"` K+all_algebra'algebra(mathcomp@l&ssralg'algebra(mathcomp@&ssrnum'algebra(mathcomp@&finalg'algebra(mathcomp@$poly'algebra(mathcomp@'polydiv'algebra(mathcomp@&polyXY'algebra(mathcomp@&ssrint'algebra(mathcomp@#rat'algebra(mathcomp@&intdiv'algebra(mathcomp@(interval'algebra(mathcomp@&matrix'algebra(mathcomp@&mxpoly'algebra(mathcomp@)mxalgebra'algebra(mathcomp@&vector'algebra(mathcomp@-ring_quotient'algebra(mathcomp@(fraction'algebra(mathcomp@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@%zmodp'algebra(mathcomp@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ$Bool#Coq@0j 2cZ`FW+ssrmatching#Coq@0L1T=>)ssreflect#ssr#Coq@0 zv)ssreflect(mathcomp@0tn|kN0 D/O&ssrfun#ssr#Coq@01 ZP"};o{,ssrnotations)ssreflect(mathcomp@0hPB &ssrfun)ssreflect(mathcomp@0âNO=(V'ssrbool#ssr#Coq@0X% 'ssrbool)ssreflect(mathcomp@0o: n߂Q&eqtype)ssreflect(mathcomp@0Wn"2&=zH0;&ssrnat)ssreflect(mathcomp@0ͧMy}yWߘ#seq)ssreflect(mathcomp@0=~(sV,Aڠ#div)ssreflect(mathcomp@0W~ě o+ N&choice)ssreflect(mathcomp@02*{;"W$^6'fintype)ssreflect(mathcomp@0ǒ3fp%tuple)ssreflect(mathcomp@0ýޑР&finfun)ssreflect(mathcomp@0ƜNtD砠$path)ssreflect(mathcomp@0*%)bhcFrY%bigop)ssreflect(mathcomp@0#z xW :G؂b%prime)ssreflect(mathcomp@0.wFbN_&finset)ssreflect(mathcomp@0 @$$~,B|XŠ(binomial)ssreflect(mathcomp@0io  } Ӑ0ⴆg {PK(fingroup(mathcomp@0c"65rk(morphism(fingroup(mathcomp@0ď \n.v($perm(fingroup(mathcomp@0R 嫁_]U,automorphism(fingroup(mathcomp@0$D^ V+b`Š(quotient(fingroup(mathcomp@0鰷 x<G@&action(fingroup(mathcomp@0wԦ-M:AB j3!02!3 o'<r0 SꮔnOA 0*%H,""6ɠ0[7y*Ee/뒠0ps2g}CaRސ0f±ƭ]p\Ր04@%qp{ސ03?~="fJ0\'M>|0M~փa0˃;F#Ğ\Рސ0"!?ҿ`0LBJcpI 0U^k0generic_quotient)ssreflect(mathcomp@0_7"3^0 f._6*>0Ԙ"}+VZ@w]SZ tD A?CР+all_algebra'algebra(mathcomp@A@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@Bm@Bmˠ)mxalgebra'algebra(mathcomp@@A@ABC@ A al)Datatypes$Init#Coq@@AA*'ssrbool#ssr#Coq@@:dޠR'fintype)ssreflect(mathcomp@A*'ssrbool#ssr#Coq@@A>9!