"`4񄕦4 N$ %Nsatz%nsatz#Coq@$List%Lists#Coq@,Ring_polynom+setoid_ring#Coq@.Ncring_polynom+setoid_ring#Coq@.Ncring_initial+setoid_ring#Coq@)Morphisms'Classes#Coq@$Init'Classes#Coq@/RelationClasses'Classes#Coq@4Relation_Definitions)Relations#Coq@-SetoidTactics'Classes#Coq@&Setoid'Setoids#Coq@$Bool#Coq@&BinNat&NArith#Coq@%Zeven&ZArith#Coq@'Zminmax&ZArith#Coq@$Zmin&ZArith#Coq@'BinNums'Numbers#Coq@)BinPosDef&PArith#Coq@&BinPos&PArith#Coq@$Pnat&PArith#Coq@&BinInt&ZArith#Coq@(Zcompare&ZArith#Coq@&Zorder&ZArith#Coq@$Zmax&ZArith#Coq@$Zabs&ZArith#Coq@$Znat&ZArith#Coq@(PeanoNat%Arith#Coq@"Gt%Arith#Coq@$Plus%Arith#Coq@%Minus%Arith#Coq@"Le%Arith#Coq@"Lt%Arith#Coq@$Mult%Arith#Coq@'Between%Arith#Coq@)Peano_dec%Arith#Coq@)Factorial%Arith#Coq@%EqNat%Arith#Coq@&Wf_nat%Arith#Coq@*Arith_base%Arith#Coq@+Compare_dec%Arith#Coq@)auxiliary&ZArith#Coq@*ZArith_dec&ZArith#Coq@%Zbool&ZArith#Coq@%Zmisc&ZArith#Coq@$Wf_Z&ZArith#Coq@&Zhints&ZArith#Coq@+ZArith_base&ZArith#Coq@.Algebra_syntax+setoid_ring#Coq@&Ncring+setoid_ring#Coq@*Ncring_tac+setoid_ring#Coq@%Cring+setoid_ring#Coq@/Integral_domain+setoid_ring#Coq@+Ring_theory+setoid_ring#Coq@)Ring_base+setoid_ring#Coq@+InitialRing+setoid_ring#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@+ListTactics%Lists#Coq@(Ring_tac+setoid_ring#Coq@$Ring+setoid_ring#Coq@*ZArithRing+setoid_ring#Coq@ )Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼)BinPosDef&PArith#Coq@0}H d.%,b&BinPos&PArith#Coq@0vyػ0= u'BinList+setoid_ring#Coq@0Au)BinNatDef&NArith#Coq@03@1O,[{ &BinNat&NArith#Coq@0K11ڤs+Π$Pnat&PArith#Coq@0,?pr.gZ'ZAxioms(Abstract'Integer'Numbers#Coq@0\}zK=PK%ZBase(Abstract'Integer'Numbers#Coq@0 TL}2_} ؠ$ZAdd(Abstract'Integer'Numbers#Coq@0Y9Vgⲫ򐠠$ZMul(Abstract'Integer'Numbers#Coq@0Mtr\b"H#ZLt(Abstract'Integer'Numbers#Coq@0xK|j2[&=}۠)ZAddOrder(Abstract'Integer'Numbers#Coq@0w:}H#NK}{)ZMulOrder(Abstract'Integer'Numbers#Coq@0Dr~-~ECM'ZMaxMin(Abstract'Integer'Numbers#Coq@0bAX1'ZSgnAbs(Abstract'Integer'Numbers#Coq@02`ou{Z'ZParity(Abstract'Integer'Numbers#Coq@0S)*Dd$ZPow(Abstract'Integer'Numbers#Coq@0AşsאI)ZDivTrunc(Abstract'Integer'Numbers#Coq@0`]f5FԠ)ZDivFloor(Abstract'Integer'Numbers#Coq@0dj_TYQc|$ZGcd(Abstract'Integer'Numbers#Coq@0G0=$ZLcm(Abstract'Integer'Numbers#Coq@0(9g%MmN]%ZBits(Abstract'Integer'Numbers#Coq@0ܹCF5s+ZProperties(Abstract'Integer'Numbers#Coq@0Ve*ʞ_OV)BinIntDef&ZArith#Coq@0ådR4Tuy&BinInt&ZArith#Coq@0BpHޞun^$Mult%Arith#Coq@0햖Qyb0(Zcompare&ZArith#Coq@0'ҤjI=D'Between%Arith#Coq@06v*0ur`C0)Peano_dec%Arith#Coq@0Kݢ*k+Compare_dec%Arith#Coq@0jXF 8)Factorial%Arith#Coq@0@oehJd%EqNat%Arith#Coq@0AIgՋXRV &Wf_nat%Arith#Coq@0UJX AJhO*Arith_base%Arith#Coq@0Ĕ}CS&Zorder&ZArith#Coq@0fVk.BG)%Zeven&ZArith#Coq@0i?eK#aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7(Exp_prop%Reals#Coq@0D:L-*Rtrigo_reg%Reals#Coq@0QWk'&R_sqrt%Reals#Coq@0 @#DŽe+Rtrigo_calc%Reals#Coq@0"Jl<8iD4%Rgeom%Reals#Coq@09b'mdlsy(Sqrt_reg%Reals#Coq@0?N~K0,o^}*Ranalysis4%Reals#Coq@0kp+PA&Rpower%Reals#Coq@0x9^XQ-Ranalysis_reg%Reals#Coq@0$૔ B_QNAM-RiemannInt_SF%Reals#Coq@095Ի<&O jq*RiemannInt%Reals#Coq@0|ڭ~3vo+OrderedRing)micromega#Coq@0A