Reversal Strategies for Adjoint Algorithms

Laurent Hascoét

June 4, 2007

Abstract

Adjoint Algorithms are a powerful way to obtain the gradients
that are needed in Scientific Computing. Automatic Differentiation
can build Adjoint Algorithms automatically by source transformation
of the direct algorithm. The specific structure of Adjoint Algorithms
strongly relies on reversal of the sequence of computations made by the
direct algorithm. This reversal problem is at the same time difficult
and interesting. This paper makes a survey of the reversal strategies
employed in recent tools and describes some of the more abstract
formalizations used to justify these strategies.

1 Why build Adjoint Algorithms?

Gradients are a powerful tool for mathematical optimization. The Newton
method for example uses the gradient to find a zero of a function, itera-
tively, with an excellent accuracy that grows quadratically with the number
of iterations. In the context of optimization, the optimum is a zero of the
gradient itself, and therefore the Newton method needs second derivatives in
addition to the gradient. In Scientific Computing the most popular optimiza-
tion methods, such as BFGS [16], all give best performances when provided
gradients too.

In real-life engineering, the systems that must be simulated are complex:
even when they are modeled by classical mathematical equations, analytic
resolution is totally out of reach. Thus, the equations must be discretized
on the simulation domain, and then solved e.g. iteratively by a computer
algorithm.

Optimization comes into play when, after simulating the system for a
given set of input parameters, one wants to modify these parameters in or-
der to minimize some cost function defined on the simulation’s result. The
mathematical local optimization approach requires a gradient of the cost
with respect to the input parameters. Notice furthermore that the gradient
of the simulated function has several other applications. To quote just one,
the gradient characterizes the sensitivity of the system simulation to small
variations or inaccuracies of the input parameters.

How can we get this gradient? One can write a system of mathematical
equations whose solution is the gradient, and here again analytic resolution
is out of reach. Therefore, one must discretize and solve these equations, i.e.
do what was done for the original equations. There is however an alterna-
tive approach that takes the algorithm that was built to solve the original
system, and transforms it into a new adjoint algorithm that computes the
gradient. This can be done at a relatively low development cost by Algo-
rithmic Differentiation, also known as Automatic Differentiation (AD) of
algorithms [8, 3, 1].

The fundamental observation of AD is that the original program P, what-
ever its size and run time, computes a function F, X€IR™ — Y €IR™ which
is the composition of the elementary functions computed by each run-time
instruction. In other words if P executes a sequence of elementary statements
I, k € [1..p], then P actually evaluates

Fprofp_lo---ofl s

where each fj is the function implemented by I. Therefore one can apply the
chain rule of calculus to get the Jacobian matrix F’, i.e. the partial derivatives
of each component of Y with respect to each component of X. Calling
Xo = X and X;, = fr(Xy_1) the successive values of each intermediate
variable, i.e. the successive states of the memory, throughout execution of P,
we get

F'(X) = f;(prl) X ;,1(Xp72) x - x f1(Xo) - (1)

Recalling now that we are looking for a gradient, which implies strictly speak-
ing that X, =Y is scalar, we see that Equation (1) is more efficiently com-
puted from left to right because vector xmatrix products are so much cheaper

than matrix xmatrix. We end up with an iterative adjoint algorithm which,
for each statement I, for k = p down to 1, i.e. in reverse order, executes an
adjoint code <I_k that computes X1 = Xy, X fi(Xz_1). In other words, X
is indeed the gradient of the final scalar cost with respect to the variables X}
just before I, and finally X, is the required gradient X. For every variable
x in every X, we thus define X which is the gradient of the final scalar cost
with respect to this x, and we will call it the “gradient on x” for short.

Before looking further into the problems posed by the AD adjoint alg(o_—
rithm, let’s underline its decisive advantage. Observing that the cost of I}
is only a small multiple of the cost of the original statement [, with a factor
generally between 2 and 4, we see that we get the gradient at a cost which is
a small multiple of the cost of P. This cost is independent from the dimension
m of the input parameter space. If on the other hand one computes the gra-
dient by evaluating Equation (1) from right to left, one repeatedly multiplies
a matrix f;(Xj_1) by another matrix with m columns. This is called the AD
tangent algorithm, and its cost is proportional to m. In real applications the
number m of optimization parameters can range from several hundred up to
several million, and the tangent algorithm is no longer an option.

