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Summary. We compare the Tangent-on-Tangent and the Tangent-ondestrategies to
build programs that compute second derivatives (a Hess&rixpusing Automatic Differ-
entiation. In the specific case of a constrained functiowal,find that Tangent-on-Reverse
outperforms Tangent-on-Tangent only above a relativejh mumber of input parameters.
We describe the algorithms to help the end-user apply thestrategies to a given application
source. We discuss the modification needed inside the ADdawiprove Tangent-on-Reverse
AD.
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1 Introduction

As computational power increases, Computational Fluid dyics evolves towards more
complex simulation codes and more powerful optimizatiopaddlties. However these high

fidelity models cannot be used only for deterministic desagsuming perfect knowledge of
all environmental and operational parameters. Many regsosluding social expectations,
demand accuracy and safety control and even high fidelityefsagmain subject to errors

and uncertainty. Numerical error for instance, need berotiatl and partly corrected with

linearized models. Uncertainty arises everywhere, e.ghénmathematical model, in man-
ufacturing tolerances, and in operational conditions theggiend on atmospheric conditions.
Techniques for propagating these uncertainties are nohestblished [16; 13; 5]. They re-

quire extra computational effort, but really improve théustness of the design [9], and can
help the designer sort out the crucial sources of unceyt&iom the negligible.

We consider uncertainty propagation focast functional

jry= iy =3dy,W)eR 1)

with uncertainty affecting theontrol variablesy € R", and where thestate variables W=
W(y) € RN satisfy a (nonlinearjtate equation

¥ (y,W) =0. &)
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Equation (2) expresses the discretisation of the PDE gowgthe mathematical model of the
physical system e.g. the stationary part of the Euler or &la8tokes equations. We view (2)
as anequality constrainfor the functional (1).

The two main type oprobabilisticapproaches for propagating uncertainties are the Monte
Carlo methods [10; 4] and the perturbative methods baseldeofdylor expansion (Method of
Moments [13] and Inexpensive Monte-Carlo [5]). The stréfigtward full nonlinear Monte-
Carlo technique can be considered the most robust, gemat@aurate method, but it proves
prohibitively slow since it converges only with the squao®trof the number of nonlinear
simulations. In contrast, the Method of Moments gives agpipnate values of the mean and
variance at the cost of only one nonlinear simulation plusraputation of the gradient and
Hessian of the constrained functional. This requires fas leintime than the full nonlinear
Monte-Carlo, but at the (high) cost of developing the code tomputes the gradieiit and
Hessianj” of the constrained functional.

Hessians also occur in the contextrobust desigr{1], in which the optimization cost
functionals involve extra robustness terms suciedg) = j(y) + 5 5 j{iCij, where theC;j are
elements of the covariance matrix of uncertain variables.

Writing the code for the gradient and Hessian by hand is tedliand error-prone. A
promising alternative is to build this code by Automatic fBientiation (AD) of the program
that computes the constrained functional. This programahgeneral structure sketched in

e [ mitalize o WO | at e(psi , garma, w
4 i—=i+1 i+ i )
Compute! = W (y,,W') ‘
|

v
| ComputedW' = F (%) (implicit or explicit) |
| Updatew I =w' + oW |
l f1 owsol ver (gammma, W

False i
Y | Test]|aW'| =0 \ )

/f unc(j , gamm, w)

K “ Computej = J(yh, Wh) H J

Fig. 1. Program structure for evaluating a constrained functiovitli a fixed-point algorithm

Fig. 1: a flow solver computes iteratively the sti¥g satisfying (2) from a giveny, then
computesj. This program can be seen agldver that calls application-specific routines
st at e( psi, gama, w) for the state residuaV andf unc(j, ganmea, w) for the func-
tional J. Let us contrast two ways of building the program that corapyt and j” using
AD:
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e Brute-force differentiationDifferentiate directly the functiorj as a function ofy. This
means that the entire program of Fig. 1 is differentiated a$ale. This takes little ad-
vantage of the fixed-point structure of the algorithm. Perfance is often poor as the dif-
ferentiated part contains the iterative state equationeséll ow_sol ver ( gamra, w) .