Zl)+>(Ndiv_def&NArith#Coq@0AU|ڣTu)Nsqrt_def&NArith#Coq@0W58pG*~W-G(Ngcd_def&NArith#Coq@0OLMP"^e#Fin'Vectors#Coq@0r'gް؅/׸)VectorDef'Vectors#Coq@0]i>3 ٠*VectorSpec'Vectors#Coq@0GyK5%l6L(VectorEq'Vectors#Coq@0#'`ԶlxjT&Vector'Vectors#Coq@0_ċ|"Ʌhz'Bvector$Bool#Coq@0,rO3^~'Ndigits&NArith#Coq@032W}-RingMicromega)micromega#Coq@0{L䬃ɟh+QArith_base&QArith#Coq@0#-\D7* Q,"f\&Qfield&QArith#Coq@0td;X񦐳#@`%Qring&QArith#Coq@0F%pw;}=O5}*Qreduction&QArith#Coq@0nDk%}Y&QArith#Coq@0H#oޞ6 78&Qreals&QArith#Coq@0 |-=ʈ%*RMicromega)micromega#Coq@0>e{&(_>Υ*QMicromega)micromega#Coq@0K׈qq~_E&VarMap)micromega#Coq@0Zգ#Lra)micromega#Coq@0 ?@D{@[]#*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9%Ratan%Reals#Coq@0(쟭CK&Machin%Reals#Coq@0Z,cq麠&Rtrigo%Reals#Coq@03Lcrǡ2))Ranalysis%Reals#Coq@0q ' =렠)NewtonInt%Reals#Coq@0n\%XV+Integration%Reals#Coq@0vHCc(w#g?%Reals#Coq@0] Uފ $Tg.鰡\ߞ:廙QynUO3Р%Nsatz%nsatz#Coq@A(psos_r1b @@@!RϠA@@@%ring0A%ring1B#add@C@DE#mul@@F#sub@ @G#opp'ring_eq@@HA"Ro&Ncring+setoid_ring6@(Ring_ops( @ "()+04"Rr@$Ring,@$I(.457<@#Rcr%Cring@x/(J,5;ABDIM!xK!yL@.Algebra_syntax.@(equality78zM9@+eq_notation($)GPV\@+subtractionG@,sub_notationgǀqu@$zero#*T@-zero_notationS,N$$'37;Hfou~@@@AhA.Ncring_initiald@AAF\KN@AviA)Morphisms'Classes@ABAۓό^@AAK@AACN@AER@ABCAGU@AϠH[@AAMJ^@AˠLb@ABAINe@A݋X_A/RelationClasses+@AAcA,Ring_polynom@AV C@ABCDAXK@AYS@AA[[@A]c@ABA_k@Aaݠs@AAe͠C@A al)Datatypes$Init@ABCA!kC*Ncring_tac@A!l|E @A A!mK @A!nN@ABA!qZ@A!~O@AA!@A"0@ABC A"Fy"@%A"P'@A(A"^a*@,A. ,dA+Ring_theory@2A1ՠF-SetoidTactics@8A1I@ABCDEFG@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @z+setoid_ring#Coq@@&PEeval"s @@A@:È@.Ncring_polynom+setoid_ring#Coq@@&PEeval:È@@A@ABA@A@'psos_r1 @@Aomdba_^\WURPMPKIDB53*(@lp lq@@@@A@@AB@@A@@ABC@@A@@AB@@A@@ABCD@@A@@AB@@A@@ABC@@A@@AB@@A@~@|@y@ABCDEFG@@j+nsatzR_diff @@Bxvmka_^\@%Logic@#notШM M@@6@@$PolZ @@#Polj@'BinNums'Numbers@!Z7@@@867 kLD@@@@@#PEZ @.@%PExprk@-@! L7D@@@@@ڠ#P0Z @K@"P0JKA@(@`(6S@+ņD@ř5J@(: ahUen@D ,Yk(*()=3 R?'>= R&'>3! 7 7!7%'6''6''+k6'+k6'+77 Tk+ 77 T'6' H\h@G4!ԠȠI@@ABAEX4@@@@@b,compute_list @@@ #llay{ommrpk r  B@98@ t,9k(*()= R'> 7!: 3%'''+k67$'+ 77 7 Tk+ 77 T'67$'Р`@ ࠒX8ؠGAEX@@@@@%check @#lpe"qe&certif(@$prodt@JBBB@@@@@8WU"lqũ$List%Lists @#map$DސF@c4ˀ ]@z@=;97^ +k()= R/'>777 77 7 7! 7!7 7%''+k6'(bt8#ԠFABAI|klנd E@@@@@$PhiR @caXVUSRPKI@I@$PphiOUX]+InitialRing9@(gen_phiZAY_`bgk@zxomljigb`W`@Eb@XT +k()777# 'Xh(@@@AS P@ӶȶŶ¶@@ 4+k()         7 77       77       7# ' ࠒp1~̠ܠHE@@@i@A*@@A8Y4@ABC@@Š+P0Z_correct @@C  ඐ!l:Z@"eq @Ʃ@(63  ͩΩ$ @@@|@S@+A1DHn@ABC@@$Rext @@KD;90.-+*(#!@+ring_eq_ext@'-4'@@@@A@@AB@c@a@UA.0TQ)@ABCD@@$Rset @@uEecZXWUTRMKHFCFA?:8+)&Setoid'Setoidsn@-Setoid_Theory2_  -@@@@A@@@ABC@@A'Rtheory @~|{yxvqoljgjec^\OMDBP@+ring_theory؛@AD>BOmv|8@/$BFSqzj@,ring_add_0_lҒ(IMZxq@-ring_add_comm#Zcw@.ring_add_assoc%;N }@,ring_mul_1_l)"dh@.cring_mul_comm߀,bfs@.ring_mul_assoc9p6̀ @,ring_distr_l0&@,ring_sub_def9%,@,ring_opp_def. q2@׶̶ɶƶO K +k()           7           7 7 7 7 7 7 7 7 8 ' $x70F6-䠒I_ࠒ<P^t@@@A<974720+)67M;ҩE   8YRW@.multiplication+-ީ:@,mul_notation%[C8:@@@@A@@AB@@A@@@7@ABCDE@@B.R_power_theory @@H}|zywrpmkhkfd_]PNO@,power_theory=X@Al{Ns@@@@A@@AB@@A@@v@N@ABCDE@@h,norm_correct @@Ivtki_{ZRQ@'C,Xdhly Zfjn{T@@@8@A@@A@@@ABCD@@.PolZeq_correct @@Jٶζ˶ȶ@ѰAO$bΩ dݩ f@@@f@A1@(@ @@ABCD@@%Cond0 @۞B@!A22@@&Interp@Ƕ @ʷ޷#s@$Truey@"$©}@#andЖw@TS-àWV*12=@LJA?