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Abstract: Automatic Differentiation (AD) is a technique to obtain derivatives of the functions com-
puted by a computer program. Due to the control flow, these derivatives are valid only in a certain
domain around the current input values. We investigate methods to evaluate this domain. This results
in a new specific mode of AD that returns additional information on the domain of validity.
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Domaine de Validité des Dérivées Calculées par la
Différentiation Automatique

Résumé : La Différentiation Automatique (DA) est une technique pour obtenir les dérivées de
fonctions calculées par un programme informatique. À cause du flot de contrôle, ces dérivées ne
sont valides que dans un certain domaine autour de la valeur d’entrée actuelle. Nous recherchons
une méthode pour évaluer ce domaine. Cela nous amènè à définir un nouveau mode spécifique de
DA qui renvoie des informations complémentaires sur le domaine de validité.

Mots-clés : differentiation automatique, dérivées, validité, flot de contrôle, input domaine.
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1 Introduction

Automatic Differentiation (AD) is a technique to obtain derivatives through the application of the
chain rule on source code. Viewing source code as sequences of instructions, and instructions as
elementary mathematical functions, the chain rule can be applied to obtain a new source code which
includes the original instructions plus new instructions for the derivatives.

AD is used in several application areas, each using complex computational models. For example
we can mention: Numerical Methods [Klein96], Optimization [Talagrand91], Sensitivity Analysis
[Kim01], Data Assimilation and Inverse Problems [Restrepo98].

There exists among others two fundamental modes of AD: tangent and reverse. The tangent
mode computes directional derivatives, i.e. the first-order effect on the output resulting from a small
modification of some inputs following a given direction. Conversely, the reverse mode computes
gradients, i.e. given a linear combination of the output, it returns the direction in the input space that
maximizes the increase of the combined output. In theory, the reverse mode is cheaper to compute
when the number of independent variables is larger than the dependent variables.

Currently, AD models do not include any verification of the differentiability of the functions.
Therefore, it may happens that AD returns some derivatives, that may not be valid because the origi-
nal functions were not differentiable. We can assume that most of this non-differentiability condition
is introduced byif...then...elsestatements.

Our goal in this work is to evaluate the interval around the input data inside which no non-
differentiability problem arises. Practically, this requires to analyzing each test at run-time, in order
to find for which data it will switch, and to propagate this information as a constraint on the input
data. We propose a new method of AD which returns this validity information. Further, we discuss
the complexity of this mode, and how it can be improved.

This paper is organized as follows: in Section 2 we give the basics concepts of AD. In Section
3 we review the literature about the problem we are addressing. In Section 4 we introduce our
approach. Finally, we discuss the future work and the conclusions in Section 5.

RR n° 5237



4 Araya-Polo & Hascoët

2 Presentation of Automatic Differentiation

Let us present the AD framework. Programs are sequences of instructions, like:

P = I1; I2; :::; Ip�1; Ip

, where each instruction represents an elementary functionfi, and the composition of functions
returns the mathematical model:

F = fp Æ fp�1 Æ ::: Æ f2 Æ f1 with

F : X 2 IRn ! Y 2 IRm; and Y = F (X)

We present the fundamental modes of AD. First, the tangent mode which computes directional
derivatives. Second, the reverse mode which computes adjoint values of gradients.

2.1 Forward Mode

When the chain rule is applied to elementary functions, the results are jacobian matricesf 0i , where
x = x0 represent the input variables, andxp�1 = fp�1 Æ ::: Æ f2 Æ f1 the intermediate variables.
Using the previous notation, the derivative of a functionF , F 0, is the multiplication of the jacobians
f 0i ,

F 0(X) = f 0p(xp�1) � f
0

p�1(xp�2) � ::: � f
0

1(x0)

F 0; P 0 : X 0; X 2 IRn ! Y 0 2 IRmxn; with Y 0 = F 0(X)dX

The differentiated programP 0 has the following sequence of instructions:

P 0 = I 01; I1; I
0

2; I2; :::; I
0

p�1; Ip�1; I
0

p

From a computational point of view, the differentiated program can be easily built. The differentia-
ted program is composed by the original instructions necessary to compute the derivatives, and by
the instructions which represent the derivatives. The differentiated program maintains the original
program flow control structure.