ؠH&ssralg'algebra(mathcomp@A*Z'ssrbool#ssr#Coq@@BCA+h2 @>=z&ssralg'algebra(mathcomp@A*Z'ssrbool#ssr#Coq@@A+h2 @ABD@@Xwd@'polydiv'algebra(mathcomp@$Pdiv%Field@,eqp_rdiv_divXwd-CommonIdomain@e|8@A@A@'Idomain@ @ e|8@A@T@@)size_divpT@a@A@ABKG@$Ring@+rdivp_smallKG#*CommonRing@"ɟ@A@].@@].@a@A@Aׇ@-@#eqpׇ0+IdomainDefs@ k@A@@5@$divp@ @A@ABC@:@$dvdp @ @A@*`@A@$eqp0*`6@/4@A@A*@F@$eqpP*;@/T@A@K@L@$gcdpKA@Ph@A@ABDB@Q@$modpB$@ @A@#@<@)ltn_rmodp#:@#x@A@AX1@M@2X11@4 k@A@cj@R@/cj6@1 @A@ABc{@V@.c{:@0 @A@c@\@-cb@//4@A@Ac@`@,cf@./T@A@c@e@+ck@-Ph@A@ABCdb@i@*dbÑM@, @A@hF@@.coprimep_XsubChFv@uKy@A@A@@.coprimep_pexpl{@e@A@@@.coprimep_pexpr@k@A@ABDEr@@%div0pr@w@A@w=@@%divp0w=@|@A@Aw>@@%divp1w>@|@A@@@%dvd0p@~@A@AB@@%dvd1p@@A@i@@%dvdUpi@=@A@A*@@%dvdp0*@@A@+@@%dvdp1+@@A@ABCj@@%dvdppj@>@A@ܴ@@%edivpܴ@ @A@A#I@@%egcdp#I@(@A@=q@@%eqp01=q@BE@A@ABDFC@@%eqpxxC@G@A@@@%gcd0p̑@@A@A@@%gcd1pߑ@@A@L@@%gcdp0L@ @A@ABM@@%gcdp1M@!@A@_@@%gcdpC_@3@A@Aa@@%gcdpEa@5@A@@@%gcdpp@`@A@ABC@ @%gdcopۑ@ү@A@߶@@%mod0p߶@@A@A6@@%modp06 @ @A@7@@%modp17@ @A@ABDI@!@%modpCI@@A@v@*@%modppv@J@A@Aƌ@/@%scalpƌё@ p@A@&@#@&)@uKy@A@AB@'@-@e@A@@-@3@k@A@A*>@1@*>7@w@A@*ܾ@6@*ܾ<@|@A@ABC*ܿ@:@*ܿ@@|@A@*@@@%divpE*ӑU+WeakIdomain@:S@A@A*@G@%divpK*ّ@:T@A@*@M@%divpp* @:T&@A@ABDE,+@R@,+X@~@A@,>@Z@,>`@@A@A,@^@,d@=@A@,@c@,i@@A@AB,@g@,m@@A@,@m@%dvdpE,-@:@A@A,@r@%dvdpP,ˑ2@:@A@,@x@,~@>@A@ABC,B5@|@,B5`@ @A@,@@,ʑ@(@A@A-@@-@BE@A@-@@-@G@A@ABDFG0M@@0M@@A@0`@@0`@@A@A0@@0͑@ @A@0@@0Α@!@A@AB0@@0@3@A@0@@0@5@A@A0 @@0 @`@A@03\@@03\@ү@A@ABC=E7@@=E7@@A@=I@@=I@ @A@A=I@@=I@ @A@=I@@=Iʑ@@A@ABD=I@@%modpE=Ȋ@:@A@=I@@=I@J@A@A=B@@%mulKp=B@:jj@A@=@@%mulpK=ܑ@:m@A@ABGR@@GR@ p@A@t@@)gdcop_rect@X@A@Am@@*polyC_eqp1m@A@A@c@@ c@ X@A@ABC8n?@ @(root_gcd8n?@Es@A@qU@@qU@A@A@A@@  @ Es@A@@@-dvdp_size_eqp@@A@ABDEJ@!@-irredp_XsubCPJ@!N@A@h@@ h딑@@A@A@@ !@!N@A@B@2@,eqp_rgcd_gcdB'@Ț@A@AB2@7@*polyXsubCP2,@ ?e@A@<@,@ <Ñ2@Ț@A@Z@C@2edivp_expanded_defZ@q-@A@ABHU@%bigop)ssreflect(mathcomp@&Monoid@&addmACHU &Theory@._N@A@CDFHy@@&addmCAHy@._N@A@@P@+V@- ?e@A@A @T@# ۑ8@%q-@A@ 7@k@-gcdp_addl_mul 7`@!ƛ @A@ :@_@ :e@!