><;942/-*-(&!< +k(), m' (*()=P RR'>3" 7 7 7!  7 77%'6''+k6'+7Tk+ + TT'+7 T'6''( $ԠĠAT?P<F접b<@@22@e@A@A@@A@@@kA@ABCD@@J.mult_l_correct @@KzxuspsnlgeXVMKecWU@v@(a008DHLYw{:FJNyD >JN_Eg@@@@A@@AB @@A@@ABC@@A@@AB@@A@@ABCD@@A@@AB@@A@@ABC@@A@@AB@A!ۂ$]@A@@A@@@ABCDEFG@@4compute_list_correct @@L۶жͶʶö-75@KK0[©]֩@@@@@-check_correct @@ MܶܶնζK̶Ŷ@=@)(;:&@s0P%өV('Q$,Щ], .@@@@A{@w@AB]@Z@AO@7@5@ABCD@@"R2 @53*('%$"  @#one#ҍ@,one_notation:2 @NLCA@>=;641/,/*(#! +k()         7 7!          7 7!          7 7# ' p0l,X%@@@@A@@@ABC@@/#IPR @wuljigfd_]ZXUXSQLJ@@#0'@AA@AA@@@@@@@D0 3"p1 -8n1i+`4[.:7751|@|(-F6f|Kw$MQUboOjR-)S0k@: x+k() , w' *(=J zR^'>= xR:'>43  7  7 7  7 7!  7 7#'>43  7  7 7  7 7!  7 7#'L 7 7!  7 7!  7 7  7 7!  7 7#''>={ CR'>3  7  7 7#'>3  7  7 7#' 7 7!  7 7!  7 7#''''+k'+k'+k'+7Tk'$!hZPpp> ` (( `TnhԠQAABA@@AO L@ <0<@@@9@A5@3@AB-@@ @ @ABCD@@$IZR1 @۷۷Էͷ!z''@@AA@AA@@@@@@D 0 @(.R1( @(oppositeG@,opp_notation-\[@ % #             +PԐ `+k()  =b 'R~ ' >         7# ' >         7          7 7&'          7 7% ' ' + k'ࠐ2@@AABAANH/(+@@@@A@u@b@ABC@@*interpret3 @ Z X O M L J I G B @ = ; 8 ; 6 4 / -@@!tj"fv5   qqA$@@AABBBAB$@@AABBBAB@$@@@@@@@@@@@@@@@@@@@@D  u$  ( ܷ"t1d@(6( & 2 6 : G e n t z !n@#nth$߀ 0#Nat@$pred `<&BinPos&PArith #Pos@")BinPosDef@5L   6."t2Ȑ"v1  /Ȑ"v2   թ$ 8 \ h l p }   ?ȷ  ;  ݩ X S  ÷FϷ Bl©g  ʷM     nŰ L K ѷTݷ&@"7@)' U, W {       ۩0@    ޶  ۶  ض  Ѷ  ̶  ̶  Ŷ   <+k(), Y' (*()= % )SzR7'> 7# '> 7 7! 7 7 7#'> 3! 3!  7 7#'> 3! 3!  7 7#'> 3! 3!  7 7# '> 3!  7 7&'>7  3! 7# ' 7 7%' 7 7%''+k'+77 Tk+7 T''XbܠƐ$@@A@AABACBDBEBFAGBAPܠG _d̠,ݐx@ĐT젒4d (  А@@@ @A @ @AB @ @A @ @ABC x@ x@A q@ o@AB k@ j@A UAjobJ@\@A c@HAAB @ABCDEF@@ %$Rsth @@ }N&Setoid'Setoids#Coq@@-Setoid_Theory2_ ,Rdefinitions%Reals#Coq@@!RӀ%Logic$Init#Coq@@"eq @@@@@@ Z$Rops @ mA ,Rdefinitions%Reals @ Ӏ @#IZR/r-@%Rplus+1@%Rmult׀@&Rminus&H!@$Ropp΀(@&Ncring+setoid_ring#Coq@@(Ring_ops( @ c:9 @@4/r3 4q@%Rplus+1v@%Rmult׀{@&Rminus&H@$Ropp΀y](Gk@@@@@ ˠ#Rri @ A`qha_ZUPK@(7N@(7%3 } ~!H  "x0"y0"H0  s@(eq_ind_r!2#  " $~yt) 2 ' " + 2-  ) ; 2A 6 > 9 B 0 7C  @ ,> C G  @ ,C C  @  ! N R  @ %C @&ProperL@ȶ@ɩ @*respectful%WO?  K> $ڷ !۷][YݷW޷U^S m ,p!N  t$ o x] hz+  v  M/     z C ? <@J B ?@M 1, C G D@H J G@K DKCE?=C" V  S   ^ F A   I     P"    $ T&      C q' n(@| t* q+@ c,.%  C y/ v0@z |2 y3@} v6}Cwqo h:" > ?B ַ CѰE԰G װJ ٩L۰N   C O P@ ,SJCA<72- C T U@ X C\'Raxioms\@)Rplus_0_l 6ʀ@*Rplus_commq j kl D@(symmetry0xjt@,eq_Symmetric9^S|~      '@+Rplus_assoc ,@)Rmult_1_l9%RIneq@)Rmult_1_r+1  ;,& - 2 6 / 6 :G@+Rmult_assoc&=@2Rmult_plus_distr_r~  SU@2Rmult_plus_distr_l0ylɀ O F K  5( T{C  © ,S  Z ^C Ƕ ȩ  Cn@+Rplus_opp_r {G@&Ncring+setoid_ring#Coq@@$Ring,@$Щ @(7N l6 +. +07 +677 +$77 +  +p +W +F78k()G'() 7&'() 7" Z.  677 777777 L7 77 777 677 777777 L7 77 777 [ .  