INRIA
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Example of Forward Mode of AD
Original Code Differentiated Code

subroutine sub1(x,y,z,o1)

I1 x = y * x
I2 r = x * x + y * y

if ( r > 10 ) then
I3 r = 10

endif

I4 o1 = r * z
end

subroutine sub1_d(x, xd, y, yd,
z, zd, o1, o1d)

I 01 xd = yd * x + y * xd
I1 x = y * x
I 02 rd = 2 * x * xd + 2* y * yd
I2 r = x * x + y * y

if (r > 10) then
I 03 rd = 0.0
I3 r = 10

endif

I 04 o1d = rd * z + r * zd
I4 o1 = r * z

end

Table 2.1: Application of AD to source code of example, using TAPENADE tool [Tropics04]

The original and differentiated example programs have two valid behaviors, because the control
flow structure.

P = I1; I2; [I3; I4jjI4]

P 0 = I 01; I1; I
0

2; I2; [I
0

3; I3; I
0

4; I4jjI
0

4; I4]

The example has a branch. Consequently, it is only piecewise differentiable [Griewank00]. Un-
fortunately, the differentiated version does not take this into account, and returns a derivative even
when the variabler = 10.

In the case when the conditional expression depends on a variable which has a derivative, small
changes in the input values may return totally different derivatives.

2.2 Reverse Mode

When we have scalar functions, we are interested in calculating the gradient. To calculate the
gradient, we build a vector�Y that contains the weights of each component of the original vec-
tor Y . Further, the result of vector�vector operation will be the linear combination of elements
�Y � Y = �Y t � F (X). After transposition, the gradient is

�X = f
0t
p (xp�1) � f

0t
p�1(xp�2) � ::: � f

0t
1 (x0) = F

0t(X) � �Y (1)

F 0; �P : �Y ;X 2 IRn ! �X 2 IRmxn; with �X = F
0t(X) � �Y

RR n° 5237



6 Araya-Polo & Hascoët

Equation (1) is cheap to compute if it is executed in reverse order, because matrix�vector products
are more efficient than matrix�matrix products. Unfortunately, this mode of AD has a difficulty
because thef 0i instructions require the intermediate valuesxi computed in the original order. The
intermediate values may have been overwritten, and lost for future calculations. There are two main
strategies to access the intermediate variables: recompute-all or store-all [Griewank92].

Reverse mode of AD generates a new program�P . Program�P has two parts, the first is called
the forward sweep

�!
P , the forward sweep is basically the original program P plus some instructions

to fulfill the storage/re-computation trade-off; the second part is called the reverse sweep
 �
P , reverse

sweep consists of the instructions that represents the fundamental functionsf
0t
i (x) from (1), and the

instructions to recover the needed intermediate values.

The reverse differentiated version of the programP is as follows:

Original Code Differentiated Code

subroutine sub1(x,y,z,o1)

I1 x = y � x
I2 r = x � x+ y � y

if ( r > 10 ) then
I3 r = 10

endif

I4 o1 = r � z
end

subroutine sub1_b(x, xb, y, yb z, zb, o1b)

PUSH(x)
I1 x = y � x
I2 r = x � x+ y � y

if (r > 10) then
I3 r = 10

PUSH(1)
else

PUSH(0)
endif

 �
I4

�
rb = z � o1b
zb = zb+ r � o1b

o1b = 0.0
POP(branch)
if ( branch == 1)

 �
I3 rb = 0:0

endif
 �
I2

�
xb = xb+ 2 � x � rb
yb = yb+ 2 � y � rb

POP(x)
 �
I2

�
yb = yb+ x � xb
xb = y � xb

end

Table 2.2: Application of AD to example, using TAPENADE tool

INRIA
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WherePUSH(x) andPOP (x) are the functions to store and recover values of needed variables.
Notice that sometimes not all original instructions are needed in the forward sweep; some of them
are dead code [Hascoet04] for the derivatives (for example, in

 �
P the instructionI4).

3 Related Work

This section is a selection of works from the literature, all these works are related to the problem
of calculating derivatives, especially when the functions involved have problems of differentiability.
We discuss two approaches, Interval Extension and Laurent Series.

3.1 Interval Extension

The goal of this approach is to deal with non-differentiability functions using interval extensions, in
particular with conditional statements. The interval extensionF (X) is the interval which encloses
the extreme values of the function results,ff(x) j x 2 Xg � F (X), whereX is the input domain.
Functions with branches are represented as follows:

F (X) = �(xs; xq ; xr) =

8<
:

xq if xs < 0
xr if xs > 0

xq[xr otherwise

Where,xs is the decision expression,xq andxr are the interval evaluations of function of each
branch, andx[y is the interval hull of the interval evaluation of functions x and y.