ƛ @A@ABC O@-@&mulmAC O$@0GV>@A@ P@5@&mulmCA P,@0GVb@A@A Z@@1Bezout_coprimepPn Zw@"_S@A@ $z@@)modp_eq0P $z}@#1~@A@AB %Z@@)modp_mull %Z@#2_e@A@ %Z@@)modp_mulr %Z@#2_k@A@A /@@ /@"_S@A@ [@@@)rmodp_eq0 [@~@,N@A@ABCD ~(n@@(divp_dvd ~(n@#-B@A@ ~)D@@(divp_eq0 ~)D@#.@A@A ߆@@) ߆@+#1~@A@ @@) @+#2_e@A@AB @@& @(#2_k@A@ 9@@'Bezoutp 9@# @A@A '@@%rdivp '@,Z@A@ &@@%rdvdp &@,k@A@ABC L@@%rgcdp L@,ʡU@A@ j@@%rmodp j@,S@A@A @@: @<#-B@A@ @@6 ő@8#.@A@AB < @@+root_biggcd < @$I@A@ <@@+root_bigmul <ݑ@$I@A@A R6@@2 R6@4# @A@ hKh@@-size_poly_eq1 hKh@$uP<@A@ABCDE P@@*rgdcop_rec P@-*@A@ @@ @!$I@A@A ^@@ ^@$I@A@ @@ @$uP<@A@AB -@@,apply_irredp -@%)@A@ k[@@*eqp_ltrans k[@%x/@A@A @ @  @%)@A@ )@@  )ܑ@ %x/@A@ABCNu@'@*eqp_rtransNu@&[z@A@n@@n#@ &[z@A@A6 @!@,edivp_redivp6 @F@A@z@9@/coprimep_scalelz.@)d@A@ABz@>@/coprimep_scalerz3@)j@A@Zh@'@,Nrdvdp_smallZh%@2į@A@A@8@>@)d@A@@=@C@)j@A@ABCDFGH@S@)gcdp_addlH@* @A@@_@)gcdp_addrT@* @A@A@d@)gcdp_eqp1Y@* @A@@j@)gcdp_modl_@* @A@AB@o@)gcdp_modrd@* @A@@v@)gcdp_mullk@* @A@A @{@)gcdp_mulr p@* @A@( @@.gcdp_comp_poly( v@*5@A@ABCv@@&divpN0v{@*@A@s@|@;s@=* @A@Ay@@3y@5* @A@s@@3s@5* @A@ABFz@@1Fz@3* @A@F@@2F@4* @A@AO@@/O@1* @A@O@@/O@1* @A@ABCD@@&dvd0pP@*@A@@@&dvdpN0먑@*|@A@A@@&egcdp0@*@A@@@&egcdpEБ@*@A@AB@@&egcdpPۑ@*@A@or@@Mor@O*5@A@A@@&eqp_eq@*@A@_@@&gdcop0_@*de@A@ABC_@@&gdcopP_@*d@A@Yl@@&divpKCYl@ Д@A@AY@@dY@f*@A@@@A@C*@A@ABQ)@@<Q)@>*|@A@M@@&edivpPM@ Vu@A@A<@@B<@D*@A@Q@@AQ@C*@A@ABCDE\@@@\@B*@A@-S@@>-S@@*@A@ACP@@(ltn_modpCP @+PT@A@]@@B]@D*de@A@AB]2@ @A]2@C*d@A@_R@@*rmodp_eq0P_Rё@4Rj@A@Aĵ@@ĵ@+PT@A@@.@&scalp0ӑ#@,@A@ABC T@!@ T'@,@A@ i@(@&scalpE i@ h@A@A0 @?@(eqp_dvdl0 4@.=@A@0@E@(eqp_dvdr0:@.=@A@AB0ʟ@J@(eqp_gcdl0ʟ?@.=s@A@0ʥ@Q@(eqp_gcdr0ʥF@.=y@A@A1[@V@(eqp_mull1[K@.>/@A@1a@\@(eqp_mulr1aQ@.>5@A@ABCD2@a@(eqp_root2V@.?@A@24@i@(eqp_size24^@.?@A@A:`@n@*coprimepPn:`c@.Gd@A@@b@5h@7.=@A@AB@f@3l@5.=@A@0 @m@50 s@7.=s@A@A0&@q@20&w@4.=y@A@@v@2ܑ|@4.>/@A@AB@z@0@2.>5@A@h@@1h@3.?@A@A{@@-{@/.?@A@ň@@.