To be reliable, this strategy requires a careful controlhef htumber of iterations, which
is out of the scope of AD tools [6; 2]. A small change of the inmay radically change
the control flow of the program, e.g. the iteration numbef irow_sol ver . The com-
puted function is thus only piecewise-continuous, leavimg framework where AD is
fully justified. Regarding performances, singés scalarreverse modéD [7, Sec. 3-4]

is recommended oveangent moddéo computej’, and for the same reason Tangent-on-
Reverse is recommended over Tangent-on-Tangerijt'for

o Differentiation of explicit partsDo not differentiate the driver part, but only the routines
for ¥ andJ, then plug the resulting routines into a new, specializégedto compute the
gradient and Hessian. This sophisticated way proves méicgeeft and we will focus on
it in the sequel. Notice that the derivatives f8randJ need to be computed only at the
final state\,, which results in a cheaper reverse mode because fewemiatkate values
must be restored in reverse order during the computatioheofierivatives.

For the gradient, several works advocate and illustrategbcond way [3]. For the Hes-
sian, the pioneering works of Taylor et al. [14; 15] definettrethematical basis and examine
several approaches, of which two apply to our context of a&tramed functional with a scalar
output j. Following Ghate and Giles [5], we also call these approacfengent-on-Reverse
(ToR) and Tangent-on-Tangent (ToT). The general complexiglysis provided in [14] finds

linear costs with respect to the simeof y. This leads to the conclusion that ToT is uncon-
ditionally better than ToR. This is slightly counter-irtiue compared to the general case of
brute-force differentiation. However in our context whematrices can be too large to be

stored, every linear system must be solved using a mag4inethod (e.g. GMRES) with an
ILU(2) preconditioner. This paper revisits the Hessian@aton problem in this context. The
full mathematical development can be found in [11; 12].

Section 2 studies the ToR approach while Sec. 3 studies thepproach, both sections
going from the mathematical equations to the algorithm aralrefined complexity analysis.
Section 4 compares the two approaches and gives first expetahmmeasurements. We claim
that ToT is no longer linear with respect tpand for large enough, yet realistic TOR does
outperform ToT. Section 5 discusses the ToR approach frempadint of view of the AD tool.

2 Tangent-on-Rever se Approach

Following [14], the projection of the Hessian along a dii@cd € R" is given by

d2j d (3. 9 (3 o [/ow\" d [/ow\" I
(@2)5=5(5) o lay) o~ 1(57) Mo~ wl(57) 7o ()2
where vectordT, 6, andA are the solutions of
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From these equations, we derive the algorithm sketched ¢pyZ-ilt evaluates the Hes-
e
sian column by column, repeatedly computig@a for each componers; of the canonical

basis ofR". Notice that the computation @7 is independent from the particular directidn
and is therefore done only once. In contrast, new vedioAsare computed for eacl. The

AN aI\"
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End For

Fig. 2. Algorithm to compute the Hessian with the ToR approach

vectors/1,0, andA are solutions of linear systems, and can be computed usiiitgrative
linear solver. In our experiments, we use GMRES with an I)U{feconditioner built from
an available approximate Jacobian. During this procesdgeftrhand side of the equations for
1,0, andA is evaluated repeatedly for different vectors. The routhra performs this eval-
uation is obtained by differentiation of the routiséat e that computed”, in tangent mode
for 6, in reverse mode fafl andA . The rest of the algorithm nee(%T, ‘;—";a, ‘;—";T/\ , which
are obtained through a single tangent or reverse diffeaati. It also needs the complex ex-
pressions that we nanVe, y3, Wy, andyy, which are obtained through ToR differentiation
of the routinesst at e (evaluating®(y,W)) andf unc (evaluatingJ(y,W)). For instance the
ToR differentiation ofst at e with respect to input variablegamma andw has the following
inputs and outputs:

n y g w 0

! ! !
state_bd(psi,psib,ga&una,gammad,gammab,gamnabd,é],wd, wjb ,wlfd)
! !

