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CORRECTION DE CONSERVATION PAR DUALE LEVELSETRésumé : La méthode level set appliquée à un éoulement bi-�uide inompressible ne onservepas le volume de haque phase. Or il est utile de le onserver. Dans e papier, nous proposons uneapprohe omplémentaire baseé sur une formulation faible de l'advetionde la fontion aratéris-tique. La méthode est d'abord appliquée à la simple advetion d'une fontion aratéristique. Puisla nousvelle méthode est ouplèe à un modèle bi-�uide inompressible appliqué à des éoulementsave des omposantes séparées d'une des phases (mouvement dans un double réservoir et hute deolonne d'eau sur un obstale).Mots-lés : Méanique des Fluides Numérique,volumes �nis, maillages non-struturés, ligne deniveau, interfaes



Corretion de onservation 31 INTRODUCTIONPredition of interfae motion in two-phase inompressible �ow simulation is of important interestfor applied researh and engineering. This subjet involves a di�ult approximation problem. Theinterfae involves maro-sales for example when apillarity is modelled on the basis of a smoothinterfae woth urvature, and miro sales (breaking,...).Standard Lagrangian Methods present di�ulties to simulate break-up events, Partile La-grangian Methods seem not easy to model boudary layers and apillarity, Eulerian Methods presentdi�ulties to advet the interfae with a good auray. In the subset of Eulerian Methods, TheVolume-of-Fluid (VOF) method [1℄ brings an elegant method for keeping a non-di�used interfaeand the onservation of eah phase mass. But it is rather dependant of the initial �nite-volumebasi approximation, whih limits its extension to other numerial tehnologies. The Level SetMethod (LS in the sequel) developped in the 80's by Osher and Sethian ([2℄,[3℄) uses the zero levelontour of a smooth funtion φ to loate the interfae. The LS variable φ is adveted with �owveloity:
φt + V∇φ = 0 .In ontrast to VOF methods, LS has a ontinuous statement and an be easily adapted to a largerfamily of disretization methods, paving the way to high-order approximations.However, mass onservation is not naturally satis�ed by LS. This is orrelated to two parti-ular steps of LS, the advetion of LS and the re-distaning of it. Let us onsider the ase of aninompressible �ow with two immisible �uids. The volume oupied by eah �uid should remainonstant. The satisfation of this property by an Eulerian method is a rather omplex issue. Twodi�erent ontexts should be kept in mind. When mesh is enough �ner than interfae's smallerdetail, onservation is perfetly satis�ed by methods like VOF and satis�ed up to a small error bynon-onservative methods like LS.When an evolution of the interfae beomes smaller than mesh size, onservative methods like VOFmay produe unphysial artefats whih in some ases are lost for the phase omponent from whihit separated. Non-onservative methods like non-onservative LS may behave even worse, loosinga rather important mass amount. In the ase of omplex interfae evolution, this event is frequentand then standing by high-order resolution for mass onservation is not reasonable.These remarks have motivated the development of onservative or quasi-onservative LS meth-ods.Globally mass-onserving methods refer to orretions of the LS ensuring the exat onservationof total mass. An interesting improvement onsists in orreting the interfae loation proportion-ally to the normal veloity length, see [9℄. They arry some improvement, see for example [14℄, butthis kind of improvement does not provide a omplete answer to the question risen here, of havinga more loal onservation. For example, �ow with disonneted omponents of a same phase shouldonserve onstant mass for eah omponent.Let us also mention the attempts to redue mass loss arising from a partiular stage of LS algo-rithm, for example the redistaning stage, see [13℄. We fous now on the onservation issue afterthe advetion step. As remarked in many works, advetion an be onservative for the LS variable

φ,
φt + div(Vφ) = 0but this property does not implies mass onservation of phases. In [5℄, a method is proposed forusing a parametrisation of interfae that will be sti�er than the LS, but still smooth in order toRR n° 7089



4 Lesage et al.improve the mass onservation at advetion step.In most other approahes, a �nite-volume method applied to a harateristi funtion of a phase isexpliitly introdued. In [6℄, both LS and VOF are ombined and produe an hybrid sheme thatis a kind of improvement of both methods. The disrete dependant variable for interfae is also asynthesis of LS ans VOF representations. The assembly of a VOF method is rather omplex andinstead, a more simple �nite-volume method an be applied to a harateristi funtion derivedfrom the LS �eld. This is the idea proposed in [4℄. With this kind of approah, the di�ult step isto derive a level set solution from the �nite-volume preditor. In [4℄, this is performed by a Newtonpointwise relaxation.From these works it appears that starting from an aurate LS, getting an exat onservationis paid by a return to a less aurate �nite-volume sheme in order to get a FV solution to betranformed bak into LS representation.The present work is motivated by the quest of a orretor to an aurate LS without passingby a �nite-volume sheme, but saving the LS auray when onservation is losely satis�ed by theLS solution and improving its auray in the other ase.We restrit to the inompressible multi�uid model. Let us examine the partiular ase of aunique hoie of approximation, viz. vertex entered on unstrutured meshes, applied at the sametime to LS, to veloity omponents and to pressure. The main interest of this hoie is its simpli-ity. However, the veloity approximation does not satisfy a (disrete or not) zero divergene relation.In this paper, we �rst reall the priniple of Level Set representation for the advetion of aharateristi funtion. Then we examine the issue of mass onservation in ase where the advetingveloity is of zero divergene. We present a new loal mass onservation enforement method whihprodues an approximative loal onservation. Our method uses a loal onservation onditionbased on a weak formulation of the advetion equation of the harateristi funtion H(φ) of onephase.
∫

