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ABSTRACT.The shape optimization of a supersonic aircraft need a composite model combining
a 3D CFD high-fidelity model and a simplified boom propagation model. The management of
this complexity is studied in an optimization loop, with exact discrete adjoints of 3D flow and
mesh deformation system. The introduction of a mesh adaptation algorithm is also considered.

RÉSUMÉ.L’optimisation de la forme d’un avion supersonique nécessite un modèle composite
comportant une composante 3D haute fidélité en mécanique des fluides et un modèle simplifié
de propagation du bang. La prise en compte de cette complexité est étudiée dans le cadre
d’une boucle d’optimisation, avec des adjoints discrets exacts de l’écoulement 3D et un système
de déformation de maillage. L’introduction d’une méthode d’adaptation de maillage est aussi
considérée.

KEYWORDS:Optimization, shape design, parameterization, automatic differentiation, anisotropic
mesh adaptation, sonic boom.
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1. Introduction

When passing to real life applications, optimal design algorithms have their com-
plexity increased from many standpoints. The modeled physics is not always easily
put in a unique PDE model, due to the very large and very small scales involved in
the problem. A classical approach in that case consists in using specialized mod-
els for the different range of scales and considering the system as a multimodel one.
Then the Multi-disciplinary Design Optimization (MDO) methods can be applied.
These methods are able to couple different physics and also different level of fi-
delity for the same physics, see for example (Sobieszczanski-Sobieskiet al., 1997)
and (Alexandrov, 1997).

Our particular application, the sonic boom reduction, needs to handle the difficult
problem of predicting sonic boom emission and propagation. The system of Euler
equations is recognized as a satisfying model for the whole physical process. But
when passing to discrete model for numerical simulations, we have to discretize on
a unique mesh small and large scales. Their ratio may be enormous. Indeed, shock
width is in microns and the computational domain should extend from the aircraft to
the ground, 15 kilometers below. Simpler models than Euler equations may be chosen
for the whole physical process but they may loose some accuracy in the sonic boom
prediction. To address this issue, two steps are applied. Firstly, the 3D Euler model is
applied in the vicinity of the aircraft for predicting nearfield boom emission. Secondly,
a propagation model is applied with Euler nearfield outputs as initial conditions and
solves pressure perturbation propagation down to ground level sonic boom signature.
Turning to optimization of the system, we need determine the place of this second
model into the optimization loop. Either the propagation can be directly included into
the optimization loop as in (Farhatet al., 2002). Or, the propagation is first used for
a priori building a nearfield target pressure, and then the optimization loop minimizes
an objective functional taking it into account this target, see (Alonsoet al., 2002). The
latter option, with atarget nearfield pressure, is considered in the present study.

However, we address a part of the multi-scale issue by applying amesh adaptation
loop. The three main ingredients of mesh adaptation are:

(i) the choice of a criterion governing the local repartition of nodes and the align-
ments of elements,

(ii) the type of remeshing,

(iii) the way the mesh generator is coupled with the rest of the algorithm.

Concerning (i), the user has to know what is the priority between accuracy of flow
field evaluation or accuracy of final optimal control. Accuracy of the whole flow can
be set in general and is solved by local error estimators, as interpolation estimators,
see (Alauzetet al., 2007) and (Zhuet al., 1997). When focussing on functional value
accuracy, goal-orienteda posterioriestimators are then considered, see (Gileset al.,
2001) and (Vendittiet al., 2002). Functional error can be also minimized as in (Koobus
et al., 2007). The issue of accuracy in optimal control variable itself is addressed for
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example in (Polak, 1997) and (Beckeret al., 2001). Point (ii), type of remeshing,
covers any mesh modification algorithm, from local mesh enrichment with patterns to
global mesh regeneration with advanced meshing techniques. In our case, the volume
mesh is adapted by local mesh modifications of the previous mesh using mesh an
anisotropic generalization of the Delaunay theory. Coupling mesh adaptation with
optimization algorithm, (iii), is not a trivial issue. Accuracy of adaptation should not
be deteriorated by the optimization and robustness of optimization should not be lost
by mesh updates. Our proposed approach is inspired by an analogy with the fixed
point mesh adaptation method for unsteady flows proposed in (Alauzetet al., 2007).

An important feature of the study is the option of a gradient-based minimization.
It is motivated by the necessity of considering a large number of design variables. An
important disadvantage of gradient-based minimization is the need of a differentiable
functional. This means that we may need to differentiate the sonic boom propagation
model, and the numerical approximation with mesh changes. Two other important
ingredients may have to be installed in the optimization loop. CAD shape parameter-
ization belong to the functional to minimize, together with the process generating a
new mesh for a new shape. Both have to be handled in the gradient evaluation.

In this paper, we first introduce the problem under study in terms of the basic high-
fidelity model. Secondly, we present the two extensions of the basic model,i.e., the
propagation model and mesh adaptive model. Thirdly, we describe a numerical opti-
mization platform and show which kind of results can be obtained in combination with
the propagation model. Then, preliminary experiments on an optimization platform
coupled with mesh adaptation are described.

