
The Data-Flow Equations of Checkpointing in
reverse Automatic Differentiation

Benjamin Dauvergne1 and Laurent Hascoët1

INRIA Sophia-Antipolis, TROPICS team,
2004 Route des lucioles, BP 93, 06902 Sophia-Antipolis, France

Abstract. Checkpointing is a technique to reduce the memory con-
sumption of adjoint programs produced by reverse Automatic Differen-
tiation. However, checkpointing also uses a non-negligible memory space
for the so-called “snapshots”. We analyze the data-flow of checkpoint-
ing, yielding a precise characterization of all possible memory-optimal
options for snapshots. This characterization is formally derived from the
structure of checkpoints and from classical data-flow equations. In par-
ticular, we select two very different options and study their behavior
on a number of real codes. Although no option is uniformly better, the
so-called “lazy-snapshot” option appears preferable in general.

1 Introduction

Mathematical derivatives are a key ingredient in Scientific Computation. In par-
ticular, gradients are essential in optimization and inverse problems. The reverse
mode of Automatic Differentiation (AD) is probably one of the most convenient
and efficient ways to obtain gradients. However, it still offers room for improve-
ment regarding efficiency, and more importantly it suffers from a high memory
consumption.

This memory consumption is inherent to the nature of gradient computation.
For instance the other highly efficient way to obtain gradients is to solve the
“adjoint equations”, which is also known to consume memory space. However,
solving the adjoint equations usually implies a great deal of hand-coding, which
makes this approach less convenient.

Being a software transformation technique, reverse AD can and must take
advantage from software analysis and compiler technology [1] to minimize these
efficiency problems. In this paper, we will analyze “checkpointing”, an AD tech-
nique to trade repeated computation for memory consumption, with the tools
of compiler data-flow analysis.

Checkpointing offers a range of fine-grain options that affect the efficiency of
the resulting differentiated code. Our goal is to formalize these options and to
find which ones are optimal. This study is part of a general effort to formalize
all the compiler techniques useful to reverse AD, so that AD tools can make the
right choices using a firmly established basis.

2

2 Reverse Automatic Differentiation

Automatic Differentiation is a program transformation technique. Given a pro-
gram P that computes a differentiable function F , an AD tool creates a new
program that computes some derivatives of F . Based on the chain rule of calcu-
lus, AD introduces into P new “derivative” statements, each one corresponding
to one original statement of P . In particular, reverse AD creates a program P
that computes gradients. In P , the derivative statements corresponding to the
original statements are executed in reverse order compared to P . The derivative
statements use some of the values used by their original statement, and therefore
the original statements must be executed in a preliminary “forward sweep”

−→
P ,

which produces the original values that are used by the derivative statements
forming the “backward sweep”

←−
P . This is illustrated by fig. 1, in which we have

readily split P in three successive parts, U upstream, C in the center, and D
downstream. In our context, original values are made available to the backward
sweep through PUSH and POP routines, using a stack that we call the “tape”. Not

forward sweep

backward sweep

time:
t
t

t

1
2

3

U

U

C

C

D

D

PUSH

POP

Fig. 1. Basic structure of reverse differentiated programs

all original values are required in the backward sweep. Because of the nature of
differentiation, values that are used only “linearly” are not required. The “To Be
Restored” (TBR) analysis finds the Req set of these required values. This Req
set evolves as the forward sweep advances. For example on fig. 1, TBR analysis
of U finds the variable values required by

←−
U (i.e. actually use(

←−
U)), which must

be preserved between the end of
−→
U and the beginning of

←−
U . In other words,

C;D + −→C ;
−→
D ;
←−
D ;
←−
C must be built in such a way that:

out(C; D) ∩ use(
←−
U) = ∅ .

To this end, each time a required value is going to be overwritten by a statement,
it is PUSH’ed beforehand, and it is POP’ped just before the derivative of this
statement.

Although somewhat complex, reverse AD can be easily applied by an auto-
matic tool, and has enormous advantages regarding the number of computation
steps needed to obtain the gradient. See [4, chapter 3] for a thorough discussion
on its merits, and [2, 6] for a complete description of the TBR mechanism.

3

In [5], we studied the data-flow properties of reverse differentiated programs,
in the basic case of fig. 1, i.e. with no checkpointing. We formalized the structure
of these programs and derived specialized data-flow equations for the “adjoint
liveness” analysis, which finds original statements that are useless in the differ-
entiated program, and for the TBR analysis. In this paper, we will focus on the
consequences of introducing checkpointing. In this respect this paper, although
stand-alone, is a continuation of [5].

