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Abstract It is frequently observed that effective exploitation of problem structure
plays a significant role in computational procedures for solving large-scale nonlinear
optimization problems. A necessary step in this regard is to express the computation
in a manner that exposes the exploitable structure. The formulation of large-scale
problems in many scientific applications naturally give rise to “structured” represen-
tation. Examples of computationally useful structures arising in large-scale optimiza-
tion problems include unary functions, partially separable functions, and factorable
functions. These structures were developed from 1967 through 1990. In this paper
we closely examine commonly occurring structures in optimization with regard to
efficient and automatic calculation of first- and higher-order derivatives. Further, we
explore the relationship between source code transformation as in algorithmic dif-
ferentiation (AD) and factorable programming. As an illustration, we consider some
classical examples.
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1 Introduction

For simplicity, we will consider the unconstrained optimization problem

min f(x), (D

xeRn

where f : R" — R is sufficiently smooth. Methods of interest are those that require
derivatives up to order three.

Let ¢ be the ith row of the identity matrix. A function f is separable if it can be
written as

f) = i(e"x),
i=1

and can be decomposed into user-defined scalar functions ¢;. Given m matrices
U; € R"*" n; < n where row k, 1 < k < n; is a row of the identity matrix, a
partially separable function [1] is given by

) =" 6iUix),
i=1

where each function ¢; : R" + R is provided by the user. The functions ¢;,i =
1, ..., m are called element functions [1] and the variables v® e R v = U;x
are called elemental variables [2]. Linear combinations of elemental variables are
called internal variables [2—4], u = W;U,x. If W; has more columns than rows,
the element function ¢; will be functions of fewer than n; variables. Bouaricha and
Moré [5] describe software ELSO that computes the gradient of functions provided in
partially separable form. To take advantage of partially separable structure one defines
o(x) = (P1(x) Ppa(x) ... ¢m(x))T, then f(x) = ¢(x)T e where e is the vector of all
ones. By employing algorithmic differentiation forward mode, the sparse Jacobian
@' (x) is computed yielding the gradient V f(x) = ¢’(x)Te. Gay [6] describes a
method for detecting partially separable form of AMPL expressions which is then
utilized in Hessian computations. Partially separable function minimization with AD
on distributed memory parallel computing system has been considered in [7].

Let u) € R” be m given vectors. A unary function [8] is given by

f0 =3 6w %), ¢ :R>R. )
i=1

Let g : R™ > R be a separable functions given by g(v) = > 7., ¢;(v;). Each
function ¢; is provided by the user. Denoting the ith row of U by u(i>T, the unary
function (2) becomes, f(x) = g(Ux). The gradient and the Hessian matrix of f at
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TF EF
c1u + co Tt u+v U * v
coett cz2 log(ciu) —u c
ca sin(cru) ¢z cos(ciu) 2
co min{u, c1} ¢ max{u, c1} e log(u)
sin(u) cos(u)
c1,c2 are constants and wu is a variable|u,v are variables and c¢ is a constant

Fig. 1 TF transformation function [11]. EF elemental function [20]

x are obtained in special forms,
Vi) =U"VgUx), V>f(x)=UVgUx)U". 3)

Since g is separable, the Hessian matrix V2g is a diagonal matrix. Of particular
interest is the case when m = n and U has full rank [9]. In this case the unary
function is a change of variables in g.

The notion of factorable functions predates that of partially separable functions and
unary functions in optimization. A function f : R" +— R is a factorable function
[10] if it can be represented as the last function in a finite sequence of functions
{gzﬁ,'}iL:1 where ¢; : R" > R:

oi(x) = u(i)Tx where u'¥) are constant vectors, i=1,...,¢
Gi(x)=dj<i(x)odpei(x), i=L+1,...,L, oe{x,+,— /)
or
$i(x) =7(pj<i(x)), 7:R—R
fx) = or(x)
The sequence {¢(x), ..., ¢e(x), ..., ¢r(x)}iscalled a factored sequence. The nota-