Y ()n * (%) W

Similar differentiation off unc gives us/T/J andy;.
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After implementing this algorithm, we observe that all &tve solutions take roughly the
same number of stepge,;. Moreover, the runtime to compu¥ largely dominates the runtime
to computel, and the same holds for their derivatives. A differentiatede is generally slower
than its original code by a factor we call, which varies with the original code. We calfr
(resp.aR) the slowdown factor of the tangent (resp. reverse) cod® ofVe call atr the
slowdown factor of the second differentiation step that potas the ToR derivative d¥.
Normalizing with respect to the runtime to comp4e we find the cost for the full Hessian:

Niter OR + n(niteraT + OTROR+ niterGR)

3 Tangent-on-Tangent Approach

In contrast, the ToT approach computes each element of thei&teseparately. Following [14]
and introducing the differential operatbgzﬂk for functionsF (y,W) as:

o2 O(0F Ny, 0 (OF NdW 0 (9F \dW 0 (9F dw)dw
K=y %) T awl oy ™) aye T awl\ay ™) @y T awl\aw dy ) dy
the elements of the Hessian are

d? 2 ., 03 dw 2 T(n2
dy,dyk = leJ+mdeW = Di,k‘]in (Di,kw)

wherelT is the adjoint state, i.e. the solution of the linear sys(%)Tﬂ = (g—\fv)T. These

equations give us the algorithm sketched by Fig. 3 to evaliig Hessian element by element.
Efficiency comes from the key observation that the total\mnes‘éi‘l’ occur in many places
and should be precomputed and stored. They are actually tiiche ToR approach, for each

vectorg of the canonical basis G&". Termstkt.U (resp.kaJ) are obtained through ToT

T T

Solvefor 1 in (d—w) n= (ﬂ)

For eachie1..n ow
Solvefor & in (—)

D
Il
|
N
Y

W .
g and storeit

oW ay
End For
For eachie1..n
For each ke 1.i 5.
dej T /2
Compute dydye DiyJ— 1" (Df W)
End For I
End For

Fig. 3. Algorithm to compute the Hessian with the ToT approach

differentiation of routinest at e (resp.f unc). For instance the ToT differentiation sf at e
with respect to input variablegamma andw has the following inputs and outputs:
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y & e w & 6
1 1 Lol
state_dd(psi,psid,psidd, gal%ma, gammadO, gammad, é],wdo,wd). (3)
1 1 1

v @ DAY
Similar differentiation off unc gives usD?, J.
After implementing this algorithm, we observe that the engiee parts are solving for the
6 and computing th@iz_kt.u. With the same conventions as in Sec. 2, and introduaipg as
the slowdown factor for the second tangent differentiaitap, we obtain the cost for the full
Hessian:
n(n+1)

NiterOR + NNiteraT + >

arrar

Observe that this cost has a quadratic term.in

4 Comparing ToR and ToT Approaches

The slowdown factorsr resulting from AD depend on the differentiation mode (tamtger
reverse), on the technology of the AD tool, and on the origimagram. For instance, on the
11 big codes that we use as validation tests for the ADtapENADE[8], we observe thatrt
ranges from 102 to 25 (rough average.8), andar ranges from 02 to 94 (rough average
5.0). Notice thatrAPENADE offers the possibility to perform the second level of diéfetiation
(e.g “T” in “ToR”) in multi-directional (also called “vectd) mode. This can slightly reduce
the slowdownar 1 by sharing the original function evaluation between marffecéntiation
directions. For technical reasons, we didn’t use this [bilftyiyet. However this doesn't affect
the quadratic nature of the complexity of the ToT approach.

On the 3D Euler CFD code that we are using for this first expenitywe measuredt =
2.4, 0r=5.9, atT = 4.9 andatr = 3.0, with very small variations between different runs.
The higheratT may come from cache miss problems, as first and second degieatays try
to reside in cache together with the original arrays.

