

∂Ψ
∂W

)T

Π =

(

∂J
∂W

)T

(

∂Ψ
∂W

)

θ = −

(

∂Ψ
∂γ

)

δ
(

∂Ψ
∂W

)T

λ =
∂

∂γ

(

∂J
∂W

)T

δ +
∂

∂W

(

∂J
∂W

)T

θ −
∂
∂γ

[(

∂Ψ
∂W

)T

Π
]

δ −
∂

∂W

[(

∂Ψ
∂W

)T

Π
]

θ

4 Massimiliano Martinelli and Laurent Hascoët

From these equations, we derive the algorithm sketched by Fig. 2. It evaluates the Hes-

sian column by column, repeatedly computingd2 j
dγ2 ei for each componentei of the canonical

basis ofRn. Notice that the computation ofΠ is independent from the particular directionδ
and is therefore done only once. In contrast, new vectorsθ ,λ are computed for eachei . The

Solve for Π in
(

∂Ψ
∂W

)T

Π =

(

∂J
∂W

)T

For each i ∈ 1..n

Solve for θ in
(

∂Ψ
∂W

)

θ = −

(

∂Ψ
∂γ

)

ei

Compute ˙̄γJ =
∂
∂γ

(

∂J
∂γ

)T

ei +
∂

∂W

(

∂J
∂γ

)T

θ

Compute ˙̄WJ =
∂

∂γ

(

∂J
∂W

)T

ei +
∂

∂W

(

∂J
∂W

)T

θ

Compute ˙̄γΨ =
∂
∂γ

[(

∂Ψ
∂γ

)T

Π
]

ei +
∂

∂W

[(

∂Ψ
∂γ

)T

Π
]

θ

Compute ˙̄WΨ =
∂
∂γ

[(

∂Ψ
∂W

)T

Π
]

ei +
∂

∂W

[(

∂Ψ
∂W

)T

Π
]

θ

Solve for λ in
(

∂Ψ
∂W

)T

λ = ˙̄WJ −
˙̄WΨ

Compute
(

d2 j

dγ2

)

ei = ˙̄γJ − ˙̄γΨ −

(

∂Ψ
∂γ

)T

λ
End For

Fig. 2. Algorithm to compute the Hessian with the ToR approach

vectorsΠ ,θ , andλ are solutions of linear systems, and can be computed using aniterative
linear solver. In our experiments, we use GMRES with an ILU(1) preconditioner built from
an available approximate Jacobian. During this process, the left-hand side of the equations for
Π ,θ , andλ is evaluated repeatedly for different vectors. The routinethat performs this eval-
uation is obtained by differentiation of the routinestate that computesΨ , in tangent mode

for θ , in reverse mode forΠ andλ . The rest of the algorithm needs∂J
∂W

T
, ∂Ψ

∂ γ ei ,
∂Ψ
∂ γ

T
λ , which

are obtained through a single tangent or reverse differentiation. It also needs the complex ex-
pressions that we namē̇WJ, ˙̄γJ, ˙̄WΨ , and ˙̄γΨ , which are obtained through ToR differentiation
of the routinesstate (evaluatingΨ(γ ,W)) andfunc (evaluatingJ(γ ,W)). For instance the
ToR differentiation ofstate with respect to input variablesgamma andw has the following
inputs and outputs:

state bd(psi
↓
Ψ

,

Π
↓

psib,

γ
↓

gamma,

ei
↓

gammad,gammab
↓

(

∂Ψ
∂ γ

)T
Π

,gammabd
↓
˙̄γΨ

,

W
↓
w ,

θ
↓
wd, wb

↓
(

∂Ψ
∂W

)T
Π

,wbd
↓
˙̄WΨ

)

Similar differentiation offunc gives us ˙̄WJ and ˙̄γJ.