Interval extension is applicable when the functions are smooth. A new property is necessary to
adapt interval extension to non-smooth functions.

F (X2)� F (X2) = A(X2)�A(X1)

Derivative extensionF 0(X) is a jacobian matrix,A 2 F 0(X) andX1; X2 2 X . The property yield
thatF 0(X) must be a bounded, closed and convex set as Lipschitz sets [Neumaier90].

The derivative extension (when�(0�; xq ; xr) = �(0+; xq ; xr)) is defined as follows:

@�(xs; xq ; xr)

@xq
=

8<
:

1 if xs < 0
0 if xs > 0

[0,1] otherwise
;
@�(xs; xq ; xr)

@xr
=

8<
:

0 if xs < 0
1 if xs > 0

[0,1] otherwise

;
@�(xs; xq ; xr)

@xs
= 0

This approach was developed to verify solutions of non-linear systems of equations and for
global optimization [Kearfott96].

RR n° 5237



8 Araya-Polo & Hascoët

3.2 Subdifferencials

The subdifferential of a functionf at pointx0 is the set

@f(x0) = fy : f(x)� f(x0) � hy; x� x0ig

For a function of one variable this is the collection of angular coefficients y for which the lines
f(x0) + y(x� x0) lie under the graph of f.

y = y1(x� x0) + f(x0)

@f(x0) = [y2; y1]

y = y2(x� x0) + f(x0)

x0 x

y = f(x)

y

Figure 1: Subdifferential example.

The subdifferential is a concept which generalizes the derivative for a convex function, and if
f is differentiable atx0, then@f(x0) = f 0(x0). The subdifferential concept belongs to the so
called “convex calculus", which is widely used in convex analysis, therefore in optimization re-
search [Gamkrelidze87][Hiriart91].

The are several generalizations of the derivative [Griewank00]. But, all of them, became very
complex to be useful in AD, particularly about the rules to compute the derivatives.

3.3 Laurent Series

This method handle functions with known troublesome inputs. The method is based in Laurent se-
ries.
Laurent series are one-side expansions of problematic functions, likejxj andx2log(x) at the origin.
The method requires that user’s input be a pointx0 for the evaluation and differentiation and also a
directionx1, then the directional differentiation can be perform in effective way.

INRIA
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The problem arises when the method obtains roots with an uncertain sign, i.e. when the number
of significant terms may vary from intermediate to intermediate steps. However, the Laurent series
can be truncated, thus becoming a Taylor polynomial. Hence, the method is applicable as long as
we deal with the latter [Griewank00].

4 Interval of Validity

We identify two main sources of non-differentiability in programs: first, the use of intrinsic functions
of the language that are not differentiable for their current inputs, second, the changes in the control
flow that break the continuity of the functions (if...then...else) sentences.

The first problem is already handled by the replacement of thebad functions by othersharmless
functions [Griewank95], but theseharmlessfunctions include control flow changes, then they de-
generate in problems of the second source. The second source of problems is the only fundamental
one, and is the problem that we will study, differentiability through changes in the control flow.

Our goal is to inform to the end-user when there is a risk that the returned derivatives are invalid.
By invalid we mean that the returned derivatives are too close to a switch of control, therefore the
derivatives may be totally different. Our idea is to evaluate the largest interval around the current
input data, such that there is not differentiability problem if the input remains in this interval. In the
case when this interval is notably too small, this will be a warning to the user against an invalid use
of these derivatives.

4.1 Our Approach

We consider programs as straight-line blocks of codeBi, separated by conditionsTi that may change
the control flow.

X
B1

����_ (X1; T1) � � �
Bn

�����_ (Xn; Tn)
Bn+1

������_ Y

Let us consider a conditionalTi in isolation. It uses variables fromXi, which depends differentiably
on the inputX (at first order) by:

�Xi = J(B1;B2; :::;Bi) ��X = J(Bi) � J(B2) � ::: � J(Bi) ��X

WhereJ(B) is the jacobian of the function implemented by code B. We can admit without loss of
generality, thatTi is just a test on the sign of one variablexj in Xi. Therefore, the conditional will
switch if ��xj � xj . Thus, we can state the condition on�X upon which the program control
does not switch for this testTi:

� < J(B1) � J(B2) � ::: � J(Bi) ��X jej > � < xj jej > (2)

For the entire program, the computed derivatives will be valid if the variation�X of the inputX
satisfies all the constraints (2) for each testTi. This gives a system of constraints on�X . The
solution of this system is the space/interval where the derivatives are valid. In general, the system is
large and expensive to solve.

