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CORRECTION DE CONSERVATION PAR DUALE LEVEL
SET

Résumé : La méthode level set appliquée & un écoulement bi-fluide incompressible ne conserve
pas le volume de chaque phase. Or il est utile de le conserver. Dans ce papier, nous proposons une
approche complémentaire baseé sur une formulation faible de ’advectionde la fonction caractéris-
tique. La méthode est d’abord appliquée a la simple advection d’une fonction caractéristique. Puis
la nousvelle méthode est couplée & un modéle bi-fluide incompressible appliqué & des écoulements
avec des composantes séparées d’une des phases (mouvement dans un double réservoir et chute de
colonne d’eau sur un obstacle).

Mots-clés : Mécanique des Fluides Numérique,volumes finis, maillages non-structurés, ligne de
niveau, interfaces
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1 INTRODUCTION

Prediction of interface motion in two-phase incompressible flow simulation is of important interest
for applied research and engineering. This subject involves a difficult approximation problem. The
interface involves macro-scales for example when capillarity is modelled on the basis of a smooth
interface woth curvature, and micro scales (breaking,...).

Standard Lagrangian Methods present difficulties to simulate break-up events, Particle La-
grangian Methods seem not easy to model boudary layers and capillarity, Fulerian Methods present
difficulties to advect the interface with a good accuracy. In the subset of Fulerian Methods, The
Volume-of-Fluid (VOF) method [I] brings an elegant method for keeping a non-diffused interface
and the conservation of each phase mass. But it is rather dependant of the initial finite-volume
basic approximation, which limits its extension to other numerical technologies. The Level Set
Method (LS in the sequel) developped in the 80’s by Osher and Sethian ([2],[8]) uses the zero level
contour of a smooth function ¢ to locate the interface. The LS variable ¢ is advected with flow
velocity:

ot +VVep = 0.

In contrast to VOF methods, LS has a continuous statement and can be easily adapted to a larger
family of discretization methods, paving the way to high-order approximations.

However, mass conservation is not naturally satisfied by LS. This is correlated to two partic-

ular steps of LS, the advection of LS and the re-distancing of it. Let us consider the case of an
incompressible flow with two immiscible fluids. The volume occupied by each fluid should remain
constant. The satisfaction of this property by an Eulerian method is a rather complex issue. Two
different contexts should be kept in mind. When mesh is enough finer than interface’s smaller
detail, conservation is perfectly satisfied by methods like VOF and satisfied up to a small error by
non-conservative methods like LS.
When an evolution of the interface becomes smaller than mesh size, conservative methods like VOF
may produce unphysical artefacts which in some cases are lost for the phase component from which
it separated. Non-conservative methods like non-conservative LS may behave even worse, loosing
a rather important mass amount. In the case of complex interface evolution, this event is frequent
and then standing by high-order resolution for mass conservation is not reasonable.

These remarks have motivated the development of conservative or quasi-conservative LS meth-
ods.

Globally mass-conserving methods refer to corrections of the LS ensuring the exact conservation
of total mass. An interesting improvement consists in correcting the interface location proportion-
ally to the normal velocity length, see [9]. They carry some improvement, see for example [I4], but
this kind of improvement does not provide a complete answer to the question risen here, of having
a more local conservation. For example, flow with disconnected components of a same phase should
conserve constant mass for each component.

Let us also mention the attempts to reduce mass loss arising from a particular stage of LS algo-
rithm, for example the redistancing stage, see [I3]. We focus now on the conservation issue after
the advection step. As remarked in many works, advection can be conservative for the LS variable

b,
¢ +div(Ve) = 0

but this property does not implies mass conservation of phases. In [B], a method is proposed for
using a parametrisation of interface that will be stiffer than the LS, but still smooth in order to
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4 Lesage et al.

improve the mass conservation at advection step.

In most other approaches, a finite-volume method applied to a characteristic function of a phase is
explicitly introduced. In [6], both LS and VOF are combined and produce an hybrid scheme that
is a kind of improvement of both methods. The discrete dependant variable for interface is also a
synthesis of LS ans VOF representations. The assembly of a VOF method is rather complex and
instead, a more simple finite-volume method can be applied to a characteristic function derived
from the LS field. This is the idea proposed in [A]. With this kind of approach, the difficult step is
to derive a level set solution from the finite-volume predictor. In [], this is performed by a Newton
pointwise relaxation.

From these works it appears that starting from an accurate LS, getting an exact conservation
is paid by a return to a less accurate finite-volume scheme in order to get a FV solution to be
tranformed back into LS representation.

The present work is motivated by the quest of a corrector to an accurate LS without passing
by a finite-volume scheme, but saving the LS accuracy when conservation is closely satisfied by the
LS solution and improving its accuracy in the other case.