2. Mathematical design problem

2.1. Continuous standpoint

The flow around a supersonic aircraft is modeled by the Euler equations. Assuming
that the gas is perfect, non viscous and that there is no thermal diffusion, the Euler
equations for mass, momentum and energy conservation read:



























∂ρ

∂t
+ ∇. (ρ~U) = 0 ,

∂(ρ~U)

∂t
+ ∇. (ρ~U ⊗ ~U) + ∇p = 0 ,

∂(ρE)

∂t
+ ∇. ((ρE + p)~U) = 0 ,

whereρ denotes the density,~U the velocity vector,E = e+ ‖~U‖2

2 the total energy and
p = (γ − 1)ρe the pressure withγ = 1.4 the ratio of specific heats ande the internal
energy. These equations are symbolically rewritten:

∂W

∂t
+ ∇ · F (W ) = 0 , [1]
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whereW = t(ρ, ρu, ρv, ρw, ρE) is the conservative variables vector and the vector
F represents the convective flux. In fact we are interested only in thesteadysolution
of this system. It has to be evaluated from the region around the aircraft (near field)
to the ground level (far field), so that the computational domain boundary involves
the two components, viz. the aircraft wall and the ground. The pressure perturbation
created by the supersonic aircraft flight extends down to the ground and is the source
of uncomfortable noise for populations,i.e., the sonic boom. During this propagation
to ground, the perturbation signal transforms, see Figure 1, left.

The optimization problem under study in this paper is to find an aircraft shape
that would reduce the impact of this noise. This can be expressed as the research of
a minimum of an objective functional measuring the deviation between the ground
pressure signature and a target one. We define itin shortas:

j =

∫

(p(W ) − ptarget)
2ds [2]

where the integral is taken on ground surface and the functionalj depends on the
aircraft shape through flow stateW .

2.2. Numerical issues

Predicting the Euler flow down to the ground needs the resolution by the 3D mesh
of wide range of scale sizes. Sharp shocks have to be solved with small numerical
width, not necessary as small as micron, but yet of the order of centimeter, and this in a
domain of tens of kilometers. As a consequence, three-dimensional Euler modeling of
the pressure perturbation is not possible with standard meshes and today’s computers.

In the literature, authors starting with an accurate model -as Euler equations- re-
strict the 3D Euler computation to a near field sub-region of the domain, usually mea-
sured with the ratio of the diameterR of the near field domain to the aircraft chord-
lengthL. Then, propagation is handled with a simplified model. The accuracy of a
composite model combining 3D Euler at near field and a propagation model depends
on:

– the accuracy of the 3D Euler computation,

– the propagation model quality,

– and the adequacy between the matching location and simplification assumptions
used in the propagation model.

In this paper, the 3D Euler equations are solved with a Finite Volume technique on
unstructured tetrahedral meshes. The considered standard propagation model is the
one proposed by Thomas (Thomas, 1972). Typically, matching distances to couple
both models are set betweenR/L = 0.5 andR/L = 5. In order to address the prob-
lem of space-scale stiffness and to have a suitable adequacy between both models, we
propose to apply an anisotropic mesh adaptation. Indeed, anisotropic mesh adaptation
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allows the solution to be propagated accurately in the near field domain. Thea pri-
ori handicap to handle is that the functional to minimize in the discrete optimization
problem is changed as soon as mesh is changed.

Lastly, using the mesh adaptation does not dispense to use also Euler and propa-
gation together, and an important question arises:

How to handle the composite model Euler/Propagation inside the optimization loop?

To address this point, two main strategies can be considered:

– the propagation model is put into the state equation of the Optimal Control prob-
lem, see for example (Farhatet al., 2002). The difficulty may come from a lack of
differentiability of the propagation model,

– the propagation model is used for building a near field target pressure, see for
example (Alonsoet al., 2002). Then we need, for searching a particular ground signa-
ture, to solve an inverse problem providing the near field target pressure. A difficulty
occurs from the lack of invertibility of the propagation model. Nonetheless, we still
consider this option.

These two extensions, propagation and mesh adaptation models, from the basic
numerical model are now examined in more details.

3. Propagation model

3.1. Atmospheric pressure wave propagation

Figure 1. Left, sonic boom problem modeling. Right, illustration of the three param-
etersmi, ∆pi andλi characterizing the pressure wave

The propagation code uses a ray tracing algorithm based upon the waveform pa-
rameter method developed in (Thomas, 1972). It allows us to propagate near field
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perturbations to the ground in order to get the sonic boom signature of the aircraft. In
this approach, the pressure wave is characterized by three parameters (see Figure 1):

– mi the slope of pressure waveform segmenti,

– ∆pi the pressure rise across shock at the juncture of pressure waveform segment
i andi − 1,

– λi the time duration of pressure waveform segmenti.