RR n° 5237



10 Araya-Polo & Hascoët

4.2 Differentiation Model

To implement the previous method we need to compute several jacobians, the cost to compute each
jacobian in forward mode of AD is proportional to the dimension of the inputs space.

Observing equation (2), and recalling that we must solve it for�X , we must isolate�X . A
powerful way to do that is to transpose the jacobians in the dot product, yielding the equivalent
equation:

� < �X jJ t(Bi) � : : : � J
t(B2) � J

t(B1) � ej=xj > � 1 (3)

We remark that the right side of the dot product is directly computed by the reverse mode of AD (see
section 2.2).

To begin with, let us see how our approach translate into a differentiation model for a simple
program (table 2.1) with just one test. If the programP = B1;T1;B2 then the following program�P
returns the condition on�X to keepT1 from switching:

�P =
�!
B1; �T1;

 �
B1

Things get a little more complex when programP contains two tests. IfP = B1;T1;B2;T2;B3

then the program which return the constraint on�X due toT1 andT2 are respectively:

�P1=
�!
B1; �T1; ;

 �
B1

�P2=
�!
B1;T1;

�!
B2; �T2;

 �
B2;
 �
B1

Instead of running
�!
B1 and

 �
B1 twice, we can use the so-called vector approach, which computes

several sets of derivatives for the same original values. We shall denote
 �
Bi

(n) a vector execution of
 �
Bi onn distinct set of derivatives. Thus, we can build a single program�P1

�P =
�!
B1; �T1;T1;

�!
B2; �T2;

 �
B2;
 �
B1

(2)

For a general programP such as (4), the domain-validated program�P is as follows:

�P =
�!
B1; �T1;T1;

�!
B2; �T2;T2; : : : ;

�!
Bn; �Tn;

 �
Bn; : : : ;

 �
B2

(n�1);
 �
B1

(n)

Table 4.2 shows an example with two tests. The adjoint variablesxb, o1b, etc. hold the tempo-
rary variables needed to compute theJ t(Bi) � : : : � J

t(B2) � J
t(B1) � ej=xj (from equation 3) for

each testTi. Because of the vector execution, these adjoints are in fact arrays, where index i deals
with the testTi.

The program�P contains at least two times more blocks than the programP . The computational
cost of program�P is proportional ton2, with n number of test. In the next section, we explore
strategies to down-size the cost.

INRIA
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Motivational Example
Original Code Domain-Validated Code

subroutine sub1(x,y,z,o1,o2)

B1

�
x = x � y
r = x � x+ y � y

C control flow change I

T1

8<
:

if ( r > 10 ) then
r = 10

endif

B2

�
o1 = r � z � z
o2 = r � r + 20 � o1

C control flow change II

T2

8<
:

if ( o1 > o2 + 20 ) then
o1 = o2 + 20

endif

B3

�
o1 = o2� o1
o2 = o1 � r

end

subroutine sub1_dv(x,y,z,xb,yb,zb)

PUSH(x)
�!
B1

�
x = x � y
r = x � x+ y � y

�T1

8>><
>>:

t1 = r � 10
t1b = 1=t1
rb(1) = t1b
t1b = 0:0

T1

8<
:

if ( t1 > 0 ) then
r = 10

endif

�!
B2

�
o1 = r � z � z
o2 = r � r + 20 � o1

�T2

8>>>><
>>>>:

t2 = o1� 20� o2
t2b = 1=t2
o1b(1) = �t2b
o2b(1) = t2b
t2b = 0:0

 �
B2

8>>>>>>>><
>>>>>>>>:

xb(2) = yb(2) = zb(2) = 0
rb(2) = 2 � r � o2b(1)
o1b(1) = o1b(1) + 20 � o2b(1)
o2b(1) = 0:0
rb(2) = rb(2) + z � z � o1b(1)
zb(2) = zb(2) + 2 � r � z � o1b(1)
o1b(1) = 0:0

 �
B1

2

8>>>>>><
>>>>>>:

xb(1) = yb(1) = zb(1) = 0
do j = 1; 2; 1
xb(j) = xb(j) + 2 � x � rb(j)
yb(j) = yb(j) + 2 � y � rb(j)

enddo
rb(1) = 0:0

POP(x)

 �
B1

2

8>><
>>:

do j = 1; 2; 1
xb(j) = y � xb(j)
yb(j) = yb(j) + x � xb(j)

enddo

end

Table 4.1: Application of domain-validation method to motivational example

RR n° 5237



12 Araya-Polo & Hascoët

4.3 Practical Problems of the Proposed Model

We consider that the previous model in Section 4.2 is complete in the sense that it returns one
constraint on�X for each test encountered during the execution of the program. However, in real
situations, the number of constraints to manipulate is so large that this model is not practical. Indeed,
there is one constraint for each run-time occurrence of a conditional, and this becomes unmanage-
ably large.