677 777777 L7 77 777 677 777777 L7 77 77777 677 777777 L7 77 77!77# '() 7" V,  677 777777 L7 77 77 677 777777 L7 77 77 W ,  677 777777 L7 77 77 677 777777 L7 77 7777 677 777777 L7 77 77!77# '() L+ 77# ' 677 777777 L7 77 77" 677 777777 L7 77 77"77&'()   L  + 77+j77# '* 677 777777 L7 77 77 * 677 777777 L7 77 7777&'* 677 777777 L7 77 77 * 677 777777 L7 77 7777&'()   L  + 77+n77# ', 677 777777 L7 77 777 , 677 777777 L7 77 77777&', 677 777777 L7 77 777 , 677 777777 L7 77 77777&'()   L  + 77+j77# '* 677 777777 L7 77 77 * 677 777777 L7 77 7777&'* 677 777777 L7 77 77 * 677 777777 L7 77 7777&'`<p8 t   H  0 p lh <P8 pL Tl\H@(P    P    \ D ,   | $   ,    | d lTL X@HD`X@pp`D T H     D@<h`,`(p d   8  `\X,lJ4D )   4 9 t0HxР_l KtРL  l`4h0x l   @  (hd`4 @(`D`Dx@ |   P  8(xtpD  d P h a\\$X  ؠ$ (xH,ِd o   L |X Td   X  d  , 4  TPL xA@`LH    X  @0|xLCdT`P        p `   X HH84$4$dT@@@@@ -can_compute_Z @ "@'BinNums'Numbers#Coq@@!Z7@ ߐ +k6'T@@@@@ ݠ3dummy_can_compute_Z @" G- @2!6ɀc @,+5 >@:!6ɀ '@$Truey@ (+k()'@@@@@ )reify_IZR @H m$lvar @)* S@%reify*=AR@A4D 0@R(.a ]C  M R5@ce)Datatypes$Init#Coq@@$list]@Ҷ@J l*Ncring_tac+setoid_ring@@%reify*=AR@4,Rdefinitions%Reals#Coq@@Ӏ @(.a,Ring_polynom+setoid_ring#Coq@@ k@CLB7@#IZR/r (+k()G'@@@_A!o1P>=Q@A al)Datatypes$Init#Coq@@AB@@ *R_one_zero @@ O%Logic$Init#Coq@@#notШ@W @_   @@ 7@B  @@ o*@C&@A@@@@@ Р$Rcri @@*Rmult_comm8C (ypigb]XS@%Cring+setoid_ring#Coq@@ x/ ,6kD@@@@@ #Rdi @ u@ s+H@A4z/뚠 @8(7~@.Rmult_integralq $@8;4@/Integral_domain+setoid_ring#Coq@@/Integral_domain+H@, LN s@W(7~<67:k!D)L@@@@@ 8$Qops @ +QArith_base&QArith@!Q4+@ A i   @%Qplus5p1y@%Qmult5o@&Qminus̀ @$Qopp4\%@#Qeq4?@ހ /&QArith#Coq@@!Q4+@+QArith_base&QArith#Coq@@4+@A:A<@%Qplus5p1y"@%Qmult5o'@&Qminus̀,@$Qopp4\1@#Qeq4?䐀@@@@@ #Qri @`vkfd_ZUP @(7y@(Q_Setoid'L~@*Qplus_compUU@*Qmult_compD@@@@@4#Zdi @=4U /   #"R@4(7ր2@.Zmult_integral9OM\@NlV̀@8,gB    x60@H(7ր,LD@@@@@c@@@h@hA.Ncring_initial+setoid_ring#Coq@@A@Ap@pI @A@BF\@F\Ka+setoid_ring#Coq@@A@N^@N^S @A@AO^F@O^FT@A@@@A@AB@ǠI@A@@J@A@E@EK@A@22 Q@ABCDEWe@We@@A@_]@_]@A@Aᾘ@ᾘ @A@ƚ@ƚ@A@AE@EA@@A@BCFF@FB@A@N@NݠJ @A@AO@OK@A@W@WS@A@XS@XST@A@ABC ӳ2@ ӳ2[;@A@ Գq@ Գq\@@A@A8@8Y+setoid_ring#Coq@@A@:@:a @A@:@:b @A@:@:c@A@ABCDEG@xAUA&Ncring+setoid_ring#Coq@@Ae͠C @zA[J @ACDEA9@Ae͠C@AA@@A@A3@BC1@@AAǠP.Algebra_syntax+setoid_ring#Coq@@BAUA&Ncring+setoid_ring#Coq@@Ae͠C @ACDFAp @A Q@AA@A@AAqˠ@A[J @ACDGHI@&Vector'Vectors#Coq@/VectorNotations)VectorDef'Vectors#Coq@ @A@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@?@&squareѓ6@y@A@A@D@&to_intϑ;@@A@z@6@&doublez-@/!@A@A@j@(nth_map2*VectorSpec'Vectors#Coq@@ 8"@A@@w@*fold_left2q@6U@A@"W@}@*fold_right"Ww@6N@A@ABCDE/@h@)log2_iter/_@wd@A@NH/@[@&moduloNH/R@1,@A@A\d@`@&of_int\dW@1?A @A@bz@f@&of_natbz]@1?G!@A@#@l@&shiftl#c@1dV@A@#@r@&shiftr#i@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@@&square6@19@A@AV+L@@&to_intV+L@2@A@V1b@@&to_natV1b@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@K5@@*Forall_indK5@9M@A@X@@/shiftrepeat_nthX@;\@A@ABCD^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@BE@@-replace_order@:k@A@2s@!@,shiftin_last2s@=Nn@A@AxYe@&@!txYe @;z@A@Bx^@+@"Inx^ʑ%@;z!