We restrict to the incompressible multifluid model. Let us examine the particular case of a
unique choice of approximation, viz. vertex centered on unstructured meshes, applied at the same
time to LS, to velocity components and to pressure. The main interest of this choice is its simplic-
ity. However, the velocity approximation does not satisfy a (discrete or not) zero divergence relation.

In this paper, we first recall the principle of Level Set representation for the advection of a
characteristic function. Then we examine the issue of mass conservation in case where the advecting
velocity is of zero divergence. We present a new local mass conservation enforcement method which
produces an approximative local conservation. Our method uses a local conservation condition
based on a weak formulation of the advection equation of the characteristic function H(¢) of one
phase.

/wH<¢)t LV du = 0,V ¢

Where the test function v lies in a smooth approximation space. Since the unknown variable
remains the LS function, while smoothness issue is transfered to the test function, the standpoint
is dual to the classical Level Set formulation. In the present paper, this formulation is applied to
a standard P1 finite-element framework. Evaluation of the new scheme is done with two interface
advection test cases (Zalesak test case, vortex flow test case). The combination of the local mass
conservation method with a projection method for Navier-Stokes is then presented. It is applied
to incompressible two phase flow test cases (motion of two separated liquid volumes, water column
falling on an obstacle).

2 ADVECTION OF A CHARACTERISTIC FUNCTION

2.1 Basic Level Set scheme

The advection of an interface can, under some smoothness assumption concerning the subdomains
limited by it, be written with the characteristic function x of one phase (to fix the ideas, the “liquid”
phase):

INRIA



Correction de conservation 5

x =1 liquid phase
x =0 gaz phase

Starting from an initial location Yy, it is advected with a divergence-free velocity field U that is
assumed to be given in this section.

% + V-(Ux) = 0 x(x,0) = xo(2). 1)

The formal accuracy of the numerical advection of a step function like y is limited to first order
unless the numerical scheme cleverly exploits the fact that y takes only two different values.

Let H be the step function such that H(z) = 1if x > 0 and H(x) = 0 elsewhere. The Level Set
method introduced by Osher et Sethian ([I0]) relies on two smoother functions, ¢o(z) such that
H(¢o(x)) = x(x,0) and ¢(x,t) such that:

¢
5 + V-(U¢) = 0 ¢(x,0) = ¢o(x). (2)
We take ¢ < 0 in the gas region and ¢ > 0 in the liquid region. The interface is the zero

level set of ¢:

= {x[ox1t) =0} (3)

It is useful now to introduce a time discretization for the LS advection. Let ¢" be the discretized
in time LS function. We apply a tree-stage time advancing. A variational formulation with a test
function v writes:

/wz-q’s“%dv - /¢l¢"dv+ S [ 0 mar - At /qs"ﬁ-widv

Q

/@W%dv = /m"dv + = w ¢"+30 - ndl’ — 5 "t U - Vipidv

Q

/ Yig"Hdy = / Yiddv + At wiq3"+§U ‘ndl — At /03"+7U  Vipidu (4)
Q Q oN

With this formulation, the inflow boundary value is directly introduced in place by specifying ¢.
Initial condition ¢° can be defined as the signed-distance to the initial interface but the advected
field ¢ will not stay in general a distance to its zero level set. An usual practice is refered as
“redistancing” and consists of resetting function ¢ as the distance to interface ¢ = =4 d(I"). This is
done by various means, in particular by solving a Hamilton-Jacobi equation ([IT],|[T2], or by direct
geometrical construction.

2.2 Global mass conservation

An important property of incompressible two-phase flow is the volume conservation of each phase
which expresses in terms of x = H(¢):
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6 Lesage et al.

Y+ V.(T) =0 = / it = Viigusi. (5)

where Viiguida,r = %Vliqmd is the (given) rate of liquid carried through the domain boundaries. For
simplicity, we assume this rate is zero. One of the important drawbacks of the level set method is
the loss of conservation of this formulation because of the use of ¢. It is possible to conserve ¢ by
solving ¢; + V.((bﬁ) = 0 but this does not imply the conservation of each phase.