A system of three ordinary differential equations, one for each parameter, is solved to
propagate the pressure wave in the atmosphere:































dmi

dt
= C1 m2

i + C2 mi ,

d∆pi

dt
=

1

2
C1∆pi(mi + mi−1) + C2∆pi ,

dλi

dt
= −

1

2
C1(∆pi + ∆pi+1) − C1miλi ,

[3]

with notations:

C1 =
γ + 1

2γ

1

p
and C2 =

1

2

(

1

a

da

dt
+

1

ρ

dρ

dt
−

1

A

dA

dt

)

,

where we denote bya the air ambient sound speed,ρ the air ambient density,p the air
ambient pressure andA the (acoustic) ray tube area as cut by the waveform. All these
quantities are functions of the altitude. Here, the wind velocity is assumed to be zero
and we use the ICAO Standard atmosphere (see (ICAO, 1993)). To solve System [3],
we just have to advance it in time with a time step sufficiently small for neglecting the
variations ofC1 andC2.

3.2. Coupling CFD and wave propagation

We denote byL the chord-length of the aircraft. The extraction lineOx, at a
distance0, is the line parallel to the flow direction going through the nose of the
aircraft. By a downward vertical translation along the Mach cone at a distanceR
we get the extraction line at distanceL. In practice, the distance from the aircraft is
generally characterized by the ratioR/L. We denote byp the acoustical pressure and
p∞ the atmospherical pressure.

The pressure distribution obtained under the aircraft in the near field region is used
to set up the initial conditions for the propagation of the acoustic wave to the ground.
However, the modeled flow in the near field is three-dimensional and non-linear in
nature whereas the propagation is a linear one-dimensional model. Thus, to ensure a
valid coupling, the near field solution must be locally axi-symmetric with respect to
axisOx in the vicinity of the line where the pressure distribution is extracted. This is
a necessary condition for accurately taking all the elements of the aircraft geometry
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(body, wings,...) into account. UsingR/L too small results in an error due to in-
sufficient model matching. And using largeR/L is difficult because it requires huge
three-dimensional meshes. If the numerical solution is propagated with too much nu-
merical damping, then it will reduce the accuracy of the near field signal. We address
the latter issues by applying an anisotropic mesh adaptation strategy.

4. Mesh adaptation model

Mesh adaptation provides a way of controlling the accuracy of the numerical solu-
tion by modifying the domain discretization according to size and directional con-
straints. It is well known that mesh adaptation captures accurately shocks issued
from the aircraft in the computational domain , see for instance (Freyet al., 2005).
Moreover, anisotropic mesh adaptation reduces significantly the flow solver diffusion
allowing shock waves to be propagated accurately far from the aircraft.

4.1. Anisotropic mesh adaptation

For stationary problems, the mesh adaptation scheme aims at finding a fixed point
for the mesh-solution couple. In other words, the goal is to converge towards the
stationary solution of the problem and similarly towards the corresponding invariant
adapted mesh.

At each stage, a numerical solution is computed on the current mesh with the Euler
flow solver and has to be analyzed with an error estimate. The considered error esti-
mate aims at minimizing the interpolation error in normLp over the whole domain.
From the continuous metric theory in (Alauzetet al., 2006; Leservoisieret al., 2001),
an analytical expression of the optimal metric is exhibited that minimizes the interpo-
lation error inLp norm. This anisotropic metric is a function of the Hessian of the
solution which is recovered from the numerical solution by a doubleL2 projection.
This metric will replace the Euclidean one to modified the scalar product that under-
lies the notion of distance used in mesh generation algorithms. Next, an adapted mesh
is generated with respect to this metric where the aim is to generate a mesh such that
all edges have a length of (or close to) one in the prescribed metric and such that all
elements are almost regular. Such a mesh is called aunit mesh. The tetrahedral vol-
ume mesh is adapted by local mesh modifications of the previous mesh (the mesh is
not regenerated) using the following operations: vertex insertion, edge and face swap,
collapse and node displacement. The vertex insertion procedure uses an anisotropic
generalization of the Delaunay kernel (Freyet al., 2000). Finally, the solution is lin-
early interpolated on the new mesh. This procedure is repeated until the convergence
of the couple mesh-solution is achieved.
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4.2. Metric construction

The notion of length in a metric space is closely related to the notion of metric and
subsequently to the definition of the scalar product in the vector space. A metric is a
n × n symmetric definite positive matrix, wheren is the space dimension. When this
metric is continuously defined over the whole domain, it is called acontinuous metric.

Let u be an analytic solution defined on a bounded domainΩ and letN denotes
the desired number of vertices for the mesh. We aim at creating the "best" meshH,
i.e., to find the optimal continuous metricM, that minimizes the interpolation error
(u − Πhu) in Lp norm withN vertices.Πhu denotes the linear interpolate ofu on
H. To this end, a model of the interpolation error with respect to a metricM, denoted
eM, is required.