ψH(φ)t + φVψ dv = 0 , ∀ ψWhere the test funtion ψ lies in a smooth approximation spae. Sine the unknown variableremains the LS funtion, while smoothness issue is transfered to the test funtion, the standpointis dual to the lassial Level Set formulation. In the present paper, this formulation is applied toa standard P1 �nite-element framework. Evaluation of the new sheme is done with two interfaeadvetion test ases (Zalesak test ase, vortex �ow test ase). The ombination of the loal massonservation method with a projetion method for Navier-Stokes is then presented. It is appliedto inompressible two phase �ow test ases (motion of two separated liquid volumes, water olumnfalling on an obstale).2 ADVECTION OF A CHARACTERISTIC FUNCTION2.1 Basi Level Set shemeThe advetion of an interfae an, under some smoothness assumption onerning the subdomainslimited by it, be written with the harateristi funtion χ of one phase (to �x the ideas, the �liquid�phase):
INRIA



Corretion de onservation 5
χ = 1 liquid phase

χ = 0 gaz phaseStarting from an initial loation χ0, it is adveted with a divergene-free veloity �eld Ũ that isassumed to be given in this setion.
∂χ

∂t
+ ∇·(Ũχ) = 0 χ(x, 0) = χ0(x). (1)The formal auray of the numerial advetion of a step funtion like χ is limited to �rst orderunless the numerial sheme leverly exploits the fat that χ takes only two di�erent values.Let H be the step funtion suh that H(x) = 1 if x > 0 and H(x) = 0 elsewhere. The Level Setmethod introdued by Osher et Sethian ([10℄) relies on two smoother funtions, φ0(x) suh that

H(φ0(x)) = χ(x, 0) and φ(x, t) suh that:
∂φ

∂t
+ ∇·(Ũφ) = 0 φ(x, 0) = φ0(x). (2)We take φ < 0 in the gas region and φ > 0 in the liquid region. The interfae is the zerolevel set of φ:

Γ = {x | φ(x, t) = 0} (3)It is useful now to introdue a time disretization for the LS advetion. Let φ̄n be the disretizedin time LS funtion. We apply a tree-stage time advaning. A variational formulation with a testfuntion ψ writes:
∫

Ω

ψiφ̄
n+ 1

3 dv =

∫

Ω

ψiφ̄
ndv +

∆t

3

∫

∂Ω

ψiφ̄
nŨ · ndΓ −

∆t

3

∫

φnŨ · ∇ψidv

∫

Ω

ψ̄iφ̄
n+ 1

2 dv =

∫

Ω

ψiφ̄
ndv +

∆t

2

∫

∂Ω

ψiφ̄
n+ 1

3 Ũ · ndΓ −
∆t

3

∫

φ̄n+ 1

3 Ũ · ∇ψidv

∫

Ω

ψiφ̄
n+1dv =

∫

Ω

ψiφ̄
ndv + ∆t

∫

∂Ω

ψiφ̄
n+ 1

2 Ũ · ndΓ − ∆t

∫

φ̄n+ 1

2 Ũ · ∇ψidv (4)With this formulation, the in�ow boundary value is diretly introdued in plae by speifying φ̄.Initial ondition φ̄0 an be de�ned as the signed-distane to the initial interfae but the adveted�eld φ̄ will not stay in general a distane to its zero level set. An usual pratie is refered as�redistaning� and onsists of resetting funtion φ̄ as the distane to interfae φ̄ = ± d(Γ). This isdone by various means, in partiular by solving a Hamilton-Jaobi equation ([11℄,[12℄, or by diretgeometrial onstrution.2.2 Global mass onservationAn important property of inompressible two-phase �ow is the volume onservation of eah phasewhih expresses in terms of χ = H(φ):RR n° 7089



6 Lesage et al.
χt + ∇.(χŨ) = 0 ⇒

∫

χtdx = Vliquid,t (5)where Vliquid,t = d
dt
Vliquid is the (given) rate of liquid arried through the domain boundaries. Forsimpliity, we assume this rate is zero. One of the important drawbaks of the level set method isthe loss of onservation of this formulation beause of the use of φ. It is possible to onserve φ bysolving φt + ∇.(φŨ) = 0 but this does not imply the onservation of eah phase.In [14℄, Smolianski proposes a global mass onservation whih orrets at eah time step φn+1

hinto φn+1

h . The idea is to add a small uniform perturbation Cn+1 to φn+1 in eah point of thedomain to ensure onservation of the onstant volume of the liquid phase, the initial value of whihwrites V 0
liquid =

∫

H(φ̄0)dv . This method uses the property that starting with a signed distanefuntion (∇φn+1 = 1) and adding a onstant orretion Cφ will not hange the signed distanefuntion property. The funtion
Φ(C) =