However, the adjoint algorithm needs and uses the f;(Xj;_1) in the reverse
order, from k = p down to 1. We call this the program reversal problem.
For instance the adjoint algorithm first needs X,_;, which in turn requires
execution of nearly all the original program P. Then the adjoint algorithm
needs X,_o, but going from X,_; back to X, 5 is by no means easy. One
needs reversal strategies based either on a new run of (a slice of) P, or on
undoing statement I,_; possibly using some clever preliminary storage of
values before I,,_;.

This paper makes a survey of the reversal strategies employed in the
most recent AD tools, with some emphasis on the strategies that we imple-
mented and sometimes designed for our AD tool Tapenade. In the sequel,
we will organize the reversal problems into reversal of individual statements
in Section 2, reversal of the Data-Flow in Section 3, and reversal of the
Control-Flow in Section 4.

2 Reversal of Individual Statements

Consider a statement [from the original simulation program P. We can
focus without loss of generality on the case where [}, is an assignment. Control
statements will be dealt with in Section 4, procedure calls are out of the scope
of this paper and can be considered inlined as a sub-sequence of statements,
and other statements such as I-O statements are of limited effect on gradient
computations.

H _ [R—

The derivative adjoint code [} that computes X1 = Xi X fl(Xk-1)
is somewhat different from the usual derivatives from textbooks, because
the gradients are propagated backwards. Specifically, naming y the variable
overwritten by I, and considering each variable x used in its the right-hand
side

Iy o y=fi(...x...)
considering, for the sake of clarity only, that x and y are distinct program
«—
variables, the adjoint [performs for each x
Of

X = X+ %y

ox

and terminates resetting y=0.0. For example if [} is:
y = x*x(a(j)+1.0)

its adjoint code is:

X =X + (a(j)+1.0) %y
a(j) = a(j) + xxy
¥ = 0.0

Let us now focus on the problem of common sub-expressions in the deriva-
tive code. Consider an example assignment:

res = (tau-w(i,j))*g(i,j*(z(j)-2.0)/v(j)

Its adjoint code is

z(j) = z(j) + g(i, j)*(tau-w(j))*res/v(j)

v(j) =v(G) - gld, jP*(tau-w(j))*(z(j)+2.0)*res/v(j)**2
g(i, j) =g, j) + (z(j)+2.0)*(tau-w(j))*res/v(j)

tau = tau + (z(j)+2.0)*g(i, j)*res/v(j)

w(j) = w(G) - (z(j)+2.0)*g(i, j)*res/v(j)

Tes = 0.0

We see that differentiation has introduced many common sub-expressions
that slow down the derivative code. This is because the % often share sub-
expressions from fi. This problem differs from the optimal accumulation of
partial derivatives addressed by Naumann in [13], which he recently proved
to be NP-complete [14]. Instead of looking for the optimal combination of
partial derivatives across several successive statements, we are here looking
for an optimal common sub-expressions elimination among the expressions
that return these partial derivatives for one statement. Instead of leaving this
problem to some post-processor, we are going to use the known structure of
adjoint codes to eliminate common sub-expressions right from differentiation
time. This elimination is governed by cost/benefit considerations and there-
fore we analyze the cost of the adjoint code of I, looking at the abstract
syntax tree of I.

Gradients are computed backward: for any arbitrary sub-tree S of the
right-hand side, we can define S the gradient on the result of S, which is
the product of the gradient on the right-hand side res with the partial
derivative of res with respect to S. Thus, S is computed independently
of the inside of S, and it is used to compute the gradient on each variable
that occurs in S. For example if we take S to be (z(j)-2.0)/v(j), S is
g(i,j)*(tau-w(i,j))*Tres, and it occurs twice in the adjoint code, to com-
pute Zz(j) and v(j). Let us evaluate, for each sub-tree S (resp. for its
corresponding S), its evaluation cost ¢ (resp. €) and the number of times ¢
(resp. t) it occurs in the adjoint code:

e ¢ is obviously a simple synthesized (bottom-up) attribute.

e { is in fact the number of variables inside S, because the gradient on
each of these variables uses S, and no one else does. It is therefore a
very simple synthesized attribute.

e ¢ is an inherited (top-down) attribute: if S is a child of an expression
P=op(...,S,...), then the cost of S is the cost of P, plus one product,

>

plus the cost of % which in general depends on the costs of each

children of P. According to the operator op, the partial derivative may
in fact depend only on some children, and this has a strong impact on
the total cost.

e { is also inherited: if S is a child of an expression P = op(...,S,...),
then S occurs once inside every occurrence of P, plus each time S is
dop

used in the partial derivative 5 of P with respect to any of its children.