@A@xa @2@"hdxa ,@;zd@A@Axa@7@"tlxa1@;zP@A@BCx#@<@#eqbx#(VectorEq'Vectors#Coq@@ /@A@x[@J@#etax[@> .@A@AxI@O@#mapxII@;{&@A@BDx@T@#nthxN@;{)j@A@y@^@#revyX@;{-@A@AG8@c@$castG8'@/Y@A@B8[@h@$last8[b@;d@A@R@n@$map2Rh@;@A@ @t@$take n@;:c@A@ABCݎO@J@+succ_doubleݎOA@6r@A@HI@@%case0HIz@@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@A *@@%ldiff *@@A@ O@u@,take_prf_irr O @*@A@A g_@@+pred_double g_@25\@A@ q@@(take_app q@lm@A@ABCD m@@÷ m@2j@A@ @@+Exists2_ind Ñ@ @A@ k@@'nth_map k(@wF@A@ABS@@&of_intS㫑@4}5@A@S@@&of_natS@4};@A@ACEFGJ\R@@(mask_ind\R@4@A@\^@@(mask_rec\^@4@A@Aũ@@*Exists_indũ@@A@Ǜ@@'of_listǛ@@A@A!,@@&pred_N!,@4s)@A@BC@@&shiftl@5X@A@@#@&shiftr@5X@A@A&@(@&square&ّ@5,x@A@BD"@-@&to_int"$@5L@A@"@5@&to_nat",@5L @A@AnTq@:@+testbit_natnTq1@6n@A@B@3@(succ_posB*@@A@I@@'abs_natI@?n@A@AB.@>@'of_uint.5@MS@A@3~@R@'sqrtrem3~I@7]%{@A@ACD,@@'bitwise,@/v@A@>4'@_@'testbit>4'V@8g$@A@d;@ @*rev_appendd;@fh:@A@AB{U@j@,sqrtrem_step{Ua@8R@A@u^@c@(div_euclu^Z@ @A@Au@@&Existsu@@A@UA@"@&ForallUA@@A@#N@(@&In_ind#N"@%@A@ABCDfz@@'to_uintfz~@9w@A@l@@'comparel@3R@A@AA@:@&appendA4@ m@A@L9@@@&caseS'L9:@ x@A@ABW@E@'replaceWݑ?@ 4@A@K@K@&eq_decK@?w@A@K~@Q@&eqb_eqK~@?w@A@MĚ@W@)nth_orderMĚQ@ O@A@ABCDEFGs8@B@+of_uint_accs89@5+@A@@g@3to_list_of_list_opp@<@A@A}@@,pos_div_eucl}@&`@A@3x@C@'compare3x:@]=@A@`<@x@&t_rect`<r@ b@A@c`@~@&take_Oc`@3@A@ABCD@@&double@'޺_@A@(@@'shiftin(@*I@A@Aq@@+of_succ_natq@$@A@w@@&modulowɑ@)1@A@ABEK@@&of_intK@)j,I@A@K@@&of_natK@)j2_@A@H@@'Exists2H@uF@A@ABI@@&shiftlI@*O@A@O@@&shiftrO@*O@A@AC,@@&square,@*ow@A@Z@ @&to_intZ@*81@A@ADF`@@&to_nat`@*9G@A@@@'Forall2@?j@A@Ae@@+testbit_nateđ@+@A@'@@+Forall2_ind'@ ~@A@"@@'to_list"ӑ@O*@A@ABC+{@.@'sqrtrem+{ё%@,J@A@@@0shiftrepeat_last@@A@A5z@:@'testbit5z1@-T|@A@BD @?@'to_uint ͑6@.@A@ @G@+succ_double >@.^4@A@A!lK@@)const_nth!lK@@A@!K@@+fold_right2!K@x @A@A#@f@'compare#ݑ]@ )Q@A@$@@8fold_left_right_assoc_eq$@3@A@ABC%t2@q@(size_nat%t2h@ @A@%9@x@+of_uint_acc%9o@ ΋@A@A%V@}@+double_mask%Vt@ S@A@%%@@'div2_up%%z@ "@A@%R@/@)take_idem%R@-W@A@ABCDEG'ş@@'Ndouble'ş@ @A@(K|@=@*eqb_nat_eq(K|@w@A@A(b0@@*shiftl_nat(b0@9-@A@B(nՖ@@*shiftr_nat(nՖ@'@A@(@@0succ_double_mask(@@A@A*W$@@,compare_cont*W$@!@A@*@Z@(cons_inj*@!@A@*A@`@(shiftout*AZ@@A@AB.0@@.sub_mask_carry.0@΂@A@CDE.@P@!t.G@ ;@A@.먩@W@#add.먩N@ `@A@A.U@\@#div.US@ @A@.B@c@#eqb.BZ@ @A@A. @h@#gcd. _@ @A@.=@n@#leb.=e@ @A@ABCFHIK. @s@#lor. j@ @A@.Z@@#ltb.Zw@ @A@A.p@@#max.p|@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CDF/@@%ldiff/@ H@A@00@c@'compare00Z@?H{@A@A1P%@@!t1P%@  @A@B1P@@#abs1P@ @A@1P&@@#add1P&@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@ @#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ @ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@!