3 The equations of Checkpointing Snapshots

Checkpointing reduces the peak memory consumption by duplicating a “check-
pointed” code fragment, e.g. C on fig. 2. This allows the tape consumed by
D + −→D ;

←−
D to be freed before execution of C + −→C ;

←−
C . The peak memory con-

sumption for C;D is thus reduced to the maximum of the peak for C and the
peak for D.

time:
t
t

t

t

1
2

3

4

CHECKPOINTINGSbk SnpU C D

D
C

CU

PUSH

POP

Fig. 2. Checkpointing in reverse AD

However, duplicate execution of C requires that “enough” variables (the
“snapshot” Snp) are preserved to restore the context of execution. This also
uses memory space, although less than the tape for

−→
C . To not lose the benefit

of checkpointing, it is therefore essential we keep the snapshot small.
The coupling between D and C makes this trade-off tricky. A larger snapshot

can mean smaller tapes, and conversely; intuitively, if the snapshot saves extra
variables, then these variables vanish from the Req set before D, and thus the
tape used by D may turn out smaller. Therefore, unlike what happens for the
simpler case with no checkpoints, there is no unique best choice for these sets.
There are several “optimal” choices, among which none is better nor worse than
the others. Our goal is to establish the constraints that define and link the “snap-
shot” and “tape” sets, yielding necessary set equations that will characterize all
the optimal choices. The final decision depends on each particular case. For our
AD tool tapenade, we settled on a trade-off (cf sec. 4) that our benchmarks
indicated as a mean best choice.

4

Four unknown sets of variables: Let’s write the differentiated program de-
picted in fig. 2 as:

Req ` C;D = PUSH(Sbk);
PUSH(Snp);
C;
ReqD ` D;
POP(Snp);
ReqC ` C;
POP(Sbk);

where Req is the incoming “required set” of variables that must be preserved
across execution of Req ` C;D, because they are required by the derivative
instructions

←−
U of the upstream part U . In other words Req is a requirement

imposed on C; D by the upstream context U . On the other hand, ReqD and ReqC

are the sets of variables that C and D will be required to preserve, respectively.
We have several choices at hand for ReqD and ReqC , depending on Req and
on our choice for the snapshot. Thus ReqD and ReqC are our unknowns, to be
determined together with the snapshot.

Let’s now examine the snapshot itself. Due to the stack structure, there are
two places where variables may be popped from the stack and restored: before
the duplicated run C, and after it i.e. before running

←−
U . Therefore we introduce

two snapshot sets Snp and Sbk.

– Variables in Snp are restored just before running C, thus ensuring that their
value is the same for both executions of C. Snp corresponds to the usual
definition of the snapshot.

– Variables in Sbk “backward snapshot” are restored just before running
←−
U .

This ensures that, whatever happens to these variables during C; D, their
value is preserved when going back into

←−
U . We view Sbk as an hybrid of

snapshot and tape.

In total, we have four “unknown” sets to choose: ReqD, ReqC , Sbk and Snp.
Those sets must respect constraints parameterized upon Req, ReqD, ReqC , Sbk,
Snp, and upon the fixed use and out data-flow sets for the code fragments C,
D, C, and D. Essentially, these constraints will guarantee that checkpointing
actually preserves the computed derivatives.

Two necessary and sufficient conditions: Fig. 1 shows the differentiated
program in the reference case with no checkpointing. This reference program is
assumed correct. All we need to guarantee is that the result of the differentiated
program, i.e. the derivatives, remain the same when checkpointing is done. This
can be easily formulated in terms of data-flow sets. We observe that the order of
the backward sweeps is not modified by checkpointing. Therefore the derivatives
are preserved if and only if the original, non-differentiated variables that are used
during the backward sweeps hold the same values. In other words, the snapshot

5

and the tape must preserve the use set of C between time t1 and t3 i.e.

out

PUSH(Sbk);
PUSH(Snp);
C;
ReqD ` D;
POP(Snp);

⋂
use(C) = ∅ (1)

and the use set of
←−
U , which is Req by definition, between time t1 and t4 i.e.

out

PUSH(Sbk);
PUSH(Snp);
C;
ReqD ` D;
POP(Snp);
ReqC ` C;
POP(Sbk);

⋂
Req = ∅ (2)

The rest is purely mechanical. Classically, the out set of a sequence of code
fragments is the union of the out sets of each fragment, i.e.

out(A; B) = out(A) ∪ out(B) ,

except in the very special case of the PUSH/POP pair, which remove their argument
from the stack, i.e.

out(PUSH(v);A; POP(v)) = out(A) \ {v} .

Also, the mechanism of reverse AD ensures that the variables in the required
context are actually preserved, so that:

out(Req ` A) = out(A) \ Req .