ToT vs. ToR for Second Differentiation 5

After implementing this algorithm, we observe that all iterative solutions take roughly the
same number of stepsniter. Moreover, the runtime to computeΨ largely dominates the runtime
to computeJ, and the same holds for their derivatives. A differentiatedcode is generally slower
than its original code by a factor we callα, which varies with the original code. We callαT

(resp.αR) the slowdown factor of the tangent (resp. reverse) code ofΨ . We call αTR the
slowdown factor of the second differentiation step that computes the ToR derivative ofΨ .
Normalizing with respect to the runtime to computeΨ , we find the cost for the full Hessian:

niterαR+n
(

niterαT +αTRαR+niterαR
)

3 Tangent-on-Tangent Approach

In contrast, the ToT approach computes each element of the Hessian separately. Following [14]
and introducing the differential operatorD2

i,k for functionsF(γ ,W) as:

D2
i,kF =

∂
∂γ

(

∂F
∂γ

ei

)

ek +
∂

∂W

(

∂F
∂γ

ei

)

dW
dγk

+
∂

∂W

(

∂F
∂γ

ek

)

dW
dγi

+
∂

∂W

(

∂F
∂W

dW
dγi

)

dW
dγk

.

the elements of the Hessian are

d2 j
dγidγk

= D2
i,kJ+

∂J
∂W

d2W
dγidγk

= D2
i,kJ−ΠT (D2

i,kΨ)

whereΠ is the adjoint state, i.e. the solution of the linear system
(∂Ψ

∂W

)TΠ =
(∂J

∂W

)T . These
equations give us the algorithm sketched by Fig. 3 to evaluate the Hessian element by element.
Efficiency comes from the key observation that the total derivativesdW

dγi
occur in many places

and should be precomputed and stored. They are actually theθ of the ToR approach, for each
vectorei of the canonical basis ofRn. TermsD2

i,kΨ (resp.D2
i,kJ) are obtained through ToT

Solve for Π in
(

∂Ψ
∂W

)T

Π =

(

∂J
∂W

)T

For each i ∈ 1..n

Solve for θi in
(

∂Ψ
∂W

)

θi = −

(

∂Ψ
∂γ

)

ei and store it

End For

For each i ∈ 1..n

For each k∈ 1..i

Compute
d2 j

dγidγk
= D2

i,kJ−ΠT (D2
i,kΨ)

End For
End For

Fig. 3. Algorithm to compute the Hessian with the ToT approach

differentiation of routinestate (resp.func). For instance the ToT differentiation ofstate
with respect to input variablesgamma andw has the following inputs and outputs:

6 Massimiliano Martinelli and Laurent Hascoët

state dd(psi
↓
Ψ

,psid
↓

Ψ̇

,psidd
↓

D2
i,kΨ

,

γ
↓

gamma,

ek
↓

gammad0,

ei
↓

gammad,

W
↓
w ,

θk
↓

wd0,

θi
↓
wd). (3)

Similar differentiation offunc gives usD2
i,kJ.

After implementing this algorithm, we observe that the expensive parts are solving for the
θi and computing theD2

i,kΨ . With the same conventions as in Sec. 2, and introducingαTT as
the slowdown factor for the second tangent differentiationstep, we obtain the cost for the full
Hessian:

niterαR+nniterαT +
n(n+1)

2
αTTαT

Observe that this cost has a quadratic term inn.

4 Comparing ToR and ToT Approaches

The slowdown factorsα resulting from AD depend on the differentiation mode (tangent or
reverse), on the technology of the AD tool, and on the original program. For instance, on the
11 big codes that we use as validation tests for the AD toolTAPENADE[8], we observe thatαT

ranges from 1.02 to 2.5 (rough average 1.8), andαR ranges from 2.02 to 9.4 (rough average
5.0). Notice thatTAPENADEoffers the possibility to perform the second level of differentiation
(e.g “T” in “ToR”) in multi-directional (also called “vector”) mode. This can slightly reduce
the slowdownαTT by sharing the original function evaluation between many differentiation
directions. For technical reasons, we didn’t use this possibility yet. However this doesn’t affect
the quadratic nature of the complexity of the ToT approach.