∫

H(φ̄n+1
h + C)dvis stritly monotone with a derivative bounded from zero, sine it expresses in terms of the level setontour length (2D ase):

dΦ

dC
(C) ≈ length({x, φ̄

n+1

h (x) + C = 0}) (6)Then, in the modi�ed version that we use in [7℄, we exatly solve the following statement of massonservation: Find Cn+1 suh that ∫

H(φ̄n+1
h + Cn+1)dv = V

0
liquid

φ
n+1

h = φ̄n+1
h + Cn+1. (7)The solution Cn+1 is determined by a Newton (regula falsi) method. As far as H(φh) is an higherorder aurate approximation of χ, the error in ∫

|H(φh) − χ|dv is of higher order and the globalvolume orretion step will not degrade the auray.This method brings some improvement for two-phase inompressible test ases when eah �uid isforming an unique volume. An interesting improvement is proposed in [9℄. It onsists of making theamount of mass taken or added (aording to the global spurious lak or supplement) proportionalto the absolute value of the normal veloity of the interfae. Global mass algorithms are notompletely satifatory. Typially, in the ase where one �uid is disonneted in separated volumes,the global mass onservation does not ensure the onservation of eah volume.2.3 Loal mass onservationAs already mentioned, a loal disrete mass onservation is not satis�ed by the LS method understudy. It is due to several reasons:(i) The disrete veloity �eld is not divergene free,(ii) The advetion of φ in general does not satisfy the onservation of H(φ),(iii) Advetion of details of the interfae that are too small for the mesh size will result innumerially lipping these details and will not satisfy onservation, INRIA



Corretion de onservation 7(iv) Redistaning does not in general satisfy onservation.Point (iii) desserves some omments: moving for example a small isolated bubble around a ver-tex A, with size less than ell size, to a position B loated ∆x/2 farther will result in the wrongapproximation the bubble motion. Indeed, the new bubble exat position annot be represented bythe LS method inside an element. Either the bubble is not moved orretly or it disappears. Fromthese remarks, it results that strit loal onservation annot easily be applied with our options.Therefore, our standpoint is to derive loal orretors for improving the loal onservation. Theseorretors will be used in the same way as the previous global orretor.In this setion, we shall present an analysis allowing us to build a loal orretion of the LevelSet funtion. We are looking for a non onstant orretor Cn+1(x). Our method is based on a en-forement of the inompressiblility onstraint on the nodes loated in the interfae neighbourhood.Let us assume that the veloity �eld is divergene free, the interfae motion an be desribedby both of these two onservation laws (with χ = H(φ)).
φt + ∇ · (Ũφ) = 0 (8)
χt + ∇ · (Ũχ) = 0 (9)In the ontinuous ase, (8) implies (9) but this does not extend in general in the disrete ase.We would like to reover (9) without deteriorating the advetion auray of φ. Indeed, we donot want to replae a non-onservative advetion of high order auray by a onservative advetionbut of lower order.2.3.1 Dual formulationTo orret the mass onservation of φ in the neighbourhood of the interfae, we are searhing tosolve the following Dual Level Set equation on the elements interseted by the interfae :

∀ψi ∈ P1,

∫

Ω

ψi(H(φ))tdv =

∫

∂Ω

ψiH(φ)Ũ · ndΓ −

∫

H(φ)Ũ · ∇ψidv (10)The forward-Euler time-diretization of (10) gives
∀ψi ∈ P1,

∫

Ω

ψiH(φn+1)dv =

∫

Ω

ψiH(φn)dv + ∆t

(
∫

∂Ω

ψiH(φ)Ũ · ndΓ

)

− ∆t

(
∫

H(φ)Ũ · ∇ψidv

)

. (11)We verify that it implies the mass onservation of both phases by summing for all i:
∫

Ω

H(φn+1)dv −

∫

Ω

H(φn)dv = ∆t

(
∫

∂Ω

H(φ)Ũ · ndΓ −

∫

H(φ)Ũ · ∇1 dv

)

= 0 . (12)In pratie, we use a multi-step Runge-Kutta 3 time diretization with a MUSCL sheme ofseond-order auray [7℄ in order to ompute φn+1. We dedue φn+ 1

2 of the seond step of 3-stageRR n° 7089



8 Lesage et al.Runge-Kutta sheme. Thus we obtain an aurate approximation of (10).
∀ψi ∈ P1,

∫

Ω

ψiH(φn+1)dv =

∫

Ω

ψiH(φn)dv + ∆t

(
∫

∂Ω

ψiH(φn+ 1

2 )Ũ · ndΓ

)

− ∆t

(
∫

H(φn+ 1

2 )Ũ · ∇ψidv

) (13)Although the number of unkowns (values of φ in eah node) is apparently the same as thenumber of equations (number of basis funtion ψi), the system (13) is not neessarily well set, sinethis system does not depend on values of φ at nodes far from interfae. In partiular, it does notalways admit a solution, for example when the interfae presents too small details for the mesh(omponent of one phase smaller than one ell). On the other end for su�iently smooth disreteinterfaes, the system (13) an help us to build an e�ient loal volume orretion.In the ase where the region where H(φn+ 1