Therefore, equation (1) becomes:
(
out(C) ∪ (out(D) \ ReqD)

) \ Snp
⋂

use(C) = ∅ (3)

and equation (2) becomes:
((

out(C) ∪ (out(D) \ ReqD)
) \ Snp ∪ (

out(C) \ ReqC

)) \ Sbk
⋂

Req = ∅ . (4)

From (3) and (4), we obtain necessary and sufficient conditions on Sbk, Snp,
ReqD and ReqC . These conditions ensure that the differentiated programs with
and without checkpointing return the same derivatives:

Sbk ⊇ (
(out(C) ∪ (out(D) \ ReqD)) \ Snp

∪ (out(C) \ ReqC)
) ∩ Req

Snp ⊇ (
out(C) ∪ (out(D) \ ReqD)

) ∩ (
use(C) ∪ (Req \ Sbk)

)

ReqD ⊇ (out(D) \ Snp) ∩ (
use(C) ∪ (Req \ Sbk)

)

ReqC ⊇ (out(C) \ Sbk) ∩ Req

6

Notice the cycles in these inequations. If we add a variable into Snp, we
may be allowed to remove it from ReqD, and vice versa: as we said, there is no
unique best solution. Let’s look for the minimal solutions, i.e. the solutions to
the equations we obtain by replacing the “⊇” sign by a simple “=”.

Solving for the unknown sets: Manipulation of these equations is tedious
and error-prone. Therefore, we have been using a symbolic computation system
(e.g. Maple [8]). Basically, we have inlined the equation of, say, Snp into the
other equations, and so on until we obtained fixed point equations with a single
unknown X of the form

X = A ∪ (X ∩B) ,

whose solutions are of the form “A plus some subset of B”. The solutions are
expressed in terms of the following sets:

Snp0 = out(C) ∩ (use(C) ∪ (Req \ out(C)))
Opt1 = Req ∩ out(C) ∩ use(C)
Opt2 = Req ∩ out(C) \ use(C)
Opt3 = out(D) ∩ (use(C) ∪ Req) \ out(C)

(5)

For each partition of Opt1 in two sets Opt+1 and Opt−1 , and similarly for Opt2
and Opt3, the following is a minimal solution of our problem:

Sbk = Opt+1 ∪ Opt+2
Snp = Snp0 ∪ Opt−2 ∪ Opt+3
ReqD = Opt−3
ReqC = Opt−1 ∪ Opt−2

(6)

and there are no other optimal solutions. Furthermore, Opt1 ⊆ Snp0, and the
sets Snp0, Opt2, and Opt3 are disjoint.

4 Discussion and Experimental Results

The final decision for sets Sbk, Snp, ReqD, and ReqC depends on each particular
context. No strategy is systematically best. We looked at two options.

We examined first the option that was implemented until recently in our
AD tool tapenade [7]. We call it “eager snapshots”. This option stores enough
variables in the snapshots to reduce the sets ReqD and ReqC as much as possi-
ble, therefore reducing the number of subsequent PUSH/POP in D and C. Equa-
tions (6) show that we can even make these sets empty, but experiments showed
that making ReqD empty can cost too much memory space in some cases.

As always, the problem behind this is undecidability of array indexing: since
we can’t always tell whether two array indexes designate the same element or
not, the “eager snapshot” strategy may end up storing an entire array whereas
only one array element was actually concerned.

7

Therefore “eager snapshot” chooses Opt−1 and Opt−2 empty but

Opt+3 = out(D) ∩ (use(C) \ Req) \ out(C)
Opt−3 = out(D) ∩ Req \ out(C)

which gives:

Sbk = Req ∩ out(C)
Snp = (out(C) ∩ (use(C) ∪ Req \ out(C)))∪

(out(D) ∩ use(C) \ Req \ out(C))
ReqD = out(D) ∩ Req \ out(C)
ReqC = ∅

(7)

Notice that intersection between Sbk and Snp is nonempty, and requires a special
stack mechanism to avoid duplicate storage space.

We examined another option that is to keep the snapshot as small as possible,
therefore leaving most of the storage work to the TBR mechanism inside D and
C. We call it “lazy snapshots”, and it is now the default strategy in tapenade.
Underlying is the idea that the TBR mechanism is efficient on arrays because
when an array element is overwritten by a statement, only this element is saved.