The previous could be solve if we could somehow combine constraints as they come, in order
to propagate just one at each time. But a constraint for a testTi is actually of the form given by
equation (3), which represents a half-space. Unfortunately the intersection of two half spaces is not
a half-space in general.

We can think of three ways to address this problem of number of constraints:

• Choose a different representation for constraints, so that they could be merged. For example,
one could approximate the half-space constraint by stronger one, such as, a rectangular area
(in multidimentional-space). The advantage is that the intersection of hyper-rectangles is still
hyper-rectangle. The drawback is that this constraint can become far stronger that what is
required in reality.

Different representations have different computational cost, this lead us to a trade-off between
the accuracy of the representation and the computational cost of the manipulation (table 4.2).

Representation Memory-Cpu Cost Accuracy

spheres low very low
hyper rectangles normal low
polyhedra high good

Table 4.2: Representation of solutions, trade-offs

• Reduce the number of constraints that is being propagated. One way to do this is to consider
only some conditionals in the source program, probably chosen by the user through directives.
in any case, there still can be many of half-spaces to carry backwards, and we investigate an
additional technique to remove some of them called “dropping constraints".

Some constraints may be redundant. To detect the redundant constraints, we calculate an in-
dex of relevance of constraints. The index is calculated using a measure of distance from the
constraint to the space of solution already computed. Consequently, we eliminate the useless
ones. This strategy is inspired by the cutting-plane methods used in Optimization [Boyd04].

Given the system of constraints:
A~x � B

INRIA
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or
P = fx j ati~x � bi; i = 1;mg (4)

With m the number of constraints. We define the index of relevance like:

Ri =
bi � atix

�p
atiH

�1�ai
(5)

Let the matrixH� be the Hessian of the barrier evaluated in the optimal pointx�. Developing
the expression,

H� = �r2
X

log(bi � atiz)jz=x� (6)

H� =
X aia

t
i

(bi � atix
�)2

(7)

finally the expression of P is,

P � � = fz j (z � ~x�)tH�(z � ~x�) � m2g (8)

The criterion to eliminate some of the constraints is:

1. if Ri � m then constraintatix � bi is redundant.

2. The one that has greater relevance index is redundant (not general).

The drawback with previous method is to determine the optimal pointx�, can be very expen-
sive. In fact, to determine that point can be as expensive as to calculate the index of relevance
of each constraint of the system.

• Let the user select the direction of differentiation in the input space, like what happens already
in the tangent mode of AD. The advantage is that there is only one constraint to propagate, be-
cause we only investigate the domain of validity along this direction. In other words, we only
study the intersection of the domain of validity with the input differentiation direction. So, the
constraint is just an interval, which is updated each time the execution reaches a conditional.

Even if one wants to study the full domain of validity, this approach can be cheap because it
suffices to run it for each element of the cartesian basis of the input space. This may prove to
be cheaper than propagating a large number of constraints at one time.

RR n° 5237



14 Araya-Polo & Hascoët

5 Conclusions

The question of derivatives being valid only in a certain domain is a crucial problem of AD. If deriva-
tives returned by AD are used outside their domain of validity, this can result in errors that are very
hard to detect. AD tools must be able to detect this kind of situation.

We proposed a novel method to tackle the problem of non-differentiability in programs differen-
tiated with Automatic Differentiation. The problem comes mainly from changes in the control flow.
Our method computes approximate domains of the input data. In these domains, the returned deriva-
tives are valid in the sense that when the input remain in this domain, the function is differentiable.
This analysis must be done for each test executed at run-time by the program.

We illustrate our method on a small example.

The proposed method may prove to be very expensive on large applications. We present several
strategies to cope with the computational cost. Some of the strategies involve the interaction with
the end-user.

The implementation of the method is being under taken in the AD software TAPENADE.
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