In (Alauzet et al., 2006), a model of the interpolation error for a metricM is
given. It has been proved that locally the optimal metric has for main directions the
eigenvectors of the Hessian ofu. Therefore, the point-wise local error model for such
metric in the neighborhood of a vertexa could be simplified to:

eM(a) =
n
∑

i=1

h2
i

∣

∣

∣

∣

∂2u

∂αi
2

∣

∣

∣

∣

, [4]

where ∂2u
∂αi

2 stands for the eigenvalue of the Hessian ofu in the direction of theith

eigenvectors of this Hessian, andhi for the mesh size prescribed by the metric in the
same direction. Now, we are looking for the functionM that minimizes, for a given
numberN of vertices, theLp norm of this error. To this end, we have to solve the
following problem:

min
M

E(M) = min
M

∫

Ω

(eM(x))
p dx = min

hi

∫

Ω

(

n
∑

i=1

h2
i (x)

∣

∣

∣

∣

∂2u

∂αi
2
(x)

∣

∣

∣

∣

)p

dx, [5]

under the constraint:

C(M) =

∫

Ω

n
∏

i=1

h−1
i (x) dx =

∫

Ω

d(x) dx = N. [6]

The resulting optimal metric solution of Problem [5] and [6] for theL2 norm in three
dimensions reads:

ML2 = DL2 (det |Hu|)
− 1

7 R−1
u |Λ|Ru

with DL2 = N
2

3





∫

Ω

∣

∣

∣

∣

∣

3
∏

i=1

∂2u

∂αi
2

∣

∣

∣

∣

∣

2

7





− 2

3

. [7]

For the sonic boom problem, we have considered the continuous metric control-
ling theL2 norm of the error as the choice of anLp norm could be essential in mesh
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adaptation process regarding the type problem solved. For instance in CFD, physical
phenomena can involve large scale variations (e.g. multi-scale phenomena, recircula-
tion, and weak and strong shocks). Capturing weak phenomena is crucial for obtain-
ing an accurate solution by taking into account all phenomena interactions in the main
flow area. Intrinsically, metrics constructed with lowerp norms are more sensitive to
weaker variations of the solution whereas theL∞ norm mainly concentrates on strong
shocks.

4.3. Adaptive sonic boom numerical simulation

We consider a supersonic aircraft flying at a supersonic speed of1.6 Mach with
an angle of attack of3 degrees at an altitude of13, 716 meters (45, 000 feet). The
aircraft geometry is the supersonic business jet geometry (SSBJ) of Dassault Aviation
(Figure 2a). The length of the SSBJ is36 meters. The complete aircraft is included in
a sphere with a diameter of1 kilometer, cf. Figure 2b.

As regards mesh adaptation, we choose to control the error on the Mach number,
as the Mach number is really representative of the flow even if an accurate near field
pressure distribution is required. A total number of15 iterations of adaptation has
been performed, each150 time steps of the flow solver. We try to obtain the best mesh
controlling the error inL2 norm with600 000 vertices.

The final adapted anisotropic mesh contains almost570 000 vertices and3.3 mil-
lions tetrahedra (complete geometry), views of this mesh are shown in Figure 3. We
notice that mesh refinement along Mach cones have been propagated in the whole
computational domain. Such meshes reduce significantly the numerical diffusion in-
troduced by the flow solver. Consequently, the solution, e.g. Mach cones, is accurately

(a) (b)

Figure 2. (a) SSBJ’s geometry represented by its surface mesh and (b) spherical com-
putational domain with the SSBJ
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propagated in the whole domain, Figure 4. A further analysis shows that the near field
signal is propagated accurately untilR/L = 6.5, Figure 5. According to Whitham
or linear supersonic theory a signal is accurately transported in the domain and has

not been diffused if the quantity
√

R
L

p(x)−p∞
p∞

for the two distances are close to each

other. This is the case for signals betweenR/L = 4 andR/L = 6.5. After, the signal
is slightly diffused but it is still well represented. This is clearly illustrated on sonic
boom signatures where almost the same signal is obtained forR/L between4 and6,
Figure 5.

In conclusion, for this geometry the signal seems to be converged, and thus the
coupling is assume to be valid, for anR/L around5 with less than600, 000 vertices.

Figure 3. View of the final anisotropic mesh obtained withL2 norm continuous
metric-based mesh adaptation on the Mach number

Figure 4. Final solution on the adapted mesh. Left, Mach number iso-value in the
symmetry plane. Right, Mach number iso-surface representing Mach cones emitted
by the aircraft
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Figure 5. Top, near field signature extracted from severalR/L. Bottom, sonic boom
signature obtained from differentR/L near field initializations. Only choosingR/L
more than5 produces a converged output
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5. A numerical platform

Our optimization approach consists in translating first into a globally numerical
model the following ingredients:

– a discrete shape definition,

– a CFD flow model,

– a functional.

To this end, we build discrete sensitivities,i.e., we apply the Optimal Control
theory directly to the discretized equations. The discrete gradients are computed by
generating sensitivities by means of the Automatic Differentiation tool TAPENADE
developed at INRIA (Hascoëtet al., 2004). It provides efficient and more accurate
gradients evaluation than the ones obtained by finite differences methods. This ap-
proach always guarantees a descent direction whatever the mesh size compared to
continuous gradient techniques where a descent direction is only guaranteed when the
mesh size converges toward zero. A feature of the presented optimization process lies
in the fact that CAD parametrization has been embedded in the loop. Therefore the
total setµ = (l, ν) of design variables in the subsequent equations has been split into
two parts: l describes aerodynamic design variables such as angle of attack, side slip
angle etc., whereasν stands for geometric design variables handled directly by the
CAD modeler. Schematically the CAD modeler can be represented by the follow-
ing operator: ν 7−→ d(ν) whered(ν) denotes the surface mesh displacement. The
mathematical optimization problem can be formulated as an optimal control problem
(Lions, 1971) as follows (Dinhet al., 1996):
Find a shapeµ∗ within O (set of shapes) such that:







µ∗ = arg min
µ∈O

j(µ)

g(µ) ≤ 0

The cost functionj(µ) = J(µ,W(µ)) and constraintsg(µ) = G(µ,W(µ)) depend
on the set of design variablesµ and on the solution vectorW(µ) of the state equations
E(µ,W(µ)) = 0. By assembling cost and constraint functions in one vector, we
can write: f(µ) = (J(µ,W(µ)),G(µ,W(µ))). In order to solve the optimization
problem at hand, the functionf(µ) must be evaluated for variations in the set of design
variables denotedδµ.

The mesh global deformation, resulting from the surface mesh deformationd(ν),
computed by the geometric modeler is contained withinD(ν) and is obtained by solv-
ing an elliptic problem through the operatorL(d(ν),D(ν)). Then, the vectorf can
be rewritten as: f(µ) = F(l,D(ν),W(l,D(ν))).
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The gradient computation consists in expressing the variations of cost and constraints
functions with respect toδµ:

δf =
∂F(l,D(ν),W(l,D(ν)))

∂l
.δl +

∂F(l,D(ν),W(l,D(ν)))

∂D(ν)

dD(ν)

dν
.δν

+
∂F(l,D(ν),W(l,D(ν)))

∂W(l,D(ν))

(

∂W(l,D(ν))

∂l
.δl +

∂W(l,D(ν))

∂D(ν)

dD(ν)

dν
.δν

)

,

[8]

using the state equations: E(l,D(ν),W(l,D(ν))) = 0 and the equation for the mesh
deformation: L(d(ν),D(ν)) = 0.

For gradient computation in direct mode the following linear system needs to be
solved:

[

∂E

∂W

] [

∂W

∂l
,
∂W

∂ν

]

= −

[

∂E

∂l
,
∂E

∂D

dD
dν

]

. [9]

The operator
∂E

∂D
is obtained by differentiating the Euler flux with respect to the

mesh coordinates. Writing these coordinates asX(ν) and takingX0 = X(0) as the

reference mesh coordinates, we have: X(ν) = X0 + D(ν) and thus
∂E

∂D
=

∂E

∂X
.

Differentiation of the mesh deformation operator has been performed using the au-
tomatic differentiation tool in direct mode. Subsequently, the following linear system
has to be solved:

∂L(d(ν),D(ν))

∂D

dD
dν

= −
∂L(d(ν),D(ν))

∂d

dd
dν

. [10]

The RHS of Equation [10] includes the term
dd
dν

provided by the geometric CAD

modeler.

Referring to Equation [8], the gradients of cost and constraints functionsf(µ) are
then obtained in direct mode for the Euler equations and mesh deformation by:















dF
dl

=
∂F

∂l
+

∂F

∂W

∂W

∂l

dF
dν

=
∂F

∂D

dD
dν

+
∂F

∂W

∂W

∂ν
.

[11]

In our problem, the number of design variables is much greater than the number
of cost and constraint functions to be evaluated. In that case, regarding the number
of linear systems to solve, it is advantageous to work with a system using two adjoint
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variables. Let us first introduce an adjoint related to the state equation. One definesΨ

as the solution of:

[

∂E

∂W

]T

Ψ =

[

∂F

∂W

]T

. [12]

Next, an adjointΦ related to the mesh deformation is computed by:

[

∂L

∂D

]T

Φ =

[

∂F

∂D

]T

−

[

∂E

∂D

]T

Ψ . [13]

The variations of cost and constraints functions are then computed usingδf = δf −
ΨT δE − ΦTδL:
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




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























































δf =
∂F

∂l
.δl +

∂F

∂D

dD

dν
.δν

+
∂F

∂W

∂W

∂l
.δl +

∂F

∂W

∂W

∂D

dD

dν
.δν

−ΨT ∂E

∂l
.δl − ΨT ∂E

∂D

dD

dν
.δν

−ΨT ∂E

∂W

∂W

∂l
.δl − ΨT ∂E

∂W

∂W

∂D

dD

dν
.δν

−ΦT ∂L

∂D

dD

dν
.δν − ΦT ∂L

∂d

dd

dν
.δν .

[14]

Equation [14] allows us to calculate the gradients in adjoint mode for the state equation
and mesh deformation as:















dF
dl

=
∂F

∂l
− ΨT ∂E

∂l

dF
dν

= −ΦT ∂L

∂d

dd
dν

.

[15]

The gradients of cost and constraints functionsf(µ) have been obtained by solving
the systems [12] and [13] where the number of RHS terms does not depend on the
number of design variables but is equal to the number of cost and constraints functions.
For this reason the adjoint approach is used in the majority of industrial optimization
problems.
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5.1. Optimization platform

The optimization platform couples the following modules:

– CAD modeler,

– Volume mesh deformation,

– CFD solver (Bastinet al., 1999),

– adjoint of CFD solver (Dinhet al., 1996),

– adjoint of volume-mesh deformation,

– cost and gradient,

– optimizer.