2 ) = 0 ontains the entire support of ψi for some i,the system redues to
∫

Ω

ψiH(φn+1)dv =

∫

Ω

ψiH(φn)dvwhih implies that a andidate solution would would satisfy H(φn+1) = H(φn) on Suppψi.In the ase where the region where H(φn+ 1

2 ) = 1 ontains the support of ψi, the system reduesto
∫

Ω

ψiH(φn+1)dv =

∫

Ω

ψiH(φn)dv + ∆t

(
∫

∂Ω

ψiŨ · ndΓ +

∫

Ũ · ∇ψidv

)

=

∫

Ω

ψiH(φn)dv + ∆t

∫

ψi divŨ dv . (14)Assuming that the advetion veloity is divergene-free, this ase redues to the previous one. Inboth ases, the equation expresses that the sign of φ is onstant but does not speify more thanthis, whih illustrates -if neessary- that the problem is ill-posed in terms of φ.For the sequel of this analysis, we shall make an assumption a little more restritive than aCFL-like one. We observe that funtion H(φn+1) (resp.H(φn+ 1

2 ), H(φn) is not stritly 0 or 1 onlyon a subset In+1, (resp.In+ 1

2

, In) of the set of supports of ψi:
In+1 =

⋃

j

Suppψjwhere the union is taken for all test funtions ψj suh that ∇H(φn+1) is not identially zero on
Suppψj. We onsider in our analysis the simpli�ed ase where:

In+1 = In+ 1

2

= In2.3.2 Lax-Wendro� auray analysisWe assume that we have a sequene of funtions φ̂h, eah φ̂h verifying on the mesh τh the followingequation :
∀ψi ∈ P1,

∫

Ω

ψi(H(φ̂h))tdv =

∫

∂Ω

ψiH(φ̂h)Ũ · ndΓ −

∫

H(φ̂h)Ũ · ∇ψidv + hkRhi (15)INRIA



Corretion de onservation 9where Rhi is uniformly bounded independently of h and of node i.We give now some heuristi elements of error analysis between funtion φ̂h and the ontinuoussolution φ of system (10). The system having a weak solution, we an use the Lax-Wendro� priniplefor onvergene of weak solutions. We write Problem (10) as follows :
∀ ψ ∈ D(Ω̄×]0, T [),

(

χt + ∇ · (Ũχ) , ψ

)

Ω̄×]0,T [

= 0 (16)Let Πh be an interpolation operator in Vh, we write the disrete problem (15) as follows:
∀ ψ ∈ D(Ω̄×]0, T [),

(

χh,t + ∇h · (Ũχh) , Πhψ

)

Ω̄×]0,T [

= hkRh(ψ) (17)where Rh(ψ) is uniformly bounded independently of h.We transpose the derivation operator on the test funtion ψ.In the ontinuous ase :
(

χ , −ψt − Ũ · ∇ψ

)

Ω̄×]0,T [

= 0 . (18)In the disrete ase :
(

χh , −Πhψt − Ũ · ∇∗
h · Πhψ

)

Ω̄×]0,T [

= hkRh(ψ) . (19)By di�erene, we obtain :
(

χ− χh , −ψt − Ũ · ∇ψ

)

Ω̄×]0,T [

=

(

χh ,−ψt − Ũ · ∇ψ + Πhψt + Ũ · ∇∗
h · Πhψ

)

Ω̄×]0,T [

−hkRh(ψ) . (20)The seond member an be analysed with the following estimations :
||χh||L∞ = 1, (21)

||ψt − Πhψt||Lp = (O)(h2), (22)ompleted by the assumption that the spatial derivation operator is seond order aurate in thefollowing sense :
||∇ψ −∇∗

h · Πhψ||Lp = (O)(h2). (23)The following error estimate omes out :
(

χ− χh , −ψt − Ũ · ∇ψ

)

Ω̄×]0,T [

= hk|Rh(ψ)| + (O)(h2) . (24)RR n° 7089



10 Lesage et al.Thus this approah seems likely to onserve the seond-order auray.Sine a solution does not always exists, a stability analysis, that indeed would be useful, seemsout of reah at the moment. Although needing iteration for being advaned, the sheme is of expliittype and is probably subjet to a CFL ondition. The last step is also of entral di�erene typebut we have not met in experiments a lear need for adding dissipation.2.3.3 De�nition of the onservative orretorWe rewrite the previous problem as follows:Find φn+1 so that Ψi(φ
n+1) = 0 ∀ i, with

Ψi(φ) =

∫

Ω

ψiH(φ)dv − bi

bi =

∫

Ω

ψiH(φn)dv

+ ∆t(−

∫

∂Ω

ψiH(φn+ 1

2 )Ũ · ndΓ) +

∫

Ω

H(φn+ 1

2 )Ũ · ∇ψidv) (25)We observe that a diagonal evaluation of the derivative of Ψ an be done as follows:
∂Ψi

∂φi
≈

∫

ψidx dx .This an be used to re-dimensionalize the dual LS residual:
Ψ̂i(φ) = Ψi(φ)/

∫

ψidx dx ; Ψ̂(φ) =
∑

Ψ̂i(φ)ψi.We propose a �rst simpli�ed orretor by applying a non-uniform orretion to the Level Set funtion
φ: Let φn+1obtained from primal LSFind Cn+1suh that:

∫

φn+1
i + Cn+1Ψ̂i(φ

n+1) dx = V,Put φ̃n+1
i = φn+1

i + Cn+1Ψ̂i(φ
n+1) ∀ iHowever, sine the orretor �eld is of arbitrary sign, we annot ensure the monotony of the newfuntional:

∫

φn+1
i + Cn+1Ψ̂i(φ

n+1) dx − V .It is only loally monotone when its derivative is not zero. This means that only a su�iently small
Cn+1 an be applied in order to derease the mass loss. In the non-frequent ase of a zero derivative,we an make the derivative non-zero by adding to the orretor a small uniform perturbation. In

INRIA



Corretion de onservation 11pratie, this algorithm brings an interesting improvement with respet to the global orretion, aswill be illustrated in the sequel by numerial experiments
In a more sophistiated iteration, we try to minimise the residual of the dual LS system by aPiard �xed point: 0. φ̃(0) = φ̃n+11. Compute: F (η) = ||Ψ̂i(φ

(α) + ηΨi(φ
(α)))|| for: η = ε, η = −εIf Min(F (ε), F (−ε), F (0)) = F (0) then stop

ε′ = ArgMin(F (ε), F (−ε))

φ(α+1) = φ(α) + ηΨi(φ
(α))where η is hosen with same sign as ε′ and suh that:

Ψi(φ
(α+1)) < Ψi(φ

(α))2. Go to 1The hoie of η an be performed e�iently by relaxing from the Newton step for F whih writes:
F ′ = (F (ε′) − F (0))/ε′

η0 = 0 − (F ′)−1F (0)

φ(α+1) = φ(α) + η0Ψi(φ
(α)) (26)If F depends linearly on η, the hoie η = η0 onverges in one step. In general it does not guar-antee onvergene and we searh the smallest non-negative integer n for whih η = η0/2

n satis�es
Ψi(φ

(α+1)) < Ψi(φ
(α)).Remark: In ontrast to the standard Level Set formulation, the Dual LS system de�nes the fun-tion φ only near the interfae. It an be ombined with a re-distaning proess for de�ning theother degrees of freedom of φ.In the following setion, we will ompare the performane of the new loal orretor with theglobal orretor on two interfae advetion test ases (Zalesak disk).3 INTERFACE ADVECTION NUMERICAL EXAMPLES3.1 Rotation of Zalesak's diskConsider the rigid body rotation of Zalesak's disk in a onstant vortiity veloity �eld [15℄. Theinitial interfae is slotted irle entered at (50., 75.) with a radius of 15., a width of 5., and a slotlength of 25. Veloity is given by u = (π/314)(50 − y) and v = (π/314)(x − 50) so that the diskompletes one revolution every 628 time units. The Level Set funtion is initialised like the signeddistane funtion to the Zalesak's disk. We ompute one revolution of the Zalesak's disk on threeRR n° 7089



12 Lesage et al.embedded meshes 101× 101, 201× 201, 401× 401. We de�ne the relative error of the L1 norm as
‖H(φh)−H(φexact)‖L1

‖H(φexact)‖L1

.

Figure 1: Rotation of Zalesak's disk. Mesh Convergene results after one revolution. Global massonservation algorithmWe ompute the numerial onvergene order as follows :
n =

ln||H(φh) −H(φexact)||finemeshL1
− ln||H(φh) −H(φexact)||coarsemeshL1

ln(δx)finemesh − ln(δx)coarsemesh
(27)Figure 1 illustrates the mesh onvergene results after one full rotation with the global massorretor. Figure 2 illustrates the mesh onvergene results with the loal mass orretor. Table1 and 2 give the results on relative error L1 on the full rotation on the three meshes. It permitsto ompute the onvergene order on H(φ) with equation (27). We observe a lear improvementof the relative error L1 with the loal mass orretor. On the 401 × 401 nodes, the error with theloal orretor is three time less important as with the global orretor.3.2 Single vortexWhile Zalesak's disk is a good indiator of di�usion error in an interfae-apturing method, it doesnot test the ability of an Eulerian sheme to aurately resolve thin �laments on the sale of themesh whih an our in strething and tearing �ows for example in the turbulent ase. A �owwhih exhibits interfae strehing is the �vortex-in-a-box� problem introdued by Bell et al. [16℄.Figure 3 shows the nononstant vortiity veloity �eld entered in the box with the largest veloity

INRIA
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Figure 2: Rotation of Zalesak's disk. Mesh Convergene results after one revolution. Loal massonservation algorithmNumber of nodes Relative error L1 Convetion Order on H(φ)101x101 0.158 -201x201 0.0418 1.94401x401 0.0203 1.04Table 1: Rotation of Zalesak's disk : relative error L1 between the exat funtion H(φexact) and
H(φh) after one revolution with the global mass orretor algorithm. Convergene orderresults. Number of nodes Relative error L1 Convetion Order on H(φ)101x101 0.0674 -201x201 0.0148 2.18401x401 0.007 1.08Table 2: Rotation of Zalesak's disk : relative error L1 between the exat funtion H(φexact) and
H(φh) after one revolution with the loal mass orretor algorithm. Convergene order results.loated half way to the walls of the domain. The veloity �eld is de�ned by the stream funtion

Ψ =
1

π
sin2(πx)sin2(πy).