Here also, this depends on the actual operator op.

The total cost attached to a sub-tree S is tc. It is worth replacing each
occurrence of S by a precomputed temporary when tc is larger than the cost
of assigning S to the temporary and using it ¢ times, i.e. ¢+ 1+ ¢, assuming
that each access to the temporary costs 1. Similarly, it is worth introducing
a temporary for S when ¢ > ¢+ 1 + . Therefore we propose the following
adjoint sub-expression elimination algorithm:

compute ¢ and ¢ bottom-up on the syntax tree

compute ¢ and ¢t top-down on the syntax tree

while (some sub-tree S has a positive tc—t—c—1 or t¢ —t—c—1)
find the S that maximizes max(tc —t—c—1,tc —t—c—1)
create a temporary variable for S or S, whichever is better
update ¢ and ¢ bottom-up above S
update ¢ and ¢ top-down on the syntax tree

This greedy algorithm is not guaranteed to create a minimal number of
temporary variables. On the other hand it is efficient on large expressions
and gives good enough results on real codes. Going back to the example
assignment, this algorithm produces the following adjoint code

tmpl = (z(§j)+2.0)/v(j)

tmpl = g(i, j)*(tau-w(j))*res/v(j)

tmp2 = tmplxg(i, j)*Tes

z(j) = z(j) + tmpl

v(j) = v(j) - tmpl¥tmpl

gli, j) =g, j) + tmplx(tau-w(j))*Tes
tau = tau + tmp2

w(j) = w(j) - tmp2

res = 0.0

Notice that common expression tau-w(j) was not eliminated because of the
cost/benefit tradeoff. In real engineering codes, long expressions spanning
on several lines are commonplace. On these codes, we observed speedups up
to 20% coming from adjoint sub-expression elimination.

3 Reversal of the Data-Flow

Scientific programs frequently overwrite variables, and there’s really no way
around that. Programs cannot be turned into single-assignment form because
they use iterative solvers and the number of iterations is dynamic. This is
the heart of the problem for the adjoint algo{r_ithm, since it uses intermediate
variables in the reverse order. If the adjoint [, really uses variable x € X, 1,
and if some statement [;,; downstream overwrites x, then the previous value
of x must be recovered. We call this the Data-Flow reversal problem.

To our knowledge, Data-Flow reversal strategies always apply one of the
two approaches (or a combination), sketched on figure 1:

e Forward recomputation of the required subset of state Xj_;, starting
from a stored previous state between Xy and X;_;. This is done before
. h . . (_— %_
running [, and must be repeated similarly before I_q, I;_5, and so
on.

e Backward restoration of the required subset of state X}, progressively,
interleaved with <I_p back to <I_k In a few cases, this restoration can
be done at no cost (think of x = 2.0%x), but in general it requires
storage of intermediate values on a stack, known as the tape, during a
preliminary forward execution of I; to I, .

In figure 1, we represent the actual computation of the derivatives as arrows
pointing to the left, and the computation of the original statements [, that
build the required intermediate variables, as arrows pointing to the right.
Vertically, we represent time, as what is represented on one line can be done
only when all lines above are done. Dots indicate whenever values must be
stored (black dots) in order to be retrieved later (white dots).

Figure 1 shows the respective merits of the two approaches: recomputa-
tion uses little memory but a lot of CPU, opposite for restoration. However, it

7

hLobh I3 b2 lp1 h b 1 2 It

5 T e
-« P RPRE ho o1
| Pl
ot»
Pra—
o _ D
1

Figure 1: Structure of the adjoint algorithm using Forward recomputation
(left) vs. Backward restoration (right)

is clear that neither method can run efficiently on a large program. AD tools,
whether they are based on forward recomputation (like TAMC [6], TAF) or
on backward restoration (like Adifor [2], Tapenade [12], OpenAD [18]), all use
a time/memory trade-off known as checkpointing [8, Chapter 12]. Figure 2
illustrates checkpointing of the first half S of a program P. In Forward recom-

S S
@ - 4 P — @ >
O o >
" —"— — ———
Qe
O > —
O e T e—
O_>h

Figure 2: Checkpointing in the context of Forward recomputation (left) vs.
Backward restoration (right)

putation, a snapshot of the memory is taken so that forward recomputations
can restart from it, saving CPU time. In Backward restoration, the first half
of P is run without storing the intermediate values. It will be run again, with
storage, when these values are really needed. The maximum size of the stack
is roughly divided by two. Checkpoints can be recursively nested. In this
case the multiplicative cost factor of the adjoint program compared to the
cost of P, both time-wise and memory-wise, grows only like the logarithm of
the size of P, which is very good. In this case also, the overall shapes of the
adjoint program become quite similar, whether one starts from the Forward
recomputation extreme or from the Backward restoration extreme. These
shapes differ only inside the lower-level checkpoints i.e. program fragments
that contain no checkpoint.