@#lor1Pň@ /@A@BCD1P@&@#ltb1Pב@ ~@A@1P@/@#max1P&@ @A@A1P{@4@#min1P{+@ "@A@B1P]@9@#mul1P]0@ @A@1P@@@#odd1P7@ @A@A1Pɣ@E@#one1Pɣ<@ J@A@BC1P@J@#opp1PԑA@ {@A@1P1@R@#pow1P1I@ @A@A1P;@W@#rem1P;N@ @A@B1P@\@#sgn1PˑS@ r@A@1P@c@#sub1PɑZ@ p@A@A1Pe@h@#two1Pe_@  @A@BCDE1[8@m@$div21[8ޑd@ @A@1[d@v@$even1[dm@ I@A@A1[6@{@$ggcd1[6r@ i@A@B1[U@@$iter1[Uw@ @A@1\@@$land1\~@ /@A@A1\@@$log21\@ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@@$of_N1\YÑ@ >j@A@A1\@@$pred1\@ j@A@B1\@@$quot1\֑@ }@A@1\@@$sqrt1\@ @A@A1\w@@$succ1\w@ @A@BC1\k@@$to_N1\k@ @A@1]@@$zero1]@ eD@A@A2:@@%abs_N2:@ @A@21@@%ldiff21@ ߵ@A@2=*@@%quot22=*@ @A@ABC2kF@N@(size_nat2kFE@{@A@3s&@ @*eq_nth_iff3s&@*@A@A3@@(tail_add3@^q@A@BDEFGH3@@(tail_mul3@^@A@5Z@i@*shiftl_nat5Z`@y/@A@5f}@o@*shiftr_nat5f}f@4@A@AB5a@@'iter_op5ay@ @A@C6w~@@'of_uint6w~ @^5@A@6W @5@)fold_left6W /@*Za@A@A8j@ @'of_uint8j@'"h@A@8V@@@.nth_order_last8V@/71@A@AB9E@@(div_eucl9Eđ @(*k@A@:El@L@/rev_append_tail:ElF@.G@A@A:x@@,Nsucc_double:x@ ʭ@A@BCD@#R@A@A=9R@L@.to_little_uint=9RˑC@#b@A@=Y@@+shiftin_nth=Yӑ@3뗦@A@A=@X@%ggcdn=͑O@$*@A@=U@^@%ldiff=UU@$'R@A@ABCD>@@&divmod>@C@A@>@@&double>@NĴ@A@>@@+shiftrepeat>@2Y@A@AB?2@@,pos_div_eucl?2@-u@A@?;@@&modulo?;@"i@A@ACEFGIL@ (Alembert%Reals#Coq@0I͗Huz&.Algebra_syntax+setoid_ring#Coq@0^CIۂ{$|)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW'Bvector$Bool#Coq@0,rO3^~*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK̠ k j@0~;p̡wG[^ ` _ ^@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,#Env)micromega#Coq@0=rΜL杠@0s<#"#8r;%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%(Exp_prop%Reals#Coq@0D:L-)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹Ht0B~uYٮ٠#Fin'Vectors#Coq@0r'gް؅/׸'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN   @0%,NE+Integration%Reals#Coq@0vHCc(w#g?"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ U0\͉!Ig*Logic_Type$Init#Coq@0 1jc6#Lra)micromega#Coq@0 ?@D{@[]#"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ&Machin%Reals#Coq@0Z,cq麠#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ&NArith#Coq@0S22b%&*NArithRing+setoid_ring#Coq@0_ .Ys!Р'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR^0A,~jC9*s;{bѠ   @0БAg2?5ސ0˻*L aS&0m&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ&QArith#Coq@0H#oޞ6 78p0#-\D7* Q,"f\*QMicromega)micromega#Coq@0K׈qq~_E&Qfield&QArith#Coq@0td;X񦐳#@`&Qreals&QArith#Coq@0 |-=ʈ%*Qreduction&QArith#Coq@0nDk%}Y%Qring&QArith#Coq@0F%pw;}=O5}%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:*RMicromega)micromega#Coq@0>e{&(_>Υ%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M&R_sqrt%Reals#Coq@0 @#DŽe)Ranalysis%Reals#Coq@0q ' =렠*Ranalysis1%Reals#Coq@0 n;qm.L%*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7*Ranalysis4%Reals#Coq@0kp+PA*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9-Ranalysis_reg%Reals#Coq@0$૔ B_QNAM%Ratan%Reals#Coq@0(쟭CK'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q ~0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq %Reals#Coq@0] Uފ $Tg.頠$Refl)micromega#Coq@0h <0Pa'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/(Sqrt_reg%Reals#Coq@0?N~K0,o^}'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@0332W}&VarMap)micromega#Coq@0Zգ&Vector'Vectors#Coq@0_ċ|"Ʌhz)VectorDef'Vectors#Coq@0]i>3 ٠(VectorEq'Vectors#Coq@0#'`ԶlxjT*VectorSpec'Vectors#Coq@0GyK5%l6L"Wf$Init#Coq@0q+W,J+$Wf_Z&ZArith#Coq@0`&i#_18-z@,nsatz_plugin@-nsatz_computeF@@A#$lt@@,nsatz_plugin-nsatz_compute@@"2 Q@@A@#_64"@" 6u@A@@@@@"@AA"@"@"@ "@ "@"@"@"@"@"@@@@#_652M접"@" 6u#_66'`o@#@" 6uN*type_scope@@.function_scope @@@@@@@@@@AAAAA"蠐"۠"Ҡ@@"@!