ň@0.Gd@A@A|$@X@)mulm_addl|$O@=3p@A@BCDEFG|*@]@)mulm_addr|*T@=3v@A@@@(gcdp_def@/@A@A)@@(gcdp_eq0)@/@A@B@@(gcdp_exp@/@A@+@@(gcdp_rec+͑@/0@A@AZ}@@Z}@/@A@BCZ@@Z@/@A@Zo@@Zo@/@A@AZN@@ZN@/0@A@BDԑ@@.polyXsubC_eqp1ԑ@1e@A@hK@@*Gauss_dvdphKޑ@1uP@A@A:@@:@1e@A@B_@@ _@ 1uP@A@@@,coprimep_def@2@A@A@@,coprimep_sym@2@A@BCMJ@@'rdvd0pPMJ@;@@A@M @@'rdvdpN0M @;@@A@AT/@@,eqp_rmod_modT/@2a4j@A@B=@@=@2@A@T:@@T:@2@A@A @@'rgdcop0 @;j@A@BCDEՕ@ @Օ@2a4j@A@3@$@2coprimep_comp_poly3@37@A@Ay@@y@37@A@B@5@-@*egcdp_recP@5"@4M9@A@o'@4@,dvd_eqp_divlo')@4| @A@A)@@&rdiv0p)@=D@A@BC@ @&rdivp0@=IB@A@3@(@&rdvd0p3&@=@A@A3)@-@&rdvd1p3)+@=@A@B7@2@&rdvdp070@=/@A@7@9@&rdvdp177@=0@A@AZ @>@&redivpZ <@=@A@BCDF-8@C@&rgcd0p-8A@=@A@1@N@&rgcdp01L@=Q@A@A1@S@&rgcdpE1͑Q@=f@A@BKG@X@&rgdcopKGV@=@A@]"@_@&rmod0p]"]@=@A@Aa@d@&rmodp0ab@=;@A@BCa@i@&rmodp1ag@=<@A@a@q@&rmodpCao@=N@A@Aa@v@&rmodppat@={@A@B =@{@&rscalp =y@=^@A@@@s@u4M9@A@Am@@pm@r4| @A@BCD3k@@0Bezout_coprimepP3k@6@#?@A@@@ @ 6@#?@A@AZ@@*dvdp_exp2lZ@7.@A@B`@@*dvdp_exp2r`@74@A@=@@*dvdp_gcdlr=@7@A@Ak@@*dvdp_mul2lkݑ@7p@A@BCk@@*dvdp_mul2rk@7p@A@m@@*dvdp_mulIlm@7rf@A@Am@@*dvdp_mulIrm@7rl@A@B@@*dvdp_trans@7@A@ >@@/ >ۑ@17.@A@A >@@. >@074@A@BCDE @@+ @-7@A@ P8@@/size2_dvdp_gdco P8@8U @A@A ^@@3 ^@57p@A@B d@@2 d@47p@A@ @@0 @27rf@A@A @@/ @17rl@A@BC $al@@. $al@07@A@ &@@-eqp_coprimepl &̑@84@A@A &@@-eqp_coprimepr &ґ @84@A@B ^@@+ltn_rmodpN0 ^@QX@A@ ~@#@*modp_XsubC ~@8@A@A @@4 @68U @A@BCDFGHI -@,@+dvdp_Pexp2l -!@82@A@ bM@'@' bM-@)84@A@A bS@+@& bS1@(84@A@B @A@*modp_small ڑ6@8ޮ@A@!J@6@%!J<@'8@A@A!q@:@ !q@@"82@A@BC!5?[@>@!5?[D@8ޮ@A@!?@W@)mulp_gcdl!?L@9LS@A@A!?@\@)mulp_gcdr!?Q@9LY@A@B!<@a@*gdcop_recP!<V@9@A@!@h@*gdcop_spec!Ñ]@9@A@A!T@[@!Ta@9LS@A@BCD!T@_@!Te@9LY@A@!@y@+dvdp_XsubCl!n@9@A@A"N@l@"Nr@9@A@B"yD@p@"yDv@9@A@"(,@j@,rscalp_small"(,h@F@A@A",#@@)coprime0p",#@::@A@BC",6@@)coprime1p",6@:: @A@"-@@)coprimep0"-@::w@A@A"-@@)coprimep1"-@::x@A@B"-@@)coprimepP"-Ñ@::@A@"-@@)coprimepX"-ˑ@::@A@A"-@@)coprimepp"-@::@A@BCDE"_I@@<"_I@>9@A@"i@@-eqp_div_XsubC"i@:n@A@A"d@@5"d@7::@A@B"d@@4"d@6:: @A@"i$@@2"i$@4::w@A@A"i%@@1"i%@3::x@A@BC"iD@@0"iD@2::@A@"iL@@0"iL@2::@A@A"id@@/"id@1::@A@B"(@@/dvdp_prod_XsubC"(@:@A@"r@@*gcdp_mul2l"rÑ@;w@A@A"r@@*gcdp_mul2r"rɑ@;w@A@BCDF#"2@@3redivp_expanded_def#"2@v@A@#QK@@+dvdp_add_eq#QK@;V@A@A#,g@@G#,g@I:n@A@B#eh@@%#eh@':@A@#uD@@$#uD@&;w@A@A#uJ@@##uJ@%;w@A@BC#@@#̑ @;V@A@$ 2@@)leq_divpl$ 2@<7@A@A$ 2@"@)leq_divpr$ 2@<7@A@B$o@'@)leq_gcdpl$o@<t@A@$o@.@)leq_gcdpr$oǑ#@<t@A@A$v@3@/uniq_roots_dvdp$v(@9T@A@A&6@@*size_gcd1p&6ɑ|@>C@A@B&67@@*size_gcdp1&67@>C @A@&9`@@4&9`@6=/@A@A&9f@@3&9f@5=/@A@BC&Gr@@2&Gr@4=Ҳ@A@&Gx@@2&Gx@4=Ҳ@A@A&B@@$&B@&>9T@A@B&J@@#&J@%>C@A@&@@$&@&>C @A@A&@@0edivp_unlockable&Ց@0¨@A@BCDFG'GDV@@'GDV@0¨@A@(!F@@.dvdp_comp_poly(!F@.K@A@A(,@@(,@.K@A@B)fY@@)dvdp_addl)fY@s^@A@)fY@@)dvdp_addr)fY@s^@A@A)f@@)dvdp_eqp1)fڑ@sܮ@A@BC)f @@)dvdp_gcdl)f @s@A@)f@@)dvdp_gcdr)f@s@A@A)fb@@)dvdp_gdco)fb@s6@A@B)g@@)dvdp_mull)gő@t@A@)g@@)dvdp_mulr)gˑ@t@A@A)hS@@)dvdp_subl)hSɑ@uX@A@BCD)hS@@)dvdp_subr)hSϑ@uX@A@)@ @(leq_divp)@@A@A)E@@(leq_modp)E@@A@B)1@@G)1 @Is^@A@)7@ @F)7@Hs^@A@A)=[@ @E)=[@Gsܮ@A@BC)^@@D)^@Fs@A@)^@@C)^@Es@A@A)_@@B)_"@Ds6@A@B)F@ @A)F&@Ct@A@)L@&@@)L,@Bt@A@A)J@*@?)J0@AuX@A@BCDE)P@.@>)P4@@uX@A@*%#@6@=*%#<@?@A@A*&@:@<*&Ƒ@@>@A@B+E@P@*ltn_modpN0+EE@@A@+Xr@9@+rmodp_small+Xr7@ @A@A+}n@\@1coprimep_addl_mul+}nQ@B@A@BC,+8@O@,+8ƑU@@A@,7`@J@)leq_rdivp,7`H@ +@A@A,8=@[@'divp_eq,8=@".e@A@B,8@T@)leq_rmodp,8R@ ,<@A@,`@g@,`m@B@A@A-JF@}@(dvdp_add-JF̑r@WK@A@BCDF-JM@@(dvdp_exp-JMw@WR@A@-JO/@@(dvdp_gcd-JO/@WT@A@A-JVo@@(dvdp_leq-JVo@W[C@A@B-JX@@(dvdp_mod-JX@W]]@A@-JY@@(dvdp_mul-JY@W]@A@A-J[z@@(dvdp_opp-J[z@W`N@A@BC-Jao@@(dvdp_sub-Jao@WfC@A@-m@@.dvdp_mul_XsubC-mב@{@A@A-e$@@)edivp_key-e$@7H@A@B-ˬM@@=-ˬM@?WK@A@-˳y@@>-˳y@@WR@A@A-˴@@7-˴@9WT@A@BCD-˻@@6-˻@8W[C@A@-˾ @@9-˾ @;W]]@A@A-˾@@6-˾@8W]@A@B-@@5-@7W`N@A@-@@6-@8WfC@A@A-eX@@2-eX@4{@A@BC.r@@'dvdp_eq.r@$@A@.8@@)edivp_def.8@$7@A@A.8ʥ@@>.8ʥ@@7H@A@B/@@'eq_dvdp/@@A@/@@+Gauss_dvdpl/@@A@A/ @ @+Gauss_dvdpr/ @@A@BCDE/(@ @+Gauss_gcdpl/(@@A@/.