RR n° 7089



14 Lesage et al.A unit omputational domain is used with a irle of radius 0.15 plaed at (0.5, 0.75). The resultingveloity �eld strehes out the irle into a very long, thin �uid element whih progressively wrapsitself toward the enter of the box. Figure 4 shows the omparison of the level set solution forthe vortex �ow at t = 1s with the global orretor and with the loal orretor algorithm. Wean observe that the result on the oarse mesh 101 × 101 nodes with the loal orretor is farbetter than the one with the global orretor. We even observe if we ompare with the higly a-urate result provided by Enright et al. [17℄ with their partile Level Set Method that the loalorretor on 101 × 101 nodes mesh presents even better auray than the onverged solution on
401 × 401 nodes mesh using the global orretor. Figures 6 and 8 ompare our level set solutionwith the loal orretor on the 201 × 201 nodes mesh with the solution of Enright et al. [17℄ withthe highly aurate partile level set method Figure 7 and 9 on 128 × 128 at t = 3 and t = 5.Enright et al. [17℄ use partile adveted in a lagrangian way to orret the zero level set ontour,they have arti�ially very �ne mesh. We are not as aurate as these authors, but omparing withthe �neness of the lagrangian nodes they use, it seems in fat that our disretization is muh oarser.This test ase proves as for the previous Zalesak's disk test the improvement ahieved with thenew loal orretor. In the next setion, we will ouple our loal orretor with Navier-Stokes modelof two phase instationary inompressible �ows.

Figure 3: Initial data and veloity �eld for the vortex �ow.
INRIA



Corretion de onservation 15

Figure 4: Comparison of the level set solution for the vortex �ow at t = 1s with the global orretorand with the loal orretor algorithm. Red level set solution with global orretor on 101 × 101nodes mesh. Green level set solution with loal orretor on 101 × 101 nodes mesh. Blue level setsolution with global orretor on 401 × 401 nodes mesh.4 LEVEL SETMETHOD FOR TWO-PHASE INCOMPRESS-IBLE FLOW4.1 Di�erential modelLet us onsider the solution of the model of two inompressible immisible �uids moving in a losedvessel Ω with no-slip wall ondition, under the in�uene of gravity but without interfae tension.It writes for the �uid veloity U, the pressure p and the density ρ as follows:
ρ
∂U

∂t
+ ρ∇.(U × U) − ∇.(2ν(ρ)∇U) + ∇p − ρg = 0 in Ω ,

∂tρ+ ∇.(ρU) = 0 ρ = ρl or ρg in Ω ,

∇.U = 0 in Ω ,

U = 0 on ∂Ω . (28)In this formulation, the density takes in Ω only two real positive values ρl and ρg in two subdomainsseparated by an interfae smooth enough for allowing to onsider its normal:
nδ(ρ) =

1

ρl − ρg
∇ρ . (29)
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16 Lesage et al.

Figure 5: Partile Level Set Method solution (blak) for the vortex �ow at t = 1 f Enright et al.[17℄.To �x the ideas, ρl in the liquid and ρg in the gas. Further, δ(ρ) denotes the Dira delta funtionon the interfae, g the gravity volumi fore, and ν(ρ) the visosity.The interfae advetion is performed by the level set method with the harateristi funtion χof liquid phase.
φt + div(Vφ) = 0 ; χ = H(φ) (30)with an advet exatly equal to material veloity, i.e. V = U. The density and the visosity areonstant in eah �uid, we an write
ρ(φ) = ρg + (ρg − ρl) H(φ)

ν(φ) = νg + (νg − νl) H(φ). (31)Then the previous governing equations for the �uid veloity U and the pressure p along withboundary onditions an be written as:
ρ(φ)

DU

Dt
= −∇p+ ∇.(2ν(φ)D) + ρ(φ)g (32)4.1.1 ApproximationLet us now hoose a numerial method for advaning the inompressible veloity. We onsider forsimpliity a �rst-order time-aurate projetion method for the P1-P1 spae disretisation as in [7℄.Several important improvement for stability ad auray have been proposed, see for example thereent paper [?℄. Let Ωh be a disretisation of Ωh overed by a triangulation Th. Disrete domainINRIA
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Figure 6: Level set solution for the vortex �ow at t = 3s with loal orretor algorithm on 201× 201nodes mesh.
Ωh is assumed to be idential to Ω. For simpliity of notations, index h of spae disretisation isalso omitted for other symbols. We introdue the usual P1 �nite-element spae:- V = {ψ ∈ C0(Ω̄), ψ|T is a�ne ∀T ∈ T }

V is spanned by the set of basis funtions ψi for any i, where φi is equal 1 on vertex i and zeroon other verties.- V = V d, where d = 2 is the spae dimension.the spae of funtions that are onstant by element is denoted:-H = {v ∈ L2(Ω), v|T is onstant ∀T ∈ T }- H = Hd.Projetion in H: for all U = (u, v) in (L2(Ω))2, we denote: P0u the funtion of H suh that forany element T of T , P0u|T =
∫