Ġ2 Q@@A@#_67#B@!4 5@A@@@@@#@@y#7@|#6@#5@#0@#-@#*@#*@#%@#@#@@@@#_682M접#q@!4 5#_69'`o@#{@"4 5Nx@@wy{}@@@@@@@@@@AAAAA#^#Q#H@@#:@!2 Q@@A@#_70#@"%K†@A@@@@@#@#@򠐰#@#@#@#@#@#@#@#@ #@ @@@#_712M접#@"1%K†#_72'`o@#@";%K†N@@@@@@@@@@@@AAAAA#Ԡ#Ǡ#@@"U@"I2 Q@@@@#_75$.@"T(6Sv@@@@#_762M접$;@"a(6S@#_77'`o@$D@"j(6S@@@">2 Q@@@@#_78$Q@"I(.[G@@@@#_792M접$^@"V(.[G##_80'`o@$f@"^(.[G@@@"B2 Q@@@@#_81$s@"M(.Y@@@@#_822M접$@"Z(.Y@#_83'`o@$@"b(.Y@@@">2 Q@@@@#_84$@"Iņݠ@@@@#_852M접$@"VņBB@A#_86'`o@$@"_ņB@@@"y"|@",2 Q@@@@#_87$@"7ř5@@@@#_882M접$@"Dř5BB@A#_89'`o@$@"Mř5B@@@""@"2 Q@@@@#_90$@"$43@@@@#_912M접$@"14BB@A#_92'`o@%@":4B@@@#$#'@"2 Q@@@@#_93%@"!(: ^@@@@#_942M접%#@".(: AA@A#_95'`o@%,@"7(: A@@# @!2 Q@@E@#_96%=@"98@@@@#_972M접%J@"98AA@A#_98'`o@%S@"98B*list_scope@""@!2 Q@@E@#_99%k@!z@@@@$_1002M접%x@!zAA@A$_101'`o@%@!zB.0@"@"C@!2 Q@@@@$_102%@!(;:ࠠ@@@@$_1032M접%@!(;:CC@A$_104'`o@%@!(;:C[@@@"m"i!@!V2 Q@@@@$_105%@!a(63@%@%@%@%@%@ %@ @@@$_1062M접%@!(63HH@A$_107'`o@%@!(63H@@점@@@@@AAA" #@!g2 Q@@@@$_108&@!rCb@&@P&@S& @V& @Y&@\&@_&@b&@e%@h@@@$_1092M접&B@!CKK@A$_110'`o@&K@!CKH@@GIKMO@@@@@@AAAAA&,#)#%@!e2 Q@@A@$_111&@!p '@A@@@@@&@&v@&u@&t@&o@Ġ&l@Ǡ&i@ʠ&i@͠&d@@@@$_1122M접&@! '$_113'`o@&@! 'J@@@p@@@@AAAAA&#@!2 Q@@A@$_114&@!(7@A@@@@@&@&@ &@#&@&&@)&@,&@/&@2&@5&@8@@@$_1152M접'@!(7͐$_116'`o@'@!(7J@@ @@@@@@AAAAA&&@!٠2 Q@@A@$_117'M@!(7$"@A@@@@@'K@'B@'A@'@@';@'8@'5@'5@'0@'#@@@@$_1182M접'y@"(7$"$_119'`o@'@"(7$"J@@@@@@@@AAAAA'b'U@"2 Q@@@@$_120'@"' q@A@@@@@'@렐'@'@񠐰'@'@'@'@'@'@'@'@ @@@$_1212M접'@"V q@$_122'`o@'@"^ qK@@砐預렐@@@@@@@AAAAA'ˠ''@!2 Q@@A@$_123( @" @@@@.?@@@@@7AB@@@@@CD@@@@IEF@@@@RGH@@@@[IJ@@@@dKL. kMN.rOP#PyQR@|.R@@@ U\@0clear_#_4C69D547<#g@@@2equalities_to_goalF@@@ A@#s@@@@@.R.V@@@.e.c@@@@@@@“ .@g0#..@#Ր  ɐ@@@@@   ͠@@@@  Ϡ.  Ҡ.%  @(  @kl.ϛ.@@@@@@9  @{>  C  I  j$'P  񠒑.W  󠒑.^  @$>g  @@@@@u  @@@@~  @@@@  //  /3   @   @ޛ/A/?@@@@@@  @  *  *  $ܠ$  %&/i  '(/l  )*@$ + +01@@@@@ + +45@@@@ + +67@@@@ + +89@@@@ + +:;/  + +<>/ + +?A@ + +4A@XYYY//@@@@@@& + +FG@h+ + +Ka0 + +Ka6 + +K[W%= + +\]/D + +^_/K + +`a@%+T  @A@/78z@d   A!AA@@ B(EqualityA@@0|  0   @#@)˛0.0,@@@@@@  @      ɠ%  0V  0Y  @@2parametres_en_teteF@@@'W-@ B  'b  @@)Datatypes$Init#Coq@@$list]@A@%(@@@@)*@$*@@AD8:- 8:@@9B@;;DH@@@@&;;IJ0ΐ.;;KM#fv17;;NR@:;;CR@]@B0曐 @#resNWWbeSWWiwYWWir+ListTactics%Lists#Coq@@)AddFvTailI1 iWWst.$pWWuw@@u{{z{{{{1@'R{{B{{@@'append1F@@@.9,@ BŒ,Š@@@Ӡ@@@@@@@A ?LFI@ꠠǠA!AA@@ .젠,֐@@@@@A'A@@ 1,@@>@Bd1Ǜ- @"l'/ 4 : 2E@ (頒.B-/I@@N.@@[$(HAA@@ 2 i)*Bp+-@s$-@@#revF@@@-e@ B!D!DLM-n!D!DLM@@@"S"SY\@@@@"S"S]^@"S"SX^@@A"S"Shi-"S"Shi@@@#j#jptAA@@ 2q#j#juw-#j#jxz@#j#jpz@@B%2- @#j#j#j#j#j#j3@(.-#j#j@@#j#j #j#j#j#j3@ (頒2#j#j!#j#j@@,nsatz_call_nF@@@$info&nparam/ʠ"rr/점$kont@ @"llA((u(@f]@B@T(( 5AzA@@ %C@g((  A!CA@@ Iv((@y(( 5@((5/@@,@((4A*A@@ o((!@((!^@((%5X@@&I@((%* AUA@@ 0a((+,((-/@((%/0((35@2@[@@@*S*SUe*S*SUe*S*SUb3@J˫$*S*Sce@ B@@@@@&@--@@@@ @--@@@%--@@!c2--@<--@@@J--AA@@ @@@@Z--!rc--@f--#lq0o--@6@M$lci0x--@d@@@@--@}@@@@----@@&@դJ@BܤQ@B㛐uZ@B줐' @ITJC@@@..