In [T4], Smolianski proposes a global mass conservation which corrects at each time step ¢Z+1
into EZ—H. The idea is to add a small uniform perturbation C™*! to ¢"*! in each point of the
domain to ensure conservation of the constant volume of the liquid phase, the initial value of which
writes V, J H(¢")dv. This method uses the property that starting with a signed distance
function (V¢! = 1) and adding a constant correction Cy will not change the signed distance
function property. The function

0 _
iquid

d(C) = /H(‘;;“ + C)dv

is strictly monotone with a derivative bounded from zero, since it expresses in terms of the level set
contour length (2D case):
dd

75(C) ~ length({a, oy @)+ C =0} (6)

Then, in the modified version that we use in [7], we exactly solve the following statement of mass
conservation:

Find C™*! such that /H(J)ZH +C™" NYdv = Vi) ia

G = gt ont (7)
The solution C™*! is determined by a Newton (regula falsi) method. As far as H(¢y) is an higher
order accurate approximation of x, the error in [ |H(¢p) — x|dv is of higher order and the global
volume correction step will not degrade the accuracy.
This method brings some improvement for two-phase incompressible test cases when each fluid is
forming an unique volume. An interesting improvement is proposed in [9]. It consists of making the
amount of mass taken or added (according to the global spurious lack or supplement) proportional
to the absolute value of the normal velocity of the interface. Global mass algorithms are not
completely satifactory. Typically, in the case where one fluid is disconnected in separated volumes,
the global mass conservation does not ensure the conservation of each volume.

2.3 Local mass conservation

As already mentioned, a local discrete mass conservation is not satisfied by the LS method under
study. It is due to several reasons:

(i) The discrete velocity field is not divergence free,

(ii) The advection of ¢ in general does not satisfy the conservation of H(¢),

(iii) Advection of details of the interface that are too small for the mesh size will result in
numerically clipping these details and will not satisfy conservation,

INRIA



Correction de conservation 7

(iv) Redistancing does not in general satisfy conservation.

Point (iii) desserves some comments: moving for example a small isolated bubble around a ver-
tex A, with size less than cell size, to a position B located Az/2 farther will result in the wrong
approximation the bubble motion. Indeed, the new bubble exact position cannot be represented by
the LS method inside an element. Either the bubble is not moved correctly or it disappears. From
these remarks, it results that strict local conservation cannot easily be applied with our options.
Therefore, our standpoint is to derive local correctors for improving the local conservation. These
correctors will be used in the same way as the previous global corrector.

In this section, we shall present an analysis allowing us to build a local correction of the Level
Set function. We are looking for a non constant corrector C"*!(x). Our method is based on a en-
forcement of the incompressiblility constraint on the nodes located in the interface neighbourhood.

Let us assume that the velocity field is divergence free, the interface motion can be described
by both of these two conservation laws (with x = H(¢)).

6+ V- (09) =0 ®)
xi+ V- (00 =0 ©)

In the continuous case, () implies @) but this does not extend in general in the discrete case.

We would like to recover (@) without deteriorating the advection accuracy of ¢. Indeed, we do
not want to replace a non-conservative advection of high order accuracy by a conservative advection
but of lower order.

2.3.1 Dual formulation

To correct the mass conservation of ¢ in the neighbourhood of the interface, we are searching to
solve the following Dual Level Set equation on the elements intersected by the interface :

Vi € Py, s;pi(H(@)tdv = [ ¢;H($)U - ndl — /H(¢)fj - Vipsdv (10)

ro)
The forward-Euler time-dicretization of () gives

Vi € Py, [ H(¢o" ™M )dv = wiH(¢”)dv+At< 1/)1-H(¢)[~I-ndI‘)
Q Q (o9}

- At(/H(qS)fJ‘-Vwidv) : (11)

We verify that it implies the mass conservation of both phases by summing for all i:

/SH(QZ)"H)dv - QH((b”)dv = At<

2 H(¢)U - ndr — /H(¢)U V1 dv) ~0. (12)

o0

In practice, we use a multi-step Runge-Kutta 3 time dicretization with a MUSCL scheme of
second-order accuracy |7 in order to compute ¢" 1. We deduce ¢"+% of the second step of 3-stage
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8 Lesage et al.

Runge-Kutta scheme. Thus we obtain an accurate approximation of ().

W € P, /Q GiH (@) do /QwiHW)dv + At( /8 il T ndr)

At< /H(¢>"+%)fj : le-dv> (13)

Although the number of unkowns (values of ¢ in each node) is apparently the same as the
number of equations (number of basis function 1, ), the system ([[3)) is not necessarily well set, since
this system does not depend on values of ¢ at nodes far from interface. In particular, it does not
always admit a solution, for example when the interface presents too small details for the mesh
(component of one phase smaller than one cell). On the other end for sufficiently smooth discrete
interfaces, the system ([3) can help us to build an efficient local volume correction.

In the case where the region where H(¢"+%) = 0 contains the entire support of 1; for some 1,
the system reduces to

/@biH(qS"*l)dv = /wiH(qS")dv
Q Q

which implies that a candidate solution would would satisfy H(¢" ') = H(¢") on Suppi);.
In the case where the region where H ((;5”*%) = 1 contains the support of v;, the system reduces
to

/wiH(qS"H)dv = /wiH(qs")dquAt( @biﬁ-ndf‘—i—/ﬁ-vwidv)
Q Q o0

Vi H (™ )dv + At /1/%- divU dv . (14)
Q

Assuming that the advection velocity is divergence-free, this case reduces to the previous one. In
both cases, the equation expresses that the sign of ¢ is constant but does not specify more than
this, which illustrates -if necessary- that the problem is ill-posed in terms of ¢.