We also observe that the number of iteratiopg of the GMRES solver remain remark-
ably constant between 199 and 201 for the tangent lineaemsygstand between 206 and 212
for the adjoint linear systems.

With these figures and our cost analysis, we find that ToR witperform ToT for the
Hessian when the dimensioris over a break-even value of about 210.

It turns out that this CFD code does not easily lend itselfitwéasing the value afabove
a dozen. So we have devised a second test case, with a sichfdifdicial) nonlinear state
function¥ in which the dimension of the stafé was 100000 and the number of control vari-
ables moves from 1 to 280. To be more precise we used the ématt(y,W) = ZiNzl VW]
and the state residual

1 1 1

- + —
W2 1 f(y)]%a? WMy of

H(y,W) =

with aj > 0, f(y) = Y7 [(1— )2+ 10 8(yi1.1 — y?)?]. With the above definitions and using
y=(1,1,...,1) the state equatio = 0 is satisfied withf = +a;. For all runs, we observe
that the solutions of the linear systems requires 64 GMR&&@tibns (without precondition-
ing) for the tangent and 66 iterations for the adjoint varsiwith very little variability with
respect to the rhs. Figure 4 shows the CPU times for the ToTTaRdapproaches, when the
numbern of control variables varies from 1 to 280. We observe that ®&heaper than ToT
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whenn 2> 65. We also observe the linear behaviour of the ToR cost amduhdratic cost for
ToT, as expected.

2000 -
Hessian ToT ——
1800  Hessian TOR -------- i

1600 7
1400 + |
1200 | |
1000 | |
800 | /ﬂ;
=) » , |

CPU time (sec.)

400 |+ |
200 F |

0 Rl I I I I
50 100 150 200 250

Num. control variables

Fig. 4. CPU times cost to compute the full Hessian via the ToT and Toftaaches, with
respect to the number of control variables. We assume tlogradjtatel7 is available and its
cost (equal for ToT and ToR and independent frgns not shown in the figure.

It can be observed that all the linear systems always useathe $vo matrice% and

g—v"t’,T. This can be used to devise solution strategies even moceeeffthan the GMRES+ILU
that we have been using here. That could further decreaselti&e cost of the solving steps,
and therefore strengthen the advantage of the ToR approach.

We have been considering the costs for computing the fulsldaswhich is not always
necessary. Actual choice of the approach also depends arhwlait of the Hessian is ef-
fectively required. The algorithms and costs that we prevddn be easily adapted to obtain
single Hessian elements, Hessian diagonals, or Hessetor products. Specifically for the
Hessiarxvector case, the cost through the ToR approach becomeseindept from the num-
bern of control variables, namely

Niter R + Niter T + ATRAR + Niter R
whereas the ToT approach still requires computing allGhfer i € 1..n, for a total cost of
NiterOR + NNiter T +-NATTAT -

In this case, ToR outperforms ToT starting from much smalidues ofn.

5 The Art of ToR

This work gives us the opportunity to study the difficultibat arise when building the ToR
code with an AD tool. These questions are not limited to threext of constrained functionals.
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Assuming that a source transformation tool is able to hatithecomplete source lan-
guage, its repeated application should not be problemabictools such agAPENADE be-
long to this category. Indeed, ToT approach works fine, aliiflosome additional efficiency
could be gained by detecting common derivative sub-exjmessHowever, problems arise
with ToR, due to the presence of external calls for the stagkagement in the reverse code.
These external calls result from the architectural choicthe reverse mode ofAPENADE,
which uses a storage stack. The situation might be diffesétft reverse codes that rely on
recomputation instead of storage.