tion ¢ ; -; (x) means that there exists j < i so that ¢;(x) is an element of the factored
sequence defined above. The function 7; is called a transformation function such as
exponential, trigonometric and logarithm, but may also be user defined functions. In
[11-14] the initialization is given by ¢;(x) = x;,i = 1, ..., £, and £ = n. Figure 1
shows examples of transformation functions. It is pointed out by Kedem [12] that
the notion of factorable functions corresponds to a simple Fortran subroutine that
consists of expression evaluations without “IF” and “GOTO” statements and with
very limited loops. In the book on automatic differentiation Rall in 1981 [15] points
out that what is called codeable functions in [15] are in fact factorable functions. In
[16] a “nonlinear” factorable form that includes bilinear terms is used to solve mixed-
integer nonlinear programming optimization problems. Methods for these classes of
functions using a partial update Newton are considered in [17].

Almost any function used for computational purposes can be put into a factorable
form. Examples of functions which cannot be are given in [18, Chap. 3] and [19].
The remainder of the paper is organized as follows.
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Section?2 discusses factorable programming problems and functions. A factorable
programming problem, discussed in Sect.2 is a nonlinear optimization problem
where the objective and the constraint functions are factorable functions. The def-
inition of a factorable function from 1967 introduces the concept of structure in an
optimization problem. The definition that is used by most authors is a recursive defin-
ition, with the initialization given by ¢; (x) = x;, which is reviewed in the preceding
paragraphs. The final part of Sect.2 is a discussion of the relationship between a
factorable function and algorithmic differentiation. Section 3 provides illustration of
source transformation of selected factorable and generic unary functions from the
literature.

2 Factorable Programming Problems

Factorable programming problems were introduced by McCormick [19, 21] in 1974.
A factorable programming problem is of the form

minxeRn XL ()C)
Subjectto ; < X'(x) <u;, for i=1,...,L—1,

where X’ : R” — R. Here Xi(x) = x; fori = 1,...,n and for given X?(x), p =
1,...,i — 1 function X* is defined recursively as

i—1 i—-1 p
X)) =D THX @)+ DD Vi (XP(x) - Upg(XI(x). (&)
p=1

p=lq=1

where T’s, U’s, and V’s are transformation functions of a single variable. The
lower and upper bounds /; < u; are given constants (may include +o0.) It follows
immediately that functions X i(x),i = 1,..., L in (4) can be written as factorable
functions.

A factorable programming language combined with the program SUMT [22] for the
general nonlinear optimization problem was derived by McCormick in 1974 in [21]
and extended by McCormick and Ghaemi [11]. The functions X x),i=1,...,L
in [11, 21] are called concomitant variable functions (cvfs). The cvfs consist of two
terms: the first term is separable and the second is a quadratic term. The inputs to
the program [11, 21] are split between these two terms. The input is line based and,
for the separable part of cvf number i, each line of the input is element p in the
sum together with the type of transformation 7' l’; and the index p of the cvf X7,
Similarly, for the quadratic term, two transformations and the two cvfs need to be
specified for each element in the (double) sum. A modeling language for nonlinear
programming problems for factorable functions of the form (4) and the use of SUMT
was developed by Pugh [23] in 1972. In this modeling language one can also specify

sums and products, >/ - and [[;Z, -, in addition to transformations of a single
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variable. The double sum Zle Z?:l x;j, for example, can be represented as the
string ST(I,1,5,SI(J,1,5,X(I;J))).

In a technical report from 1967 McCormick introduces the term “factorable nonlinear
convex programming” for a class of problems whose nonlinear function have second
partial derivatives given in a special form. The technical report is published in Fiacco
and McCormick [24, pp. 184—188]. The point taken in [24, 25] is that a factorable
function is one where the analytic derivation of the Hessian matrix directly yields this
form. The processing of the modeling language [11, 21, 23] assembles the Hessian
matrix on this special form.