The optimizer has a crucial contribution in the optimization process. Indeed, this
tool will drive the whole process by analyzing different values of the cost function and
the related constraints and their sensibility with respect to the design parameters. The
outputs of the optimizer are a new set of parameter values for which it is necessary to
provide: the cost function and the associated constraints along with their derivatives.
In the current study, we use the optimizer developed at Dassault Aviation. This code is
based on gradient evaluations which should be calculated either by finite differences
or by adjoint formulation as explained later. The different available optimizers are
Broyden-Fletcher-Goldfarb-Shanno (BFGS) for unconstrained cases and the Method
of Feasible Directions, an Interior Point Algorithm (Herskovitset al., 1996), or Se-
quential Quadratic Programming for constrained cases.

5.2. CAD modeler

The CAD modeler named GANIMEDE (Geometry ANd Inherent MEsh DEfor-
mation) handles both local and global design variables. By local design variables at
control point, we mean position, tangent and curvature values. Global design variables
redefine several control points enabling to modify characteristics such as thickness,
twist and camber of wing sections.

The geometry itself is decomposed by its definition in a hierarchical way. Geomet-
ric entities are defined by a set of patches specified by the user. These entities define
a set of sections which in turn are defined by a number of control points. Global de-
sign variables can act at section or entity level of the hierarchical model whereas local
design variables can act at all levels. Therefore, a variable can control a more or less
larger part of the aircraft and thereby allowing for a flexible parametrization of the
geometry. The decomposition in entities and sections of a CAD model is shown in
Figure 6 . Surface patches define a polynomial function of degreeNdeg in theu − v
space. For a given set of design variablesν this can be written as:

S(u, v, ν) =
∑

(i,j)∈{0,...,Ndeg}2

uNdeg−ivNdeg−jci,j ,
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where(u, v) ∈ [0, 1]2 and(ci,j)i,j represent the coefficients of the polynomial func-
tion. The different geometric entities specified by the user might intersect and the
design variables might have an impact on the intersection. The geometric modeler
updates the new intersection by computing:

∑

(i,j)∈{0,...,Ndeg}2

uNdeg−ivNdeg−jci,j =
∑

(i,j)∈{0,...,Ndeg}2

σNdeg−iτNdeg−jρi,j ,

where(u, v) and(σ, τ) are the parameters and(ci,j) and(ρi,j) the polynomial coeffi-
cients of the different patches involved in the intersecting entities.

As the geometry is modified during the optimization process, its corresponding
new surface mesh has to be regenerated. The CAD modeler also copes with this aspect
as was mentioned previously. To this end, a connectivity is created by projection of
the initial surface mesh on the initial geometry. Then, the geometry CAD model is
deformed,i.e., a new geometry is created, according to design parameters. Finally,
from the initial surface mesh and the new CAD geometry, a new iso-topologic surface
mesh is generated.

5.3. Volume deformation

As mentioned previously the CAD modeler can be schematically represented by
the operator: ν 7−→ d(ν) whered(ν) represents the surface mesh displacement re-
sulting from the geometric design variablesν. This surface mesh displacement is then
propagated into the volume mesh by an elliptic operator: L(d(ν),D(ν)), whereD(ν)
designates the resulting displacement field throughout the volume mesh. The chosen
operator is an elliptic operator, more precisely:







−∇.(κ∇D(ν)) = 0 in Ω
D(ν)|Γc

= d(ν)

D(ν)|∂Ω\Γc
= 0 ,

[16]

whereΩ is the computational domain,Γc is the shape surface boundary, andκ a local
coefficient related to the size (volume) of the local tetrahedral element. As the operator
is symmetric and positive semi-definite, the linear system is solved by incomplete
Cholesky preconditioning in addition to a preconditioned conjugate gradient (PCG)
method. In order to improve robustness of the mesh deformation, the surface mesh
displacement can be performed in several steps. At each step, the surface displacement
is propagated into the surrounding volume mesh. This process has been parallelized
by splitting up the computational domain in several domains and using the MPI library
as communication protocol between processors.

5.4. Cost and constraints

In the current optimization process, available cost and constraints functions are
based on the six global aerodynamic coefficients (pressure drag, lift, pitching mo-
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ment...), on the wing span-wise lift distribution or on the local pressure distribution on
the aircraft. Many other functions have been developed to address other problems than
sonic boom reduction (like inlet design, engine integration...). Due to the difficulty to
differentiate an accurate wave propagation tool, our choice is to develop a functional
based on near field deviation of pressure fluctuation to a target one.

Let line
[

lθ1, l
θ
2

]

be the extraction line at distanceR characterized by the azimuthal
angleθ, see Figure 7. We define the cost function related to angleθ as

Jθ(W ) =
1

2

∫ lθ
2

lθ
1

[

dpθ(W ) − dptarget
θ (W )

]2
dl , [17]

Figure 6. Aircraft simplified geometry for sonic boom reduction. Top left, decompo-
sition of geometry CAD model. Top right and bottom, comparison between baseline
and optimized geometries
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with dp(W ) = (p(W ) − p∞) /p∞. If we have to deal with a list of angles(θi)i=1,N ,
we propose to realize a linear combination of cost functions(fθi

)i=1,N . Thus, the
global cost functional becomes:

J(W ) =
∑

i=1,N

ωi Jθi
(W ) ,

with (ωi)i=1,N weights associated to each angleθi.