T
udxdy/

∫

T
dxdy and we denote also P0U = (P0u,P0v).Projetion in V: for all U = (u, v) in H, we denote: Pu the funtion of V suh that for any i,vertex of T , Pu|i =

∫

uψidxdy/
∫

ψidxdy and we denote also PU = (Pu,Pv) .
RR n° 7089



18 Lesage et al.

Figure 7: Partile Level Set Method solution (blue) for the vortex �ow at t = 3 f Enright et al.[17℄.Mass lumping: we all ell area the following mass-lumped oe�ient:
area(i) =

∑

j

∫

Ω

ψiψjdv .The disretised multi-�uid variables are:
U =

∑

i

Uiψi , p =
∑

i

piψi , φ =
∑

i

φiψi .The global algorithm for advaning them in time writes:Stage 1: (Predition) Compute an expliit preditor for moment:
Ūi = Un

i − ∆t area(i)−1

∫

Ω

ψi

(

∇.(U × U) −
1

ρ
∇.(2ν(ρ)∇U) − g

)

dv . (33)Stage 2: (Projetion) Solve in V the ellipti system:
∫

1

ρ
∇p.∇ψdxdy =

1

∆t

∫

∇ψ.Ūdxdy (34)and put:
Un+1 = Ū + ∆t P

(

1

ρ
∇p

)

, Un+1 = 0 on ∂Ω. (35)Stage 3: (LS advetion) Advet the φ funtion with V from time level n to time level n+1, forexample with the three-stage sheme (11). In pratise, we stabilize this entral-di�erened shemeINRIA
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Figure 8: Level set solution for the vortex �ow at t = 5s with loal orretor algorithm on 201× 201nodes mesh.with a MUSCL ell-wise reonstrution.Stage 4: (Redistaning) Replae the adveted φ̄n+1 by a reinitialised or redistaned φ̃n+1 =signed distane to {φ̄n+1 = 0},,Stage 5: (Conservation) Replae the re-initialised φ̃n+1 by a φn+1 enjoying a onservationproperty.4.2 Enforement of the inompressibility onstraintTo orret φ through a onservative advetion of χ, it is neessary to determine a veloity �eld Ũsatisfying the disrete inompressiblity onstraint identi�ed as:
∫

Ω

ψidivŨ dv = 0 , ∀ i (36)
RR n° 7089
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Figure 9: Partile Level Set Method solution (blue) for the vortex �ow at t = 5 f Enright et al.[17℄.With the proposed projetion method, this onstraint is not satis�ed by the solution Un+1 of (35).Let us introdue the following approximation of veloity:
Ũ = P0Ū +

1

ρ
∇p (37)where p is the solution of (34).Lemma: (i) The P0 veloity �eld Ũ de�ned in (37) satis�es:

∫

Ω

Ũ∇ψi dv = 0 ∀ i (38)(ii) By adveting the χ funtion with the veloity �eld Ũ, mass onservation far from the interfaeis veri�ed in the following sense :
∀ψi tel que H(φ)|suppψi

≡ 1,

∫

Ω

ψi(H(φ))tdv = 0. (39)Indeed, the disrete onservation satis�ed by Ũ is imposed by the projetion step in eah node
i. For the nodes internal to the mesh, we have

∫

∇ψi · Ũ = 0. (40)where ψi is the basis funtion P1 at node i. INRIA



Corretion de onservation 21We an write a spatial semi-disretization of (9) under the following variational form.
∀ψ ∈ P1,