Checkpointing is certainly a crucial issue for adjoint algorithms, but it is
not strictly speaking a reversal problem. In the sequel we will concentrate on
the program fragments that contain no checkpoint, i.e. for which the reversal
scheme is one from figure 1.

The first class of improvements to the reversal strategies of figure 1 are
basically applications of slicing. In the forward recomputation context, it
was called the “ERA” improvement [7] for TAMC. Basically, the goal of a

%——

recomputation from Iy to [;_; is to restore state X;_; used by [I,_;. But
in reality I uses only some of the available variables, and its adjoint code
<I_k uses only a subset of these. Therefore recomputation needs to run only
a slice, i.e. the statements between I; and I, _; that are really involved to
compute the desired values.

In the backward restoration context, the similar trick is called “adjoint-
liveness” [10] and was devised for Tapenade. Basically, we observe that some
of the original I in the unique forward sweep, although involved in computing
the result of P, are not involved in computing the gradients. Therefore we
can take them out of the adjoint algorithm. In addition, this saves extra
storage, because some values are not overwritten any more. The recursive
equation that computes the set Live(Iy;. . .; I,) of adjoint-live variables just
before I}, is straightforward:

Live(Iy; D) = Use(1;) U (Live(D) @ Dep(I;))

which states that a variable is adjoint-live either if it is used in the adjoint
code <I—k of I, or if I}, depends on it to compute some result that is adjoint-
live for the tail D of the program. This recursive rule stops when the code
tail is empty, for which Live([]) = #. When the Live sets are computed
and we find a statement whose results are out of the following Live set, the
statement can be taken away.

In the same backward restoration context, there is another slicing-based
improvement: it was called the “TBR” improvement [4, 11] for Tapenade
and OpenAD. As we said in the “ERA” description, the adjoint code for I}
may not use all the variables that I uses. Therefore, it often happens that
some value of a variable x is never needed for the derivatives computation.
If this happens, then even if x is overwritten we can neglect to restore its

value, saving memory space. The “T'BR” analysis finds the set of variables
from the original program that are indeed used in the partial derivatives.
The recursive equation that computes the set TBR(/y;...; ;) of variables
whose value just after I is necessary for the adjoint code of I till I, is:

TBR(U; I,) = (TBR(U) \ Kill(1,)) U Use(1})

This equation states that a variable value is necessary immediately after I
either if it is used in the adjoint code <I_k of I, or if it was already necessary
before I}, and it was not overwritten by [, in which case it is still the same
value which is needed. This recursive rule stops when reaching the beginning
of P, for which TBR([]) = (). When the TBR sets are computed and we
reach a statement that overwrites some variables, only the intersection of
these variables with the TBR set just before the statement need to be stored.

Let us now take a closer look at the backward restoration strategies. Stor-
ing and retrieving is not the only option: sometimes, inversion is possible.
The simplest example is statement x = 2.0*x. If restoration of the upstream
x is needed, it can very well be done by x = x/2.0, provided that the down-
stream x has been restored too. Such statements are not very frequent,
however this can be generalized: statement x = a-b can also be inverted
to restore say, b, provided a and the downstream x have been restored too.
In fact the main problem is blending this tactique with memory storage, as
there is a combinatorial explosion when looking for the best strategy. This
is now becoming a hot topic in the community of AD tool builders.

To gain more insight in the Data-Flow reversal requires that we con-
sider the data-dependence graph. Figure 3 is an magnified view of the right
of figure 1, showing a possible data-dependence graph. For clarity, only
the necessary anti (read-to-overwrite) dependencies are shown, and output
dependencies (write-to-overwrite) are omitted. The true dependencies are
shown, and the computation dependencies inside each instruction are shown
with thinner arrows.