For the sequel of this analysis, we shall make an assumption a little more restrictive than a
CFL-like one. We observe that function H(¢™+!) (resp.H(¢™t2), H(¢™) is not strictly 0 or 1 only
on a subset I,,1, (resp. il I,,) of the set of supports of ;:

In-i-l = U SUPP¢J
J
where the union is taken for all test functions 1; such that VH(¢"*!) is not identically zero on
Supp;. We consider in our analysis the simplified case where:
In—i—l = Intl = I,

2.3.2 Lax-Wendroff accuracy analysis

We assume that we have a sequence of functions gZ;h, each (;Sh verifying on the mesh 7, the following
equation :

Yy € Py, [0i(H(dn))edv = | biH(64)U - ndl — /H(éh)ﬁ - Vipidv + h* R} (15)
Q

[219]
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Correction de conservation 9

where R” is uniformly bounded independently of h and of node i.

We give now some heuristic elements of error analysis between function (;Aﬁh and the continuous
solution ¢ of system (). The system having a weak solution, we can use the Lax-Wendroff principle
for convergence of weak solutions. We write Problem () as follows :

v e D@0T) (et 0. w) <o (16)
Qx]0,T[
Let IIj, be an interpolation operator in V},, we write the discrete problem () as follows:
Vo € DOAOT). (s + V- (D) p) = W) (7
Qx]0,7T[

where R"(1) is uniformly bounded independently of h.
We transpose the derivation operator on the test function .
In the continuous case :

(x, —wt—ﬁvw) =0, (18)
Ox]0,T|
In the discrete case :
(xh My -0V nhw) — BERMy) (19)
Qx]0,T[

By difference, we obtain :

Qx]0,T]

(e vow) -

<Xh 7_7/)t_ﬁ'v¢+nh1/)t+ﬁ'VZ'Hh¢>

Ox]0,T|
—hFRM) . (20)
The second member can be analysed with the following estimations :
[IXnllLe =1, (21)
[l¢e = ntie||ze = (O)(h?), (22)

completed by the assumption that the spatial derivation operator is second order accurate in the
following sense :

IVY — V3 - || e = (O)(R?). (23)

The following error estimate comes out :

(x n st~ w) — WHRM )] + (0)(H?) - (24)

Qx]0,T[

RR n® 7089



10 Lesage et al.

Thus this approach seems likely to conserve the second-order accuracy.

Since a solution does not always exists, a stability analysis, that indeed would be useful, seems
out of reach at the moment. Although needing iteration for being advanced, the scheme is of explicit
type and is probably subject to a CFL condition. The last step is also of central difference type
but we have not met in experiments a clear need for adding dissipation.

2.3.3 Definition of the conservative corrector

We rewrite the previous problem as follows:
Find ¢"** so that W;(¢" ™) =0 Vi, with
o) = [ wH@w-

b;

/Q W H(¢")dv
N gbiH(qS"*%)fJ-ndF)—i—/H(¢"+%)I~J-V¢idv) (25)
o Q

We observe that a diagonal evaluation of the derivative of ¥ can be done as follows:

ov;
dpi

This can be used to re-dimensionalize the dual LS residual:

A /’t/]idil' dz .

(o) = (o)) [vide da 5 ()= Y oy

We propose a first simplified corrector by applying a non-uniform correction to the Level Set function

¢:

Let ¢" ™ obtained from primal LS
Find C™"such that:

/¢?+1 + Cn+1\i]i(¢n+1) dr = ‘/7
Put ¢"t! = ¢t 4 O (") Vi

However, since the corrector field is of arbitrary sign, we cannot ensure the monotony of the new
functional:

/qs?“ + O (") de — V.