∫∫

ψ(H(φ))t +

∫∫

ψ∇ · (UH(φ)) = 0. (41)Using an integration by part, we get
∫

Ω

ψ(H(φ))tdv =

∫

∂Ω

ψH(φ)U · ndΓ −

∫

H(φ)U · ∇ψdv (42)The equation (42) beomes for ψi:
∫

Ω

ψi(H(φ))tdv = −

∫

U · ∇ψidv , (43)and if we use of veloity �eld Ũ with the propriety (40), we obtain (39). 2Thus the use of Ũ allows us to ontrol the approximation errors on the veloity divregene farfrom the interfae.Then this veloity �eld is introdued in all advetion formula for φ and in partiular in (11).5 TWO PHASE INCOMPRESSIBLE FLOW NUMERICALEXAMPLES5.1 Liquid osillation in two separated tanksAs �rst test ase of two phase inompressible �ow, we ompute the osillation of a water volumeunder gravity. The tank of 1 meter long is separated in two parts by a thik wall. We assume the�uids are non visid and the density ratio of 1 : 1000. The air-water interfae shape is initialized asa stable horizontal interfae in the right side tank and as a urve in the left side tank (f �gure 10).As the motion ours in the left side tankand the interfae is immobile in the right side tank, thewhole mass errors is done in the left part. By onstrution, the global mass onservation algorithmorrets the mass lost in the left side by spreading out this orretion in both sides. This inapaityof the global mass onservation to distinguish equilibrium area and the orretion of two dison-neted part of one phase is an important weakness expeially for industrial appliations. Figure11 shows the interfae position at t = 1s for both mass orretion algorithm (global orretor fsetion 3, loal orretor f setion 4) on two embedded meshes. When we apply the loal orre-tion algorithm, the interfae level remains very losed to the exat position. For the �ne mesh, theglobal orretor (in green) has hanged the interfae position at right and this deviation is twielarger in the ase of the oarse mesh. Figure 12 represents time evolution of mass loss in the tankleft side for the two options global mass orretor and loal mass orretor on two embedded mesh.The error with the loal orretor is at the maximum of 0.1%. This very small error is due to lossprodued by redistaniation whih are orreted in the globally and to the numerial errors of theloal orretor algorithm. On the ontrary for the global orretion algorithm, the error is ratherimportant (4 − 8%).On this test ase, the loal orretor proved to solve the important weaknesses of the globalorretor.RR n° 7089
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Figure 10: Initialisation of the test ase of the two separated tanks.5.2 Water olumn fall on a dam.The aim of this seond test ase is to prove the robustness of the Navier-Stokes equation resolutionand the loal mass orretion algorithm. This test ase onsists in the omputation of a waterolumn fall in a tank. Moreover on the way of the wave at the enter of the tank a little retangulardam has been plaed. This test ase has been onsidered by many researhers to validate theirmodels Andrillon et al.,[18℄, Koshizuka et al. [19℄, Ubbink [20℄ and Greaves [21℄ among others.Table 3 details the geometrial, numerial and physial data of the omputation. This test asehas been simulated on a set of embedded mesh respetively 51×51, 101×101 and 201×201 nodes.The results showing the onvergene on the interfae position at the di�erent adimensional times
T = t

√

g/a = 0, 0.809, 1.617, 2.426, 3.233 nad 4.043 are presented on the �gures 13, 14, 15, 16, 17and 18 in omparison with the experimental pitures tooken by Koshizuka et al. [19℄. The interfaemotion is well predited on the �rst time step but less then when the interfae ontorts itself withphenomena of spray and breaking. At T = 0.809, the piture shows a spray on the dam, indiatingthat the water front advaning at the tank bottom already reahs the obstale. However, the nu-merial leading edge has not reahed yet the obstale. A T = 1.617, the water tongue de�eted bythe dam is well predited by the numerial sheme, even if the atomization details of the spray arenot resolved . A T = 2.426, the water tongue shape is again similar to the experimental one whenit moves towards the right wall. A T = 3.233, the water ame into ontat with the right wall andfall under gravity e�et. Air has been aptured and makes opposition the water fall. The numerialsolution is in good agreement with the experiment on this point and the �nest mesh 201 × 201predits well the seondary tongue whih developps over the dam. A T = 4.043, on the meshes
INRIA
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Figure 11: Interfae position at t = 1s. Mesh onvergene and omparison of the two mass orretionalgorithm.
101× 101 and 201× 201 the seondary tongue penetrates in the trapped air phase and dives in thetank bottom.The simulation showed the ability of the numerial sheme with our mass loal orretor to aththe large sale of a breaking wave phenomenum. However, the omputation should be re�ned oradapted in some areas to ath the �ne �ow details. The omputaion, should also be done in threedimensions to ath the surfae tension e�ets whih play an important role in the atomizationphenomena.
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Figure 12: Evolution of relative error of liquid volume in the left side tank.Taille du domaine : 0.584mx0.584m (maillage 2D)Résolution : respetivement 4h = 0.01168m, 2h = 0.00584m,
h = 0.00292mLargeur de la olonne d'eau : a = 0.146mLargeur de l'obstale : Ld = 0.012mHauteur de l'obstale : hd = 0.048mAbisse de début de l'obstale : 0.292mTension de surfae : σ = 0 N/mDensité : ρl = 1000 kg/m3 ρg = 1.2 kg/m3Calul EulerFores volumiques (gravité) : g = −9.81 m.s−2Epaississement de la Level-Set : ǫ = 3hPas de temps : ∆t = 2.10−4spour le maillage grossierTable 3: Paramètres pour la simulation numérique du as test de la hute de la olonne sur unedigue.
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Figure 13: Initialisation expérimentale [19℄. Initialisation de l'interfae à T = 0+.
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Figure 14: Comparaison. Visualisation expérimentale [19℄ et onvergene en maillage à T = 0.809.6 CONCLUSIONIn this paper, we have been interested in the mass onservation of eah phase for two phase inom-pressible �ow simulation with the Level Set Method. We reall the lassi priniple of the globalmass orretion method with the Level Set funtion. We proposed a disrete onservation lawto impose to the disrete harateristi funtion dedued from the Level Set funtion. The loalorretor stable and aurate. The method extends to any Galerkin disretization. We validatedthe obtained improvement by omparison of the two algorithm (global and loal orretor). The
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Figure 15: Comparaison. Visualisation expérimentale [19℄ et onvergene en maillage à T = 1.617.
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Figure 16: Comparaison. Visualisation expérimentale [19℄ et onvergene en maillage à T = 2.426.following step of our work is to integrate the redistaniation in our loal orretor. We shall alsodevelop a 3D version of this promising orretor.
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Figure 17: Comparaison. Visualisation expérimentale [19℄ et onvergene en maillage à T = 3.234.
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