Therefore, “lazy snapshot” chooses all Opt+1 , Opt+2 , and Opt+3 empty, yielding:

Sbk = ∅
Snp = out(C) ∩ (Req ∪ use(C))
ReqD = out(D) ∩ (Req ∪ use(C)) \ out(C)
ReqC = out(C) ∩ Req

(8)

We ran tapenade on our validation application suite, for each of the two
options. The results are shown on table 1. We observe that lazy snapshots per-
form better in general. Actually, we could show the potential advantage of eager
snapshots only on a hand-written example, where the checkpointed part C re-
peatedly overwrites elements of an array in Req, making TBR mechanism more
expensive than a global snapshot of the array. On real applications, however,
this case is rare and lazy snapshots work better.

Whatever the option chosen, equations (6) naturally capture all interactions
between successive snapshots. For example, if several successive snapshots all
use an array A, and only the last snapshot overwrites A, it is well known that A
must be saved only in the last snapshot. However, when an AD tool does not
rely on a formalization of checkpointing such as the one we introduce here, it
may very well happen that A is stored by all the snapshots.

5 Conclusion

We have formalized the checkpointing technique in the context of reverse AD
by program transformation. Checkpointing relies on saving a number of vari-
ables and several options are available regarding which variables are saved and

8

Code Domain Run-time Eager (7) Lazy (8)

OPA oceanography 780 s 480 Mb 479 Mb

STICS agronomy 35 s 229 Mb 229 Mb

UNS2D CFD 23 s 248 Mb 185 Mb

SAIL agronomy 17 s 1.6 Mb 1.5 Mb

THYC thermodynamics 12 s 33.7 Mb 18.3 Mb

LIDAR optics 10 s 14.6 Mb 14.6 Mb

CURVE shape optim 2.7 s 1.44 Mb 0.59 Mb

SONIC CFD 0.2 s 3.55 Mb 2.02 Mb

Contrived example 0.1 s 8.20 Mb 11.72 Mb

Table 1. Comparison of the eager and lazy snapshot approaches on a number of small
to large applications

when. Regarding memory consumption, no option is strictly better than all oth-
ers: instead, there are a number of optimal options which can turn out to be
the best on some source program configuration. Specializing standard data-flow
equations for the particular structure of checkpoints, we obtain a precise descrip-
tion of all these possible optimal options. We thus have a tool for checking that
a given definition of the sets involved in checkpointing is either optimal or is
still missing some potential improvement. This gives us safer and more reliable
implementation in AD tools.

Finding this precise description involves tedious manipulation of set equa-
tions. Therefore we used the help of a symbolic computation system for the
“mechanical” part of this work.

We selected two possible optimal options and implemented them in the AD
tool tapenade. Experience shows that the option called “lazy snapshots” per-
forms better on most cases.

However, we believe that for reverse AD of a given application code, the
option chosen need not be identical for all checkpoints. This formal description
of all the possible options allows us to look for the best option for each individual
checkpoint, based on static properties at this particular code location. In this
regard, we used symbolic computation again and came up with a very pleasant
property: for a given checkpoint, whatever the optimal option chosen for the
snapshot, the out set of this piece of code turns out to be always the same:

out(C; D) =
(
out(C) ∪ ((out(D) ∪ out(C)) \ use(C))

) \ Req ,

and this out set is what is used in the optimal choices of the other checkpoints
around. Therefore the choice of the optimal option is local to each checkpoint.

One of the current big challenges of reverse AD is to find the best possible
architecture of nested checkpoints for any given program. Such an optimal archi-
tecture has been found for programs with a simple enough iterative structure [3].
For arbitrary programs, the question becomes so complex that heuristics will be
needed. In any case the precise description given here for the memory cost of
each checkpoint is essential for the optimal checkpointing problem.

9

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. C. Faure and U. Naumann. Minimizing the tape size. In G. Corliss, C. Faure,
A. Griewank, L. Hascoët, and U. Naumann, editors, Automatic Differentiation of
Algorithms: From Simulation to Optimization, Computer and Information Science,
chapter 34, pages 293–298. Springer, New York, NY, 2001.

3. Andreas Griewank. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optimization Methods and Software,
1:35–54, 1992.

4. Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorith-
mic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia,
PA, 2000.

5. L. Hascoët and M. Araya-Polo. The adjoint data-flow analyses: Formalization,
properties, and applications. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann,
and B. Norris, editors, Automatic Differentiation: Applications, Theory, and Tools,
Lecture Notes in Computational Science and Engineering. Springer, 2005.

6. L. Hascoët, U. Naumann, and V. Pascual. “to be recorded” analysis in reverse-mode
automatic differentiation. Future Generation Computer Systems, 21(8), 2004.

7. L. Hascoët and V Pascual. Tapenade 2.1 user’s guide. Technical report 0300, INRIA,
2004. http://www.inria.fr/rrrt/rt-0300.html.

8. Darren Redfern. The Maple handbook, Maple V, release 4. Springer, 1996.