On the 3D Euler CFD code that we are using for this first experiment, we measuredαT =
2.4, αR = 5.9, αTT = 4.9 andαTR = 3.0, with very small variations between different runs.
The higherαTT may come from cache miss problems, as first and second derivative arrays try
to reside in cache together with the original arrays.

We also observe that the number of iterationsniter of the GMRES solver remain remark-
ably constant between 199 and 201 for the tangent linear systems, and between 206 and 212
for the adjoint linear systems.

With these figures and our cost analysis, we find that ToR will outperform ToT for the
Hessian when the dimensionn is over a break-even value of about 210.

It turns out that this CFD code does not easily lend itself to increasing the value ofn above
a dozen. So we have devised a second test case, with a simplified (artificial) nonlinear state
functionΨ in which the dimension of the stateW was 100000 and the number of control vari-
ables moves from 1 to 280. To be more precise we used the functionalJ(γ ,W) = ∑N

i=1

√

|Wi |
and the state residual

Ψi(γ ,W) =
1

W2
i

−
1

[

1− f (γ)
]2α2

i

+
1

W2
i ∏n

j=1 γ j
−

1

α2
i

with αi > 0, f (γ) = ∑n−1
i=1

[

(1−γi)
2+10−6(γi+1−γ2

i)2
]

. With the above definitions and using
γ = (1,1, . . . ,1) the state equationΨ = 0 is satisfied withWi = ±αi . For all runs, we observe
that the solutions of the linear systems requires 64 GMRES iterations (without precondition-
ing) for the tangent and 66 iterations for the adjoint version, with very little variability with
respect to the rhs. Figure 4 shows the CPU times for the ToT andToR approaches, when the
numbern of control variables varies from 1 to 280. We observe that ToRis cheaper than ToT

ToT vs. ToR for Second Differentiation 7

whenn & 65. We also observe the linear behaviour of the ToR cost and the quadratic cost for
ToT, as expected.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

C
P

U
 ti

m
e

(s
ec

.)

Num. control variables

Hessian ToT
Hessian ToR

Fig. 4. CPU times cost to compute the full Hessian via the ToT and ToR approaches, with
respect to the number of control variables. We assume the adjoint stateΠ is available and its
cost (equal for ToT and ToR and independent fromn) is not shown in the figure.

It can be observed that all the linear systems always use the same two matrices∂Ψ
∂W and

∂Ψ
∂W

T
. This can be used to devise solution strategies even more efficient than the GMRES+ILU

that we have been using here. That could further decrease therelative cost of the solving steps,
and therefore strengthen the advantage of the ToR approach.

We have been considering the costs for computing the full Hessian, which is not always
necessary. Actual choice of the approach also depends on which part of the Hessian is ef-
fectively required. The algorithms and costs that we provide can be easily adapted to obtain
single Hessian elements, Hessian diagonals, or Hessian×vector products. Specifically for the
Hessian×vector case, the cost through the ToR approach becomes independent from the num-
bern of control variables, namely

niterαR+niterαT +αTRαR+niterαR

whereas the ToT approach still requires computing all theθi for i ∈ 1..n, for a total cost of

niterαR+nniterαT +nαTTαT .

In this case, ToR outperforms ToT starting from much smallervalues ofn.

5 The Art of ToR

This work gives us the opportunity to study the difficulties that arise when building the ToR
code with an AD tool. These questions are not limited to the context of constrained functionals.