It is only locally monotone when its derivative is not zero. This means that only a sufficiently small
C™*+1 can be applied in order to decrease the mass loss. In the non-frequent case of a zero derivative,
we can make the derivative non-zero by adding to the corrector a small uniform perturbation. In

INRIA



Correction de conservation 11

practice, this algorithm brings an interesting improvement with respect to the global correction, as
will be illustrated in the sequel by numerical experiments

In a more sophisticated iteration, we try to minimise the residual of the dual LS system by a
Picard fixed point:

0. 30 = gn+l

1. Compute: F(n) = ||¥; (¢ 4+ n¥; ()| for: n =e,n = —¢
If Min(F(g), F(—¢),F(0)) = F(0) then stop

e = ArgMin(F (¢), F(—¢))

pletl) = gle) 4 77‘I’i(¢(a )

where 7 is chosen with same sign as €’ and such that:

U (6 T)) < Ui(0!¥)

2. Gotol

The choice of i can be performed efficiently by relaxing from the Newton step for F' which writes:

F' = (F()—F(0))/
n = 0—(F)"'F(0)
Pt = 9@ 4y (¢() (26)

If F' depends linearly on 7, the choice n = 19 converges in one step. In general it does not guar-

antee convergence and we search the smallest non-negative integer n for which n = 179/2™ satisfies
Wi(o D) < Wi(p).

Remark: In contrast to the standard Level Set formulation, the Dual LS system defines the func-
tion ¢ only near the interface. It can be combined with a re-distancing process for defining the
other degrees of freedom of ¢.

In the following section, we will compare the performance of the new local corrector with the
global corrector on two interface advection test cases (Zalesak disk).

3 INTERFACE ADVECTION NUMERICAL EXAMPLES

3.1 Rotation of Zalesak’s disk

Consider the rigid body rotation of Zalesak’s disk in a constant vorticity velocity field [I5]. The
initial interface is slotted circle centered at (50.,75.) with a radius of 15., a width of 5., and a slot
length of 25. Velocity is given by v = (7/314)(50 — y) and v = (7/314)(x — 50) so that the disk
completes one revolution every 628 time units. The Level Set funtion is initialised like the signed
distance function to the Zalesak’s disk. We compute one revolution of the Zalesak’s disk on three

RR n® 7089



12 Lesage et al.

embedded meshes 101 x 101, 201 x 201, 401 x 401. We define the relative error of the L; norm as
HH(¢h)_H(¢eract)”L1
“H(¢cxact)I|L1

90 -
80 -
> |
70 |-
i _ _ _ _ solution numerique
- maillage 101x101
- —_————— solution numerique
| maillage 201x201
solution numerique

80 I- maillage 401x401
solution initiale

I 1 | I |
40 60 80

Figure 1: Rotation of Zalesak’s disk. Mesh Convergence results after one revolution. Global mass
conservation algorithm

We compute the numerical convergence order as follows :

W ln”H(Q/)h) _ H(¢emact)||£ilnemesh _ ln||H(¢h) _ H((bemact)HCLolarsemesh

ln(dz)finemesh — ln((sx)coarsemesh

(27)

Figure [l illustrates the mesh convergence results after one full rotation with the global mass
corrector. Figure B illustrates the mesh convergence results with the local mass corrector. Table
1 and 2 give the results on relative error L; on the full rotation on the three meshes. It permits
to compute the convergence order on H(¢) with equation 7). We observe a clear improvement
of the relative error L; with the local mass corrector. On the 401 x 401 nodes, the error with the
local corrector is three time less important as with the global corrector.

3.2 Single vortex

While Zalesak’s disk is a good indicator of diffusion error in an interface-capturing method, it does
not test the ability of an Eulerian scheme to accurately resolve thin filaments on the scale of the
mesh which can occur in strectching and tearing flows for example in the turbulent case. A flow
which exhibits interface streching is the “vortex-in-a-box” problem introduced by Bell et al. [16].
Figure Bl shows the nonconstant vorticity velocity field centered in the box with the largest velocity
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90 -

80 -

70

60 -

__ solution numerique
maillage 101x101

—_——— solution numerique
maillage 201x201

solution numerique
maillage 401x401

solution initiale

80

Figure 2: Rotation of Zalesak’s disk. Mesh Convergence results after one revolution. Local mass
conservation algorithm

Number of nodes

Relative error Ly

Convection Order on H(¢)

101x101 0.158 -
201x201 0.0418 1.94
401x401 0.0203 1.04

Table 1: Rotation of Zalesak’s disk : relative error L; between the exact function H(¢epact) and
H(¢p) after one revolution with the global mass corrector algorithm. Convergence order

results.

Number of nodes

Relative error L;

Convection Order on H(¢)

101x101 0.0674 -
201x201 0.0148 2.18
401x401 0.007 1.08

Table 2: Rotation of Zalesak’s disk : relative error L; between the exact function H(¢epact) and
H(¢n) after one revolution with the local mass corrector algorithm. Convergence order results.

located half way to the walls of the domain. The velocity field is defined by the stream function

RR n® 7089
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14 Lesage et al.