With the stack approach, stack primitives are externalinestbecause many of our users
still use Fortran77, which has no standard memory allopati@chanism. Though reverse
AD of programs with external calls is possible, it must be @avith care. It relies on the
user to provide the type and data flow information of the exeroutines, together with their
hand-written differentiated versions. This user-givetada crucial and mistakes may cause
subtle errors. Maybe the safest rule of thumb is to write &rahtive Fortran implementation
of the external primitives as a temporary replacement, tfifarentiate the code, and then
replace back with the external primitives. For instancdaresent case, we can easily write a
replacemenPUSH andPOP using a large enough storage array. After reverse AD, wergbse
two things:

e First, as shown in Fig. 5, the storage array remains passitiesome active variable is
PUSHed. It then remains active forever, even when reachingP@@ of some variable
that was passive when it w@sJSHed. As a consequence, the matchR@P of a passive
PUSH may be active.

e Second, the storage array has given birth to a separaterafiffated storage array devoted
to derivatives.

This guides us on the data flow information to be provided aBa$HandPOP, and most im-
portantly on the correct implementation of their tangem@gives. SpecificalyPUSH.D( X,
xd) must pushx onto the original stack arxid onto the differentiated stack, afDP_D( x,
xd) must setxd to 0. 0 when the differentiated stack happens to be empty. Incidigna
different implementation using a single stack would praagun-time error.

Although correct, the ToR code shown in Fig. 5 is not fullyisfactory. The last call
to POP_D should rather be a plaiROP. Also, once the stack becomes active, RlISHes
becomePUSH.D, even when the variable is passive, in which cafe @ is put on the differ-
entiated stack. We would prefer a code in which matci$HPOP have their own activity
status, and do not get differentiated when BéSHed variable is passive. In general, match-
ing PUSH/POP cannot be found by static analysis of the reverse code. liregjan annotated
source.

Although matching?USH/POP'’s cannot be found from the reverse code, this information
was available when the reverse code was built. THA®ENADE now provides support to
the ToR differentiation by placing annotations in the reeecode, and by using those during
tangent differentiation to find all calls to stack operatidhat need not be differentiated.

6 Conclusion

We have studied two approaches to efficiently compute thernsederivatives of constrained
functionals. These approaches appear particularly adadptéhe case where the constraint
contains a complex mathematical model such as PDE’s, whighnerally solved iteratively.
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Original: Reverse: Tangent-on-Rever se:
F:abc—r|F:ab,c,r—3ab,c F:a,ab,b,ccTr—3,73abb,cc
x= 0.0
x = 2.0 x = 2.0 x = 2.0
r = x*a r = x*a
PUSH( x) PUSH( x)
X= C
X += ¢ X += ¢ X += ¢
r += x*b r += x*b )
PUSH( x) PUSH.IX X, %)
x= 0.0
x =3.0 x =3.0 x =3.0
r += xxc r += x*c
X= C*r . .
ct= X*T
Ct+= X*T CH= X*T
POP( x) POP_D( X, x)
x= 0.0 . )
X= b*T+b*T
x= b*T x= b*T .
_ bt= x*TH+X*T
b+= X*T bt= X*xT
POP( x) POP_IDX( X, x)
c+= X
ct= X ct= x
X+= a*Tr . . .
a+= X*THX*T
a+= X*T a+= X*T
=

Fig. 5. ToR differentiation on a small codd.eft Original code, middle Reverse code,
right: ToR code. Reverse-differentiated variabl&} gre shown with a bar above, tangent-
differentiated variablesx( %) with a dot above. Code in light gray is actually dead anghpttl
away byTAPENADE, with no influence on the present study.

Both approaches rely on building differentiated versiohsatected subroutines of the original
program by means of Automatic Differentiation.

Our main result is that comparing complexity of the TangemtReverse approach versus
Tangent-on-Tangent is not so clear-cut, and it depends esigen of the problem and on
the derivatives effectively needed. Also, we propose aoraated implementation of both
approaches, based on shell scripts and using the ADrtaa NADE, which had to be modified
for better results in the Tangent-on-Reverse mode.

In addition to applying these approaches to even larger Cédies, one shorter term
further research is to study the Reverse-on-Tangent aligento Tangent-on-Reverse. This
option might prove easier for the AD tool, but further expeents are required to compare
performances.
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