2.1 Extending Factorable Functions

A somewhat more general definition of factorable functions will allow the transfor-
mations 7; to be functions of several variables [12],i.e. 7; (¢4, ..., ®i,), i1, ..., is<i.
In [12] Fortran programs are augmented with non standard data types and operators
and the non standard constructs are translated by a pre-compiler into standard Fortran.
The gradient of a factorable function given on the form [10] can be shown by a minor
modification of the proof in [13], to be of the form

Ja
Vi) =D uPa(x),
i=1

where o;(x) € R is composed of product of factored-sequence functions and the
first derivative of the transformations. The Hessian matrix is of the form

14 4
ZZu“')ai,(x)u(f)T,

i=1 j=1

where «;;j(x) € R are composed of factored-sequence functions and, the first and
second derivative of the transformations in the sequence. Jackson and McCormick
[13] show that the higher derivatives too, will have a polyadic structure (the gradient
will be a sum of monads and the Hessian matrix be a sum of dyads.)

We would like to emphasize that the polyadic structure of factorable function is
preserved also in the case when ¢; (x) themselves are factorable functions for i =

1, ..., ¢ It follows immediately that for unary functions, the gradient and Hessian
of f are given by (3) for m = £. The approach taken in this paper is that ¢;,i =
1,..., £, in general, are user-defined functions given as computer programs. An

extension of partial separability introduced in [2] is to write the function as f(x) =
Zle Ti(¢i(x)), where ; : R+~ R,i =1, ..., £ are called group functions and ¢;
are partially separable functions. This is again an example of factorable functions.
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2.2 The General Evaluation Procedure in AD

For a given value x the general evaluation procedure in automatic differentiation is
given by

vn7i=ﬁ', i=1,...,n .
vi = ¢;(vj)j«i,» i =1,...,¢ where ¢; is an elemental function
y = Vg.

Examples of elemental functions in AD are displayed in Fig. 1.

Each value v; can be interpreted as an intermediate function v; (x) of the independent
variable x € R" [20]. This interpretation exposes the relationship between AD
and factorable functions. The transformations in [11, 21] are just combinations of
elemental functions used in AD. Importantly, utilizing the fact that the derivatives
have a polyadic structure, is not an alternative in AD since the number of elemental
functions will be very high.

Distinct from the view in AD, the factored—sequence functions ¢; are user-specified
functions and a source code transformation tool will naturally yield the derivatives
of function f in a structure-preserving (e.g., polyadic) form. To illustrate this point,
we consider an example by Jackson and McCormick [13] and unary functions using
AD source transformation tool Tapenade [26].

3 Examples of Source Code Transformations

The following example is from Jackson and McCormick [13]. The function is
given by _
Fo) = alxsin(bTx)ec *. (5)

To make an efficient hand-coded evaluation of the gradient and the Hessian we rewrite
the function. Let a, b, c € R" and let A be an x 3 matrix and ¢ : R} — R:

A=labcl, ¢=(¢1,02¢3), g(d) = ¢isin(¢2)e™, then f(x) = g(Ax).
The gradient and the Hessian matrix of f at x are:
Vi) =AVyg(ATx),  V2f(x) = AVig(ATx)A",
where V,,g(¢) = (sin(¢2)e?®, ¢ cos(¢n)e?, ¢ sin(¢)e?®)T and
0 cos(ga)e”  sin(¢pp)e?

V29(8) = | cos(¢n)e? —¢1sin(¢)e” 1 cos(¢pa)e’
sin(¢2)e™ ¢ cos(¢n)e™ ¢y sin(¢pr)e?
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DO nd=1,nbdirs

phi6ébd(nd) = yb*phi5d(nd); phisbd(nd) = ybxphi6d(nd)
philbd(nd) = phi4d(nd)+*phi6b + phid*xphi6bd(nd)

phi4bd(nd) = phild(nd)*phi6b + phil*xphi6bd(nd)

phi3bd(nd) = phi3d(nd)*EXP(phi3)*xphi5b + EXP(phi3)xphi5bd(nd)
phi2bd(nd) = COS(phi2)*phidbd(nd) — phi2d (nd)*SIN(phi2)xphidb