The first thing to notice is that the dependencies between the gradient
values are symmetric of the dependencies between the original variables in the
original code. In [9], we proposed a demonstration of this particularly useful
symmetry: this isomorphism between the backward sweep and the forward

10

Figure 3: The data-dependence graph of the adjoint algorithm

sweep of the adjoint algorithm tells us that many data-dependence-based
properties are preserved, such as parallelizability. The three dependencies
labeled with a small tape-recorder symbol are very special: these are indeed
true dependencies that cannot be satisfied by the algorithm as it is, because
the variable gets overwritten before the read operation is made. Therefore,
to satisfy these dependencies requires storage of the value during the forward
sweep and retrieval during the backward sweep, using the tape. In figure 3,
two values are stored, x and y. However, this might not be optimal in
terms of memory consumption. Consider the bipartite graph going from the
read nodes of the forward sweep to the operations nodes of the backward
sweep that combine gradient values with partial derivatives depending on
the forward sweep (here the two multiplication nodes labeled with *). To
minimize memory consumption, one must look for a minimal cut of this
bipartite graph. In the example, one could store x op), y. In other words, the
question is what to store, the intermediate values or the partial derivatives
that use them? The answer depends on the actual code. On the example,
there is actually a tie since there are two intermediate values x and y, as
well as two partial derivatives. The OpenAD tool implements heuristics
that sometimes decide to store the partial derivatives. On the other hand,
Tapenade and Adifor always store the intermediate values.

If the choice is to store the intermediate values, another question is when

to push them on the stack. To preserve the convenient stack structure of
the tape, the popping order must conform with the order of first uses during

11

the backward sweep. Reversal comes into play here, as the answer is to push
x on the stack during the forward sweep, between the last use of x and the
next overwrite of x. The simplest way to do that is the save on kill strategy,
which stores x just before it is overwritten.

4 Reversal of the Control-Flow

The topmost level at which reversal is needed is the Control-Flow. A good
introduction to the question can be found e.g. in [15, 17]. Let’s start with the
representative example of a conditional statement shown by figure 4. If at
some time during the original run the Control-Flow goes to one branch of the
conditional, then the adjoint algorithm must go to the adjoint of the same
branch. Therefore the direction chosen by the conditional must somehow be
retrieved later. The danger that appears on figure 4 is that this must be

|1o |17
if (t>0.0) |16

if (?27?
14 . T
15 I13

12 14

Figure 4: Control-Flow Reversal of a conditional

|11
l12
l13

«— —
done by the adjoint algorithm just after [4, and not just before Iy, which
would be more consistent with the reversal order.

There are basically two ways to retrieve the chosen direction in the adjoint
algorithm:

e Either we duplicate the test in the adjoint conditional. This is analo-
gous to the Forward recomputation strategy of section 3. But because
the adjoint test occurs too early, we can employ this strategy only if the
variables used in the test (e.g. t) are not modified in the conditional
itself.

12

e Or one stores the direction taken when the conditional actually termi-
nates, so that this direction is available at the beginning of the adjoint
conditional. This is analogous to the Backward restoration of section 3.
This amounts to simply storing a boolean on the stack just before the
flow merges reaching .

Structured loops can be treated in a similar fashion. When the variables
that occur in the loop bounds are not modified by the loop body, then the
adjoint loop control can be built easily. For example the adjoint loop bounds
of a “DO” loop control DO i=2,n,1 is simply DO i=n,2,-1. There are minor
technical details e.g. when the loop length is not a multiple of the loop stride.
Again, problems occur when the variables in the loop bounds are modified by
the loop. The loop bounds must be stored in temporaries at loop beginning,
but these temporaries are stored on the tape only at loop exit, so that they
are available at the beginning of the adjoint loop.

Generally speaking, the adjoint of a well-structured code is another well-
structured code whose control statements are directly derived from the orig-
inal control. When the variables in a control statement are modified by the
controlled structured statement, a temporary may be necessary. This is usu-
ally cheap. The amount of tape memory required to reverse the Control-Flow
is in general very small compared to the tape required to reverse the data
flow. When on the other hand the original program is not well structured,
then we must resort to a slightly more brutal strategy, that we call save con-
trol on join. Specifically, each time Control-Flow arrows join at the entrance
of a basic block, we save on the tape the arrow effectively taken. In the ad-
joint code, the tape is read to find the adjoint arrow that must be taken. This
is indeed the Data-Flow save on kill strategy applied to Control-Flow. This
may increase the total size of the tape significantly, especially on systems
where a boolean is actually encoded as an integer.