@ @+Gauss_gcdpr/. @@A@A/@ @'eqp_exp/ʑ @ɞ@A@B/@ @'eqp_gcd/ @@A@/ؘ@ "@'eqp_sym/ؘ @l@A@A/l@ '@0coprimep_div_gcd/l @@@A@BC0@ @50 @7@A@0H@ 3@)root_gdco0H (@ Mf@A@A0"@ &@:0" ,@<@A@B0"@ *@90" 0@;@A@0&@ 0@:0& 6@<@A@A0&@ 4@50& :@7@A@BCDFG0'*K@ 8@40'*K >@6ɞ@A@0'+@ C@:0'+ I@<@A@A0'>@ G@70'> M@9l@A@B0yV@ K@60yV Q@8@@A@0lM@ c@,dvdp_div_eq00lM X@q!@A@A0@ V@50 \@7 Mf@A@BC0.@ N@,comm_redivpP0. L@@A@1 @ a@1 Α g@q!@A@1d%@ f@(edivp_eq1d%đ&@("@A@AB1A@5@'iteropE1A,@H7@A@2@ r@*edivp_spec22@([7@A@A2`@ @)eqp_monic2` ~@ d@A@2@ @)eqp_mul2l2 @ @A@ABCD2@ @)eqp_mul2r2 @ @A@2@ @)eqp_scale2 @ @A@A2 @ @)eqp_trans2  @ @A@2P@ @,modp_coprime2P @ U@A@AB3Ŝ@ @$3Ŝ @& d@A@3_@ @$3_ @& @A@A3_@ @#3_ @% @A@3`d@ @3`d @! @A@ABC3@ @3 @  @A@3ic@ @3ic @! U@A@A5o׷@ @'gtNdvdp5o׷ @ |܋@A@5+ @ @,dvdp_exp_sub5+  @ /@A@AB5̸@ @,irredp_XsubC5̸ @ ь@A@5=8@ @5=8 @ |܋@A@A53@ @*redivp_def53 @列@A@5=@ @*redivp_key5= @咉@A@ABCDE5G@ @*redivp_rec5G @R@A@6@ @$6 @& /@A@A6@ @3root_factor_theorem6 @#@A@629@ @)629 @+ ь@A@AB6B@ @ 6B @ #@A@6̯@ @*divp_small6̯ @у@A@A7C20@ @7C20 @у@A@7]@ @,dvdp_gcd_idl7] @1@A@ABC7c@ @,dvdp_gcd_idr7c @7@A@8@o@ @0irreducible_poly8@o @MC@A@A8[ @ @)rcoprimep8[  @O@A@8m@ @8mޑ @1@A@AB8m@ @8m #@7@A@8@ $@8 *@MC@A@A9@ @0comm_redivp_spec9 @(@A@9+ܷ@ @@(modp_eq09+ܷ 5@8@A@AB9+ @ E@(modp_mod9+  :@8@A@9B8@ :@ 9B8 @@8@A@A9M@ >@ 9M D@ 8@A@:_@ V@)egcdp_rec:_ґ K@d@A@A:Ya@@%add0m:Ya @ hA@A@BCDEFG:Yf?@@%addm0:Yf?@ l@A@:YfP@"@%addmA:YfP@ l@A@A:YfR@'@%addmC:YfR@ l@A@:s@-@%mul0m:s$@ "@A@:s@3@%mul1m:s*@ "@A@ABC:s@8@%mulm0:sΑ/@ "@A@:s@@@%mulm1:sϑ7@ "@A@A:s@E@%mulmA:sߑ<@ "+@A@B:s@J@%mulmC:sA@ "-@A@CD:}ď@O@%simpm:}ďF@ ,@A@:S@ @J:S @Ld@A@A:Ϝ@ @)ltn_divpl:Ϝ @ܡ@A@:ϝ@ @)ltn_divpr:ϝ @ܡ@A@AB;Q}@ @ ;Q} @ ܡ@A@;Q@ @ ;Q @ ܡ@A@A;nY@ @2rcoprimep_coprimep;nY @{-@A@;@ @;ڑ @{-@A@ABC<Ch@ @1coprimep_size_gcd<Ch @(H<@A@<#9|@ @-coprimep_dvdl<#9| @0>P@A@A<#9@ @-coprimep_dvdr<#9 @0>V@A@<#W@ @-coprimep_expl<#W @0\@A@AB<#X@ @-coprimep_expr<#X @0\@A@<#pk@ @-coprimep_gdco<#pk @0u?@A@A<$ @ @-coprimep_modl<$  @1%@A@<$ @ @-coprimep_modr<$ Ƒ @1%@A@ABCDE<$)@ @-coprimep_mull<$)Α @1.@A@<$)@ @-coprimep_mulr<$)ԑ @1.