A unit computational domain is used with a circle of radius 0.15 placed at (0.5,0.75). The resulting
velocity field streches out the circle into a very long, thin fluid element which progressively wraps
itself toward the center of the box. Figure Bl shows the comparison of the level set solution for
the vortex flow at ¢ = 1s with the global corrector and with the local corrector algorithm. We
can observe that the result on the coarse mesh 101 x 101 nodes with the local corrector is far
better than the one with the global corrector. We even observe if we compare with the higly ac-
curate result provided by Enright et al. [I7] with their particle Level Set Method that the local
corrector on 101 x 101 nodes mesh presents even better accuracy than the converged solution on
401 x 401 nodes mesh using the global corrector. Figures Bl and Bl compare our level set solution
with the local corrector on the 201 x 201 nodes mesh with the solution of Enright et al. [I7] with
the highly accurate particle level set method Figure [0 and B on 128 x 128 at ¢ = 3 and t = 5.
Enright et al. [T use particle advected in a lagrangian way to correct the zero level set contour,
they have artificially very fine mesh. We are not as accurate as these authors, but comparing with
the fineness of the lagrangian nodes they use, it seems in fact that our discretization is much coarser.

This test case proves as for the previous Zalesak’s disk test the improvement achieved with the
new local corrector. In the next section, we will couple our local corrector with Navier-Stokes model
of two phase instationary incompressible flows.

=

Figure 3: Initial data and velocity field for the vortex flow.
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Correction de conservation 15

| correction globale maillage 101x101
= correction locale maillage 101x101
0.8 ——  correction globale maillage 401x401
0.6 -
>_ |
0.4
0.2
0 L I L L L I L L I L L I L I L I L
0 0.2 0.4 0.6 0.8 1 12

Figure 4: Comparison of the level set solution for the vortex flow at t = 1s with the global corrector
and with the local corrector algorithm. Red level set solution with global corrector on 101 x 101
nodes mesh. Green level set solution with local corrector on 101 x 101 nodes mesh. Blue level set
solution with global corrector on 401 x 401 nodes mesh.

4 LEVEL SET METHOD FOR TWO-PHASE INCOMPRESS-
IBLE FLOW

4.1 Differential model

Let us consider the solution of the model of two incompressible immiscible fluids moving in a closed
vessel ) with no-slip wall condition, under the influence of gravity but without interface tension.
It writes for the fluid velocity U, the pressure p and the density p as follows:
U
Par + pV.(UxU) — V.2v(p)VU) + Vp — pg = 0 in Q,
Ohp+V.(pU)=0 p=p orps in,
V.U=0 in Q,
U=0 onoQ. (28)

In this formulation, the density takes in €2 only two real positive values p; and pg4 in two subdomains
separated by an interface smooth enough for allowing to consider its normal:

1
né(p) = P Vp . (29)
9
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Figure 5: Particle Level Set Method solution (black) for the vortex flow at t = 1 cf Enright et al. [17).

To fix the ideas, p; in the liquid and p, in the gas. Further, §(p) denotes the Dirac delta function
on the interface, g the gravity volumic force, and v(p) the viscosity.

The interface advection is performed by the level set method with the characteristic function x
of liquid phase.

¢ +div(Vo) =0 ; x = H(e) (30)

with an advect exactly equal to material velocity, i.e. V = U. The density and the viscosity are
constant in each fluid, we can write

p(®) = pg + (pg —p) H(9)
V(¢) = Vg + (Vg —u) H(¢) (31)

Then the previous governing equations for the fluid velocity U and the pressure p along with

boundary conditions can be written as:

DU

p(aﬁ)ﬁ = —Vp+ V.2v(¢)D) + p(d)g (32)

4.1.1 Approximation

Let us now choose a numerical method for advancing the incompressible velocity. We consider for
simplicity a first-order time-accurate projection method for the P1-P1 space discretisation as in [7].
Several important improvement for stability ad accuracy have been proposed, see for example the
recent paper [?]. Let £, be a discretisation of €, covered by a triangulation 7j. Discrete domain
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Figure 6: Lewvel set solution for the vortex flow at t = 3s with local corrector algorithm on 201 x 201
nodes mesh.

Qy, is assumed to be identical to €. For simplicity of notations, index h of space discretisation is
also omitted for other symbols. We introduce the usual P1 finite-element space:

-V = {4 €C%N), | is affine VT € T}

V' is spanned by the set of basis functions ; for any i, where ¢; is equal 1 on vertex 7 and zero
on other vertices.

-V = V? where d = 2 is the space dimension.

the space of functions that are constant by element is denoted:

-H = {v e L*(Q),v|r is constant VT € T}

-H = HY.

Projection in H: for all U = (u,v) in (L?(Q))?, we denote: Pou the function of H such that for
any element T of 7, Pou|p = [} udzdy/ [, dxdy and we denote also PoU = (Pou, Pov).