There are two other classes of reversal questions that we view as ex-
tensions of the Control-Flow reversal problem. AD tools are beginning to
consider these questions only now, and we don’t know of a tool that treats
them fully. The first class is the use of pointers, that effectively control the
addresses that are referred to by an expression. Figure 5 shows just one rep-
resentative example, using the C syntax. Pointer p is used to select which

13

|

&g

P = & p=
p = & p = : P="*p+c*a
\/ . T=°T+ (*p)a
a=20.0

Y

1
N
=
*

o
—

Figure 5: Control-Flow reversal with pointer usage

variable is read by statement a=2*(xp). To select which gradient variable
will be incremented by its adjoint code, we may define a gradient pointer p.
This comes is somewhat surprising as derivatives are usually defined on real
numbers only, but this is actually an address memorization strategy. The
moment when p can be set is exactly when p itself is set, and if ever p is
overwritten during the sequel of the original program, then p and p must be
stored on the tape.

Storing a pointer on the tape works fine as long as the memory it points
to is not freed. This is granted for static memory, but we are lacking a
convenient solution for dynamic memory. Suppose the forward sweep of
the adjoint program, following the original program, allocates some memory,
makes pointer p point into this memory, and then frees this memory. During
the backward sweep, some memory will be allocated again when needed, but
we cannot guarantee that it is the same memory chunk. The tape mechanism
ensures that p recovers its value, but it is an address in the previous memory
chunk, not in the new one ! There may be a convenient solution if we can
request for a memory allocation at a specified memory location: we are
confident we can prove that the memory freed on the forward sweep is still
free when the backward sweep reaches the same location. It would then
suffice to allocate exactly the same memory chunk on the way back.

The second class of control reversal questions is related to message-passing
parallelism, which is routinely used in the scientific programs we are targeting
at. As long as communications are one-to-one, Control-Flow reversal is easy:
when process P1 sends a variable x to process P2, the adjoint algorithm must
send the gradient variable X from P2 back to P1. Communications one-to-all

14

and all-to-one require in addition that the sender of a message be identified in
the message itself, so that the adjoint algorithm can send the gradient back.
Synchronization may also require care, but so far we saw no application for
which synchronization has an effect on differentiable values.

5 Automatic Differentiation at INRIA

Automatic Differentiation has been around for many years: a russian paper
from L.M. Beda mentions the name and concept in 1959, and libraries that
execute operations together with propagation of analytical derivatives date
from the 70’'s (WCOMP, UCOMP). Adjoint Algorithms primarily existed as
hand-written programs that solve the so-called Adjoint State Equations from
the theory of control. Only in the 80’s did some Automatic Differentiation
tools appear that could generate good enough Adjoint Algorithms (JAKE,
JAKEF), and true awareness of these tools in industrial Scientific Computing
dates from the 90’s.

At INRIA, research on AD was initiated by Jacques Morgenstern and
André Galligo in the research team SAFIR. One of the outcomes of this
work was the AD tool Odyssée [5], which very soon featured a successful ad-
joint mode. At that time already, this work was warmly supported by Gilles
Kahn, who saw the interest of a scientific collaboration between the algorith-
mic developments of SAFIR and the interactive programming environment
Centaur developed by the CROAP team.

In 1999, Valérie Pascual and myself proposed the creation of a new re-
search team TROPICS, to further develop AD for Adjoint Algorithms. Gilles
was again our strongest support. He liked to say facetiously that the diffi-
culties we sometimes experienced in front of skilled hand-programmers of
Adjoint Algorithms, sounded like the first compiler programs trying to com-
pete with hand-writing of assembly code.

6 Current status and Perspectives

Adjoint Algorithms produced by AD have made impressive progress in the
last few years. Large industrial codes that were simply out of reach are now

15

routinely “adjointed” by AD tools. This is partly due to the development
of the reversal strategies described in this paper, as well as to the progress
made a few years before in nested checkpointing strategies. AD now pro-
duces Adjoint algorithms whose quality competes with that of hand-written
adjoints, which took months or years of development and debugging. Since
the adjoint code must evolve together with its original code, the ability to
rebuild it in a matter of minutes is much appreciated.