@A@A<$@ @-coprimep_root<$ @1d@A@<@ @C< @E(H<@A@AB<@ @?< @A0>P@A@<@ @@< @B0>V@A@A<~@ @><~ @@0\@A@<@ @>< @@0\@A@ABC<@ @;< @=0u?@A@P-@ A@+irredp_neq0>P- 6@U@A@?I@ 5@?I ;@U@A@?y@ .@)rdvdp_leq?y ,@ mP@A@ABCDEFGHIJK@$Bool#Coq@0j 2cZ`FW ͠ ̠ @0.i bYN Z'Decimal$Init#Coq@0C涳N*ua%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv %Peano$Init#Coq@0 jha|ؠ'Prelude$Init#Coq@0JqTttֱ&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r"Wf$Init#Coq@0q+W,J+&action(fingroup(mathcomp@0wԦ-M:AB j3!,automorphism(fingroup(mathcomp@0$D^ V+b`Š%bigop)ssreflect(mathcomp@0#z xW :G؂b(binomial)ssreflect(mathcomp@0io  } &choice)ssreflect(mathcomp@02*{;"W$^6#div)ssreflect(mathcomp@0W~ě o+ N&eqtype)ssreflect(mathcomp@0Wn"2&=zH0;&finalg'algebra(mathcomp@02!3 o'<&finfun)ssreflect(mathcomp@0ƜNtD砠(fingroup(mathcomp@0c"65rk&finset)ssreflect(mathcomp@0 @$$~,B|XŠ'fintype)ssreflect(mathcomp@0ǒ3fp(fraction'algebra(mathcomp@0Ԙ"}+0generic_quotient)ssreflect(mathcomp@0_7"3^&intdiv'algebra(mathcomp@0LBJcpI (interval'algebra(mathcomp@0U^k&matrix'algebra(mathcomp@0f±ƭ]p\(morphism(fingroup(mathcomp@0ď \n.v( ɠ Ƞ @04@%qp{&mxpoly'algebra(mathcomp@03?~="fJ$path)ssreflect(mathcomp@0*%)bhcFrY$perm(fingroup(mathcomp@0R 嫁_]U$poly'algebra(mathcomp@0*%H,""6ɠ&polyXY'algebra(mathcomp@0\'M>|堠'polydiv'algebra(mathcomp@0ps2g}CaR젠%prime)ssreflect(mathcomp@0.wFbN_(quotient(fingroup(mathcomp@0鰷 x<G@#rat'algebra(mathcomp@0˃;F#Ğ\Р-ring_quotient'algebra(mathcomp@0 f._6*>#seq)ssreflect(mathcomp@0=~(sV,Aڠ   @0ⴆg {PK'ssrbool#ssr#Coq@0X% 'ssrbool)ssreflect(mathcomp@0o: n߂Q)ssreflect#ssr#Coq@0 zv)ssreflect(mathcomp@0tn|kN0 D/O&ssrfun#ssr#Coq@01 ZP"};o{&ssrfun)ssreflect(mathcomp@0âNO=(V&ssrint'algebra(mathcomp@0M~փa+ssrmatching#Coq@0L1T=>&ssrnat)ssreflect(mathcomp@0ͧMy}yWߘ,ssrnotations)ssreflect(mathcomp@0hPB &ssrnum'algebra(mathcomp@0[7y*Ee/뒠%tuple)ssreflect(mathcomp@0ýޑР&vector'algebra(mathcomp@0"!?ҿ`%zmodp'algebra(mathcomp@0 SꮔnOA A"_39.z"<-"_49.z"->@@y&-#K}o6@|-Wɯ߬_@2 _!>MSخaޣ-@&JtwNz=g^<N)^ +\{