8 Massimiliano Martinelli and Laurent Hascoët

Assuming that a source transformation tool is able to handlethe complete source lan-
guage, its repeated application should not be problematic.AD tools such asTAPENADE be-
long to this category. Indeed, ToT approach works fine, although some additional efficiency
could be gained by detecting common derivative sub-expressions. However, problems arise
with ToR, due to the presence of external calls for the stack management in the reverse code.
These external calls result from the architectural choice of the reverse mode ofTAPENADE,
which uses a storage stack. The situation might be differentwith reverse codes that rely on
recomputation instead of storage.

With the stack approach, stack primitives are external routines because many of our users
still use Fortran77, which has no standard memory allocation mechanism. Though reverse
AD of programs with external calls is possible, it must be done with care. It relies on the
user to provide the type and data flow information of the external routines, together with their
hand-written differentiated versions. This user-given data is crucial and mistakes may cause
subtle errors. Maybe the safest rule of thumb is to write an alternative Fortran implementation
of the external primitives as a temporary replacement, thendifferentiate the code, and then
replace back with the external primitives. For instance in the present case, we can easily write a
replacementPUSH andPOP using a large enough storage array. After reverse AD, we observe
two things:

• First, as shown in Fig. 5, the storage array remains passive until some active variable is
PUSHed. It then remains active forever, even when reaching thePOP of some variable
that was passive when it wasPUSHed. As a consequence, the matchingPOP of a passive
PUSH may be active.

• Second, the storage array has given birth to a separate, differentiated storage array devoted
to derivatives.

This guides us on the data flow information to be provided about PUSH andPOP, and most im-
portantly on the correct implementation of their tangent derivatives. SpecificallyPUSH D(x,
xd) must pushx onto the original stack andxd onto the differentiated stack, andPOP D(x,
xd) must setxd to 0.0 when the differentiated stack happens to be empty. Incidentally, a
different implementation using a single stack would produce a run-time error.

Although correct, the ToR code shown in Fig. 5 is not fully satisfactory. The last call
to POP D should rather be a plainPOP. Also, once the stack becomes active, allPUSH’es
becomePUSH D, even when the variable is passive, in which case a0.0 is put on the differ-
entiated stack. We would prefer a code in which matchingPUSH/POP have their own activity
status, and do not get differentiated when thePUSHed variable is passive. In general, match-
ingPUSH/POP cannot be found by static analysis of the reverse code. It requires an annotated
source.

Although matchingPUSH/POP’s cannot be found from the reverse code, this information
was available when the reverse code was built. Thus,TAPENADE now provides support to
the ToR differentiation by placing annotations in the reverse code, and by using those during
tangent differentiation to find all calls to stack operations that need not be differentiated.

6 Conclusion

We have studied two approaches to efficiently compute the second derivatives of constrained
functionals. These approaches appear particularly adapted in the case where the constraint
contains a complex mathematical model such as PDE’s, which is generally solved iteratively.

ToT vs. ToR for Second Differentiation 9

Original: Reverse: Tangent-on-Reverse:
F : a,b,c 7→ r F : a,b,c,r 7→ a,b,c Ḟ : a, ȧ,b, ḃ,c, ċ,r, ṙ 7→ a, ȧ,b, ḃ,c, ċ

x = 2.0
r = x*a

x += c
r += x*b

x = 3.0
r += x*c

x = 2.0
r = x*a
PUSH(x)

x += c
r += x*b
PUSH(x)

x = 3.0
r += x*c
x= c*r

c+= x*r
POP(x)
x= 0.0

x= b*r

b+= x*r
POP(x)

c+= x
x+= a*r

a+= x*r
x= 0.0

ẋ= 0.0
x = 2.0

PUSH(x)
ẋ= ċ
x += c

PUSH D(x,ẋ)
ẋ= 0.0
x = 3.0

ċ+= x*ṙ
c+= x*r
POP D(x,ẋ)

ẋ= ḃ*r+b*ṙ
x= b*r
ḃ+= ẋ*r+x*ṙ
b+= x*r
POP D(x,ẋ)
ċ+= ẋ
c+= x

ȧ+= ẋ*r+x*ṙ
a+= x*r

Fig. 5. ToR differentiation on a small code.Left: Original code,middle: Reverse code,
right: ToR code. Reverse-differentiated variables (x) are shown with a bar above, tangent-
differentiated variables (˙x, ẋ) with a dot above. Code in light gray is actually dead and stripped
away byTAPENADE, with no influence on the present study.