Problems remain, though, and we discussed some of them. These prob-
lems essentially connect to the weaknesses of our static analyses. Undecid-
ability of static analysis of course sets a limit to the power of AD tools. But
very far before that, AD tools are already limited by their simplifying as-
sumptions: no AD tool uses the very clever (and expensive) algorithms from
parallellization, such as array region analysis or reaching definition analysis.

Maybe the path to overcome these limitations is to develop interaction
with the end-user, e.g. through directives. An end-user always knows more
about the code than any static analysis will find out. Most AD tools are now
going in this direction, and TAF is probably ahead in this respect. For the
general application domain of Adjoint Algorithms, i.e. Scientific Computing,
knowledge from the user is even more invaluable than elsewhere. Large parts
of the programs correspond to well-known mathematical operations whose
properties have been studied for centuries. For example, no static analysis
will be able to detect that a code fragment actually solves a symmetric linear
system using the latest champion iterative algorithm. Yet if the user provides
a clever AD tool with this knowledge, the tool should be able to find that
the adjoint is indeed the original solver itself.

Reversal strategies are also explored in other domains. Some debuggers
try to keep track of execution before a program crashed, allowing the user
to go back in time to discover the true origin of the problem. This is a
challenge, even more so when debugging a distributed parallel execution.
We hope this paper could sparkle cross discussions, resulting in improved
reversal strategies for adjoint algorithms. I'm sure Gilles would like that.

16

References

1]

[4]

[5]

[10]

[11]

[12]

M. Biicker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors.
Automatic Differentiation: Applications, Theory, and Implementations.
LNCSE. Springer, 2006. Selected papers from AD2004, Chicago, July
2004.

A. Carle and M. Fagan. ADIFOR 3.0 overview. Technical Report
CAAM-TR-00-02, Rice University, 2000.

G. Corliss, C. Faure, A. Griewank, L. Hascoét, and U. Naumann, editors.
Automatic Differentiation of Algorithms, from Simulation to Optimiza-
tion. LNCSE. Springer, 2002. Selected papers from AD2000, Nice, June
2000.

C. Faure and U. Naumann. Minimizing the tape size. In [3], chapter
VIII, pages 293-298. 2002.

C. Faure and Y. Papegay. Odyssée User’s Guide. Version 1.7. Technical
report 224, INRIA, 1998.

R. Giering. Tangent linear and Adjoint Model Compiler, Users manual.
Technical report, 1997. http://www.autodiff.com/tamc.

R. Giering and T. Kaminski. Generating recomputations in reverse mode
AD. In [3], chapter VIII, pages 283-291. 2002.

A. Griewank. Fvaluating derivatives: principles and techniques of Algo-
rithmic Differentiation. STAM, Frontiers in Applied Mathematics, 2000.

L. Hascoét. The data-dependence graph of adjoint programs. Research
Report 4167, INRIA, 2001.

L. Hascoét and M. Araya-Polo. The adjoint data-flow analyses: Formal-
ization, properties, and applications. In [1], pages 135-146. 2006.

L. Hascoét, U. Naumann, and V. Pascual. To-be-recorded analysis in
reverse mode Automatic Differentiation. Future Generation Computer
System, 21(8):1401-1417, 2005.

L. Hascoét and V Pascual. Tapenade 2.1 user’s guide. Technical report
300, INRIA, 2004.

17

[13]

[14]

[15]

U. Naumann. Optimal accumulation of Jacobian matrices by elimination
methods on the dual computational graph. Mathematical Programming,
Ser. A, 99(3):399-421, 2004.

U. Naumann. Optimal Jacobian accumulation is NP-complete. Math.
Prog., 2006. In press. Appeared Online First.

U. Naumann, J. Utke, A. Lyons, and M. Fagan. Control flow reversal for
adjoint code generation. In Proceedings of the Fourth IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM 2004),
pages 55-64. IEEE Computer Society, 2004.

J. Nocedal and S.-J. Wright. Numerical Optimization. Springer, Series
in Operations Research, 1999.

J. Utke, A. Lyons, and U. Naumann. Efficient reversal of the in-
traprocedural flow of control in adjoint computations. J. Syst. Softw.,
79(9):1280-1294, 2006.

J. Utke, U. Naumann, M. Fagan, N. Tallent, Strout M., P. Heim-
bach, C. Hill, and C. Wunsch. OpenAD/F: A modular, open-source
tool for Automatic Differentiation of Fortran codes. Technical report
ANL/MCS-P1230-0205, Argonne National Laboratory, 2006. Submit-
ted to ACM TOMS.

18