Projection in V: for all U = (u,v) in H, we denote: Pu the function of V' such that for any i,
vertex of 7, Pul; = [uy;dzdy/ [ ;dxdy and we denote also PU = (Pu, Pv) .
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Figure 7: Particle Level Set Method solution (blue) for the vortex flow at t = 3 ¢f Enright et al. [17).

Mass lumping: we call cell area the following mass-lumped coefficient:

zjj/ﬂwiwjdu .

area(i) =

The discretised multi-fluid variables are:
U = ZUH/%‘ ;P = Zpﬂ/fi S Z@'?/Ji :
The global algorithm for advancing them in time writes:

Stage 1: (Prediction) Compute an explicit predictor for moment:

o, — U - A aTea(i)fl /sz (V,(UxU) — %V.(QV([})VU) - g) dv .

Stage 2: (Projection) Solve in V' the elliptic system:
1 1 _
/—Vp.V¢dwdy = —/Vw.Ud:Edy
p At
and put:

U”“:I_J—l—AtP(le) , U =0 on 09.
p

(34)

(35)

Stage 3: (LS advection) Advect the ¢ function with V from time level n to time level n+ 1, for
example with the three-stage scheme (). In practise, we stabilize this central-differenced scheme

INRIA
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Figure 8: Lewvel set solution for the vortex flow at t = 5s with local corrector algorithm on 201 x 201
nodes mesh.

with a MUSCL cell-wise reconstruction.

Stage 4: (Redistancing) Replace the advected @™ by a reinitialised or redistanced ¢! =
signed distance to {¢"*! = 0},

Stage 5: (Conservation) Replace the re-initialised ¢"1 by a ¢"! enjoying a conservation
property.

4.2 Enforcement of the incompressibility constraint

To correct ¢ through a conservative advection of y, it is necessary to determine a velocity field U
satisfying the discrete incompressiblity constraint identified as:

Qwidwﬁ dv = 0 ,Yi (36)
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Figure 9: Particle Level Set Method solution (blue) for the vortex flow att =5 cf Enright et al. [17).

With the proposed projection method, this constraint is not satisfied by the solution U™*! of (BH).
Let us introduce the following approximation of velocity:

~ _ 1
where p is the solution of (&)).
Lemma: (i) The Py velocity field U defined in @) satisfies:

UV dv=0 Vi (38)
Q

(ii) By advecting the x function with the velocity field U, mass conservation far from the interface
is verified in the following sense :

Vi, tel que H(P)|suppyy = 1, /Qz/)i(H(gb))tdv =0. (39)

Indeed, the discrete conservation satisfied by U is imposed by the projection step in each node
1. For the nodes internal to the mesh, we have

/vw-ﬁzo. (40)

where 1; is the basis function P; at node .
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We can write a spatial semi-discretization of @) under the following variational form.

wer, [[omen + [[vv wHEe) =0 (41)

Using an integration by part, we get

(o) o = [ wt(@)0 nar - /H(¢)U-dev (42)

[519)

The equation [E2) becomes for v;:
/ Gi(H(9))rdo = — /U Vi | (43)
Q

and if we use of velocity field U with the propriety (@0), we obtain (§J). O

Thus the use of U allows us to control the approximation errors on the velocity divregence far
from the interface.

Then this velocity field is introduced in all advection formula for ¢ and in particular in (ITI).

5 TWO PHASE INCOMPRESSIBLE FLOW NUMERICAL
EXAMPLES

5.1 Liquid oscillation in two separated tanks

As first test case of two phase incompressible flow, we compute the oscillation of a water volume
under gravity. The tank of 1 meter long is separated in two parts by a thick wall. We assume the
fluids are non viscid and the density ratio of 1 : 1000. The air-water interface shape is initialized as
a stable horizontal interface in the right side tank and as a curve in the left side tank (cf figure [IT).
As the motion occurs in the left side tankand the interface is immobile in the right side tank, the
whole mass errors is done in the left part. By construction, the global mass conservation algorithm
corrects the mass lost in the left side by spreading out this correction in both sides. This incapacity
of the global mass conservation to distinguish equilibrium area and the correction of two discon-
nected part of one phase is an important weakness expecially for industrial applications. Figure
[T shows the interface position at ¢ = 1s for both mass correction algorithm (global corrector cf
section 3, local corrector cf section 4) on two embedded meshes. When we apply the local correc-
tion algorithm, the interface level remains very closed to the exact position. For the fine mesh, the
global corrector (in green) has changed the interface position at right and this deviation is twice
larger in the case of the coarse mesh. Figure [[2 represents time evolution of mass loss in the tank
left side for the two options global mass corrector and local mass corrector on two embedded mesh.
The error with the local corrector is at the maximum of 0.1%. This very small error is due to loss
produced by redistanciation which are corrected in the globally and to the numerical errors of the
local corrector algorithm. On the contrary for the global correction algorithm, the error is rather
important (4 — 8%).