Both approaches rely on building differentiated versions of selected subroutines of the original
program by means of Automatic Differentiation.

Our main result is that comparing complexity of the Tangent-on-Reverse approach versus
Tangent-on-Tangent is not so clear-cut, and it depends on the sizen of the problem and on
the derivatives effectively needed. Also, we propose an automated implementation of both
approaches, based on shell scripts and using the AD toolTAPENADE, which had to be modified
for better results in the Tangent-on-Reverse mode.

In addition to applying these approaches to even larger CFD codes, one shorter term
further research is to study the Reverse-on-Tangent alternative to Tangent-on-Reverse. This
option might prove easier for the AD tool, but further experiments are required to compare
performances.

References

[1] Beyer, H.G., Sendhoff, B.: Robust optimization – A comprehensive survey. Comput.
Methods Appl. Mech. Engrg.196, 3190–3218 (2007)

10 Massimiliano Martinelli and Laurent Hascoët

[2] Christianson, B.: Reverse accumulation and attractivefixed points. Optimization Meth-
ods and Software3, 311–326 (1994)

[3] Courty, F., Dervieux, A., Koobus, B., Hascoët, L.: Reverse automatic differentiation for
optimum design: from adjoint state assembly to gradient computation. Optimization
Methods and Software18(5), 615–627 (2003)

[4] Garzon, V.E.: Probabilistic aerothermal design of compressor airfoils. Ph.D. thesis, MIT
(2003)

[5] Ghate, D., Giles, M.B.: Inexpensive Monte Carlo uncertainty analysis, pp. 203–210.
Recent Trends in Aerospace Design and Optimization. Tata McGraw-Hill, New Delhi
(2006)

[6] Gilbert, J.: Automatic differentiation and iterative processes. Optimization Methods and
Software1, 13–21 (1992)

[7] Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. No. 19 in Frontiers in Appl. Math. SIAM (2000)

[8] Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Tech. Rep. 0300, INRIA (2004)
[9] Huyse, L.: Free-form airfoil shape optimization under uncertainty using maximum ex-

pected value and second-order second-moment strategies. Tech. Rep. 2001-211020,
NASA (2001). ICASE Report No. 2001-18

[10] Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer-Verlag (2001)
[11] Martinelli, M.: Sensitivity Evaluation in Aerodynamic Optimal Design. Ph.D. thesis,

Scuola Normale Superiore (Pisa) - Université de Nice-Sophia Antipolis (2007)
[12] Martinelli, M., Dervieux, A., Hascoët, L.: Strategies for computing second-order deriva-

tives in CFD design problems. In: Proceedings of WEHSFF2007(2007)
[13] Putko, M.M., Newman, P.A., Taylor III, A.C., Green, L.L.: Approach for uncertainty

propagation and robust design in CFD using sensitivity derivatives. Tech. Rep. 2528,
AIAA (2001)

[14] Sherman, L.L., Taylor III, A.C., Green, L.L., Newman, P.A.: First and second-order aero-
dynamic sensitivity derivatives via automatic differentiation with incremental iterative
methods. Journal of Computational Physics129, 307–331 (1996)

[15] Taylor III, A.C., Green, L.L., Newman, P.A., Putko, M.M.: Some advanced concepts in
discrete aerodynamic sensitivity analysis. AIAA Journal41(7), 1224–1229 (2003)

[16] Walters, R.W., Huyse, L.: Uncertainty analysis for fluid mechanics with applications.
Tech. Rep. 2002-211449, NASA (2002). ICASE Report No. 2002-1