5.5. Sensitivity development and optimizer

The TAPENADE automatic differentiation software acts by transformation of the
initial code. Having a given set of input variables and a group of programs written in
Fortran 77 evaluating the numerical functionf , TAPENADE generates sub-programs
computing its derivatives with respect to those variables. This software allows us to
use direct or reverse mode of automatic differentiation. Reverse mode is applied to get
routines computing adjoint residual and functional gradient. See (Hascoëtet al., 2004)
for further details.

5.6. A numerical example

5.6.1. Shape optimization

Sonic boom reduction is addressed with the near field target pressure method.
Then, the platform is applied to the inverse problem of finding the shape for which
the flow matches at best the target near field pressure while maintaining the lift coef-
ficient equal to the baseline value and keeping drag coefficient lower or equal to the
baseline value. The cost functional is defined as the mean square of deviation between
current and target pressure on an horizontal plane atR/L = 0.5. The baseline geom-
etry is a wing-body configuration involving a generic fuselage (cone-cylinder-cone)
and a high-sweep wing, Figure 6. In addition to flow constraints, the following geo-
metrical constraints are applied: length and wing thickness are kept to baseline values,
and cabin has to contain a certain volume for passengers,i.e., its section for a fixed
x-interval is larger than the baseline section. The shape parameters involve55 CAD
fuselage parameters and11 wing parameters. The 67th parameter is the angle of at-
tack. A volume mesh containing163, 459 vertices (half geometry) is used to compute
the flow.

Figure 8 shows the evolution of cost function and constraints as functions of opti-
mizer iterations, each iteration of the interior point algorithm involving one cost eval-
uation and one gradient evaluation. The cost function is divided by2 in 40 iterations.
The two main shape modifications concern the nose tilting and the wing bending, Fig-
ure 6. The effect of shape modifications on shocks emitted from the aircraft are clearly
illustrated in Figure 7 where iso-values of pressure are represented in the symmetry
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plane. The consequence of the optimization on the sonic boom signature at ground, as
given by the propagation post treatment, is a reduction almost20 % (7 Pascal) of the
initial pressure rise, see Figure 8. We observe a smaller shock focalization rather that
a weaker shock system. Maximal pressure is lower and minimal pressure is higher.

Figure 7. Sonic boom: view of near field pressure. Left, initial shape and right, opti-
mized shape. The line under the aircraft is the pressure extraction line to evaluate the
cost function

Figure 8. Right, functional and constraints evolution during minimization. Right,
sonic boom reduction at ground level



264 REMN – 17/2008. Shape design in aerodynamics

5.6.2. Validation with mesh adaptation

In the previous section, automatic shape optimization has been carried out on a
relatively coarse non-adapted mesh. The pressure signal used in the cost function def-
inition has been extracted close to the aircraft atR/L = 0.5, this in despite of our
remarks of Section 4.3 showing that largerR/L are required to have an accurate cou-
pling between the CFD computation and the propagation. Our choice was motivated
by the need to limit the effect the numerical dissipation on such meshes. If the ex-
traction is performed too far from the jet the discrete pressure signal is damped and
too weak for being useful. After this necessary compromise, we now want to validate
gains obtained with the optimization process on the coarse mesh by studying finely
the flow associated with shapes before and after optimization.

Figure 9. Near field pressure distributions atR/L = 1 (left) andR/L = 5 (right) for
the initial and the optimized shapes obtained with adaptive simulations

Figure 10. Sonic boom signatures propagated from pressure signals, obtained with
adaptive simulations, atR/L = 1 (left) andR/L = 5 (right) for the initial and the
optimized shapes
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To this end, accurate adaptive simulations are performed on both shapes to get a
reliable pressure signal far from the aircraft, as described in Section 4. The parameters
of Section 4.3 have been chosen for the adaptive simulations. Only a slight modifica-
tion of the angle of attack has been done in order to have the same lift coefficient for
both simulations. For each simulation, an accurate signal is obtained untilR/L = 5.
Near field signals atR/L = 1 andR/L = 5 are presented Figure 9 and the associated
sonic boom signatures are depicted in Figure 10. Figure 9 clearly illustrates the impact
of the optimized shape on the near field pressure distribution. With this new shape,
all shocks are splitted into several ones with a reduced intensity. Nevertheless, if the
propagation from the signals atR/L = 1 shows the same tendency with a reduced
impact as compared to the results obtained atR/L = 0.5 on the coarse mesh, the
results of the propagation fromR/L = 5 are more disappointing. In this case, both
shapes almost produce the same sonic boom signature.