On this test case, the local corrector proved to solve the important weaknesses of the global
corrector.
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Figure 10: Initialisation of the test case of the two separated tanks.

5.2 Water column fall on a dam.

The aim of this second test case is to prove the robustness of the Navier-Stokes equation resolution
and the local mass correction algorithm. This test case consists in the computation of a water
column fall in a tank. Moreover on the way of the wave at the center of the tank a little rectangular
dam has been placed. This test case has been considered by many researchers to validate their
models Andrillon et al.,[I8], Koshizuka et al. [T9], Ubbink [20] and Greaves [2I] among others.
Table 3 details the geometrical, numerical and physical data of the computation. This test case
has been simulated on a set of embedded mesh respectively 51 x 51, 101 x 101 and 201 x 201 nodes.
The results showing the convergence on the interface position at the different adimensional times
T =1t\/g/a =0,0.809,1.617,2.426, 3.233 nad 4.043 are presented on the figures [3 [4 I3 04 7
and [{in comparison with the experimental pictures tooken by Koshizuka et al. [T9]. The interface
motion is well predicted on the first time step but less then when the interface contorts itself with
phenomena of spray and breaking. At 7" = 0.809, the picture shows a spray on the dam, indicating
that the water front advancing at the tank bottom already reachs the obstacle. However, the nu-
merical leading edge has not reached yet the obstacle. A T'=1.617, the water tongue deflected by
the dam is well predicted by the numerical scheme, even if the atomization details of the spray are
not resolved . A T' = 2.426, the water tongue shape is again similar to the experimental one when
it moves towards the right wall. A 7" = 3.233, the water came into contact with the right wall and
fall under gravity effect. Air has been captured and makes opposition the water fall. The numerical
solution is in good agreement with the experiment on this point and the finest mesh 201 x 201
predicts well the secondary tongue which developps over the dam. A T = 4.043, on the meshes
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Figure 11: Interface position att = 1s. Mesh convergence and comparison of the two mass correction

algorithm.

101 x 101 and 201 x 201 the secondary tongue penetrates in the trapped air phase and dives in the

tank bottom.

The simulation showed the ability of the numerical scheme with our mass local corrector to catch
the large scale of a breaking wave phenomenum. However, the computation should be refined or
adapted in some areas to catch the fine flow details. The computaion, should also be done in three
dimensions to catch the surface tension effects which play an important role in the atomization

phenomena.
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Figure 12: Evolution of relative error of liquid volume in the left side tank.

Taille du domaine
Résolution

Largeur de la colonne d’eau
Largeur de ’obstacle

Hauteur de 'obstacle

Abcisse de début de 'obstacle
Tension de surface

Densité

Calcul Euler

Forces volumiques (gravité)
Epaississement de la Level-Set
Pas de temps

pour le maillage grossier

0.584mx0.584m (maillage 2D)

respectivement 4h = 0.01168m, 2h = 0.00584m,
h = 0.00292m

a=0.146m

Ly =0.012m

hqg = 0.048m

0.292m

c=0N/m

pi = 1000 kg/m? p, = 1.2 kg/m?

g=—9.81 m.s2
e=3h
At =2.10"4%s

Table 3: Parameétres pour la simulation numérique du cas test de la chute de la colonne sur une

digue.
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Figure 13: Initialisation expérimentale [I9]. Initialisation de linterface ¢ T = 0+.

0.4
| — — —  maillage 51x51
i ———— maillage 101x101
03 maillage 201x201
> [
02
0.1
[ ‘ l'|—l‘ ] ]
00 0.3 0.4 0.5
X
Figure 14: Comparaison. Visualisation expérimentale [19] et convergence en maillage ¢ T = 0.809.

6 CONCLUSION

In this paper, we have been interested in the mass conservation of each phase for two phase incom-
pressible flow simulation with the Level Set Method. We recall the classic principle of the global
mass correction method with the Level Set function. We proposed a discrete conservation law
to impose to the discrete characteristic function deduced from the Level Set function. The local
corrector stable and accurate. The method extends to any Galerkin discretization. We validated
the obtained improvement by comparison of the two algorithm (global and local corrector). The
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Figure 16: Comparaison. Visualisation expérimentale [I9] et convergence en maillage 4 T = 2.426.

following step of our work is to integrate the redistanciation in our local corrector. We shall also
develop a 3D version of this promising corrector.
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Figure 17: Comparaison. Visualisation expérimentale [19] et convergence en maillage ¢ T = 3.234.
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Figure 18: Comparaison. Visualisation expérimentale [I9] et convergence en maillage 4 T = 4.043.
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