xbd(nd, :) b(:)*phi2bd(nd) + a(:)*philbd(nd) 4+ c(:)*phi3bd(nd)
END DO

Fig. 2 Source transformation: forward mode V2 f (x) based on the gradient code

For a given x the numbers of arithmetic operations are approximately 6n to compute
the function and 11n to compute the gradient and the function.
As a factorable function, (5) can be decomposed into

p1(x) = a’x, ¢pa(x) =b"x, p3(x) =c'x,
Pa(x) = sin(p2(x)), ds(x) = exp(¢3(x)), g6(x) = ¢1(x) * a(x), and
F ) = @e(x) * Ps5(x).

The gradient code produced in source transformation reverse AD of a Fortran
90 implementation of the function shows that the numbers of arithmetic opera-
tions are approximately the same for the source transformation and the hand-coded
gradient [10].

3.1 The Hessian Matrix with the Source Transformation
Tool Tapenade

The Hessian matrix is computed using n matrix vector product He® i =1,...,n
where e?) is the ith column of the identity matrix. In Fig.2 we only show the inner-
most loop. The hand-coded second derivative requires approximately %nz arithmetic
operations utilizing the symmetry. The number of arithmetic operations for the code
in Fig. 2 is approximately 5n2. As a further illustration of the use of AD for structured
problems we consider computing the gradient of a unary function (2). Hand-coded
derivatives will be computed using (3). Assuming, for simplicity, that U is a square
matrix, the number of arithmetic operations to compute the gradient will be roughly
4n? plus the n function calls g;. From Fig. 3 it follows that the number of arithmetic
operations is about the same as in hand-coded calculation for the function and the
gradient in source transformation. The user must either use a source transformation
tool of the user-specified functions or a hand-coded version of the scalar functions
¢;. In Fig. 3 we illustrate the use of source transformed user-specified functions.
Looking for further similarities between the AD adjoint in Fig.3 and the math-
ematical gradient of a unary function (3), one may wonder what became of the
transposition U T A closer look at the generated code unary_b reveals that it does
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subroutine UNARY B(x, xb, n, u, y, yb)

do i=1,n
v(i) = SUM(u(i, :)*x(:))
subroutine UNARY(x, n, U, y) end do
integer n,i ; real x(n), U(n,n) v(n),y yb = 0.0
do i = 1,n do i=n,1,-1
v(i) = SUM(U(i,:)*x(:)) resultlb = yb
enddo call FB(i, phi(i), vb(i), resultlb)
y = 0.0 end do
do i = 1,n éb?o-f L
= F(i,v(i o i=n,1,-
endgo v (1)) xb = xb + u(i, :)xvb(i)
end subroutine UNARY vb(i) = 0.0
end do
yb = 0.0

end subroutine unary_b

Fig. 3 Example of a unary function and the source transformation using reverse mode

compute the correct gradient, but with no explicit transposition. Actually, from a
computer science point of view, an AD tool has no idea that there is a matrix prod-
uct, and even less that it should be transposed. What makes things work is data-flow
reversal [27], which we can sketch as follows:

() 22 phi (i) = phib(i) 225 xb(:)
In the original code, data flow leads from x(:) to phi (i), using the constant

U(i,:) on the way. The adjoint code, by reversing the data flow, leads from
phib (i) to xb(:), still using U (1, :) on the way. No transposition nor index
manipulation is involved but the effect is the same. More generally, we observe that
data flow reversal plays, in the AD adjoint code, the role played by transposition in
the expression of the mathematical gradient.

4 Concluding Remarks

The relationship between algorithmic differentiation on elemental function level and
factorable function is well known. However, the use of more computationally inten-
sive elementals or user-defined elementals are usually not a part of the evaluation
procedure in AD. The point taken here is that source transformation can be an attrac-
tive tool for a user when the functions are composed of a factored-sequence of known
user-specified functions.
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