6. Coupling mesh adaptation and shape optimization

In the previous section, the objective functional has been decreased on a fixed non-
adapted mesh. We consider now the research of an optimum in combination with the
mesh adaptation algorithm. In other words, we want to get a shape that is optimal
when the objective function is evaluated on a mesh that is strongly adapted to the op-
timal flow. As the optimal shape is not known, the associated adapted mesh cannot be
generated in advance. Adapted mesh has to be constructed at the same time we opti-
mize. As a consequence, we cannot define a stand alonediscreteoptimization problem
as done in the previous section. Instead of minimizing a discrete functional, we shall
approximatively solve thecontinuousoptimality conditions with a mesh adaptive al-
gorithm. This will be done byrelaxingbetween the two following steps:

– minimizing the functional for a fixed mesh,

– generating an adapted mesh in a fixed domain.

6.1. Minimizing for a fixed mesh

Our option is to use an exact gradient approach in order to keep a reliable descent
direction. Then, the following sequence is applied with a fixed mesh:

Gradient and line search

– compute the flow (state equation),

– compute the adjoint state,

– compute the (exact) gradient of functional,

– descent in the direction opposite to gradient.
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In order to keep an invariant mesh during that sequence, the shape variation is per-
formed without changing the computational domain, thanks to transpiration boundary
conditions.

6.2. Mesh adaptation for a fixed domain

For sonic boom calculations, a mesh that is accurately adapted to a flow maybe in-
accurate when used for computing a slightly different flow. Starting a line search with
a mesh adapted to the first flow may then result in poor evaluation of the other flows
and a erroneous evaluation of the effect of shape update. To avoid this, we propose
a specific algorithm based on the fixed point mesh adaptation method introduced in
(Alauzetet al., 2007). This algorithm enables us to generate for each step numberk of
the gradient loop a unique mesh adapted to the different flows computed the descent
step. More precisely, in the fixed point mesh adaptation/gradient loop, the mesh is
adapted to thek-th gradient as well as to the descent step by taking into account all
solutions computed throughout this step:

– to each flow corresponds an optimal metric,

– theintersectionof all these metrics is computed,

– the adapted mesh is generated from the resulting intersected metric.

Notice that the adapted mesh cannot be generated before the evaluation of the flow
variables. It means that an implicit coupling needs to be applied. We address this issue
with an iterative process which aims at converging to a fixed point:

Fixed point adaptation/gradient step

1) choose an initial mesh,

2) compute on current mesh the flow (state equation),

3) compute on current mesh the adjoint state,

4) compute on current mesh the (exact) gradient of functional,

5) perform on current mesh line search in the descent direction,

6) compute the intersection of metrics for all flows in steps 2-5, and generate a
new mesh specified by the new metric,

7) if process is not converged, go to 2.

The process is considered converged in step7 as soon as the difference between
two consecutive metrics is small. In practice, this fixed point loop iterates about five
times to converge. Between each remeshing, the computed solution on the previous
mesh (step 2) is transferred on the new adapted mesh to reduce computing expenses.
The fixed point adaptation/gradient step is then itself included in the gradient loop.
It is necessary to initially set the desired accuracy for the solution in the fixed point
adaptation process to have a well-posed problem with respect to the metric. The num-
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ber of nodes and the solution may change but the prescribe size is constant along the
process to keep the accuracy of the solution at a required level.

6.3. Application to problem under study

Preliminary optimization computations have been applied to an HISAC test case.
The shape is optimized without aerodynamic constraints and the shape parametriza-
tion is CAD-free and shape constraints are not applied. An adapted mesh sample used
during the adaptive optimization platform is shown in Figure 11a. Figure 11b depicts
the evaluation of functional during the coupled loop. The oscillations observed in the
functional curve are associated to the mesh adaptation phase which is devoted to find
the best adapted mesh and then ensure the good evaluation of the functional. Figure 12
points out the reduction obtained with the adaptive optimization platform for the near
field pressure signal atR/L = 1 and the sonic boom signature after propagation.
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Figure 11. Left, adapted mesh sample used adaptive optimization platform. Right,
cost reduction during the coupled mesh adaption/shape optimization iterations
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Figure 12. Near field pressure distributions atR/L = 1 and associated sonic boom
signatures for the initial and the optimized shapes (adaptive optimization platform)
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7. Conclusions

In this last chapter, a particular attention is paid to the accurate treatment of sonic
boom reduction. Sonic boompredictionis subject to accuracy constraints due to the
necessary matching between an accurate nearfield 3D calculation and an accurate
propagation model. These accuracy contraints imply that (1) the propagation is ac-
curate, which assumes that the matching is far enough from the aircraft, and (2) the
nearfield is accurate, that can be obtained by applying a strong anisotropic mesh adap-
tation. For sonic boomreduction, we need to combine the above prediction suite, with
its delicate tuning, with the optimal control loop. We have explored different strate-
gies which avoid involving the whole prediction process inside the optimization loop.
We describe the adaptation of an industrial platform involving a CAD parametrization
and an adjoint-based sensitivity obtained with the help of an Automatic Differentiaiton
tool. Only the nearfield part of the prediction process is introduced in this platform,
without mesh adaptation. Then ana posterioriverification can be applied. But it can
be disapointing in some cases. We have also proposed a method for the installation of
the mesh adaptation process inside the optimization loop. The new tool seems more
reliable but it is still under study.
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