@ @#lci//ؔ#lci@@@@ c00@@@A@ @0֐1 1   "lq@@@@0⠠2 2  ) ,@@@A@3 /3 / 3 C3 /3 / 3 C̐3 /3 / 3 7ܐ 3 /3 / 8 9ߐ3 /3 / : <1 3 /3 / = ?Y"3 /3 / @ C@@*nsatz_callF@@@*radicalmax1̠1렐@ A%try_n?7 7   +@ AJ8 8   +P8 8   @@3z3y5m@@0@A@d9 9   @ @A A@@ @v; ;   ՑAAAAAA@0Ơ&NArith#Coq@!N@#sub c0Ǡ&NArith#Coq@!N@#sub3@; ;   s; ;   '@$pred @$pred?U@; ;  !,; ; !!@; ;  !@; ;  !@@<! <! !!7<! <! !!7<! <! !!5@kT<! <! ! !$<! <! !%!+2{<! <! !,!-<! <! !.!/2<! <! !0!2<! <! !3!7@ @"n'=!<=!<!I!KAAAAAA@e@=!<=!<!`!f,~=!<=!<!g!h@=!<=!<!`!h@@=!<=!<!m!u$=!<=!<!m!u*=!<=!<!m!r01=!<=!<!s!u@@@6?!?!!!;?!?!!!A?!?!!!H?!?!!!@*lterm_goalF@@@!g@ BXC!C!!! ^C!C!!!@@ @lD!D!!!ɠ@@@@ "b1}D!D!!! "b2D!D!!!@@+͛ D!D!!!ᐠȠS@D!D!!!ࠠM@@0D!D!!!נh@D!D!!!ࠠb@@<D!D!!!۠@D!D!!!ࠠAA@@ @D!D!!!@"@7@@@@@@E!E!!!𠠐@@~@@ zE!E!!!頠yE!E!!!@ E!E!!! E!E!!!@@PP @2 E!E!!! !E!E!"" 'E!E!"" 72@&ې /E!E!""@@ 4E!E!""%h@ AE!E!""$@@А LE!E!""@ VE!E!""$@@ܐ aE!E!""!2N hE!E!"#"$@@*@@*reify_goalF@@@2Z"le"lb@ B }I"MI"M"U"W  I"MI"M"U"W@@@ J"]J"]"b"eAA@@ @ J"]J"]"b"e@@A@@@c@ K"oK"o"t"|]@@!e K"oK"o"t"v#le1 K"oK"o"x"|@@~@B  B L"L"""e L"L"""@@@ M"M"""@@!b M"M"""#lb1 M"M"""@@@B K @7 N"N"""֔!B@@@@7à/ 'O"O"""@@A@A@@@7ؐ 8P#P###@7ܠ8M@.f8@ FP#P###( A8LA@@ B8GA@@C8JA@@ D8MA@@'E8LA@@&.F8MA@@-5G8NA@@4Z#Z##$ DZ#Z##$:O@xꠠ LZ#Z#$$@@ QZ#Z#$$@ ^Z#Z#$$ @@7 iZ#Z#$$5V pZ#Z#$$@@@-nsatz_genericF@@@NQ&lparam-3@ @X ^$U^$U$Z$`AAAAAA@&BinInt&ZArith#Coq@!Z@&of_natbz)BinIntDef&ZArith#Coq@!Z@&of_nat1?G!@ ^$U^$U$u$})Datatypes$Init#Coq@@&length@ ^$U^$U$$AA@@ Q ^$U^$U$$@ ^$U^$U$$@ ^$U^$U$u$@@ B@@@ `$`$$$@ @u `$`$$$ `$`$$$ɠ `$`$$$;@& `$`$$$@@ B B a$a$$$䒑- a$a$$$䠰@@ :@ b$b$$$@@@@ %b$b$$%@ (b$b$$%@ K@A q B 5c%c%%%" ;c%c%%%"@@ g@ Id%(d%(%>%A@@@@ Rd%(d%(%B%C@ Ud%(d%(%=%C@ x@A  @ de%He%H%a%b@*Ncring_tac+setoid_ring#Coq@@+list_reifyl;@ |e%He%H%s%~A!RA@@ B%lexprA@@#C$lvarA@@" e%He%H%%2E%ring0A@@*:F%ring1A@@2BG#addA@@:JH#mulA@@BRI#subA@@JZJ#oppA@@RbK'ring_eqA@@ZjL"RoA@@brM"RrA@@jzN&arg_14A@@rO!HA@@z@ e%He%H%s%@@ e%He%H%%e%He%H%% B g%g%%%ꑡ@g%g%%%ݠAA@@ BA@@CA@@1g%g%%%蠠ȠEA@@&ϠFA@@-֠GA@@4ݠHA@@;IA@@BJA@@IKA@@PLA@@WMA@@^NA@@eOA@@l@g%g%%%@@@ A@$prodt@A@h%h%&&A A@@ B!BA@@3:h%h%& & >h%h%&&@"@*@A  3NL @3Ui&i&&3&5i&i&&9&Ui&i&&9&K<@ '3hi&i&&L&Nai&i&&O&U@@ @l&l&&&@m'm''$'/AyA@@ BxA@@3 m'm''C'Em'm''8':EvA@@&FuA@@-GtA@@4HsA@@;ĠIrA@@BˠJqA@@IҠKpA@@P٠LoA@@WMnA@@^NmA@@eOlA@@l@am'm''$'F@@fm'm''K'L lm'm''K'L@@ @4vq'q'''{q'q'''ɠq'q'''08q'q''' q'q'''@@ @ 5r'r'''②32@r'r''':A'A@@ AB&A@@4Fr'r'((Fr'r'(( VE$A@@&]F#A@@-dG"A@@4kH!A@@;rI A@@ByJA@@IKA@@PLA@@WMA@@^NA@@eOA@@l@r'r''(@@r'r'(( r'r'((@@@@(t(2t(2(=(G@@@@ 4Ɛ8t(2t(2(>(Aʐ@t(2t(2(C(F@@@A4ڛءQu(Lu(L(X(kVu(Lu(L(X(k\u(Lu(L(X(b>g@4du(Lu(L(c(eku(Lu(L(f(hru(Lu(L(i(k@ B@@@+w(w(((@0 @;=x(x(((œx(x(((Ӡx(x(((>@ꠠHx(x(((@@ @$lpoly(y(((AAAAAA@$List%Lists#Coq@@#rev$t@y(y() )A!AA@@ ;y(y())@y(y() )@@@@pz)z))3)9@ @-SplitPolyList|)<|)<)B)O @ B})X})X)b)fO})X})X)b)f@@ @~)l~)l)r){ @@"p2~)l~)l)r)u#lp2~)l~)l)w){@@ @B`'~)l~)l)),~)l~)l)) 2~)l~)l)),9~)l~)l))*@~)l~)l))@;polynomial not in the ideal@@@K)/)/瓠P)/)/砑uV))))֠;<@ @#p21g))))#p21@@ @$lp21t****$lp21@@@@<*'*'*5*6@@@A@@@HBA@@<EIBA@@CLJBA@@JSKBA@@QZL#RidA@@Y@-_-_-o-@ @-_-_-- ӠACA@@  ڠBCA@@ CCA@@ DCA@@ ECA@@& FCA@@- GCA@@4 HCA@@; ICA@@B#T-_-_--9[-_-_--@^-_-_--@ @&to_nat` @&to_nat*9G@o-_-_--v-_-_--@y-_-_--@@@@@@A@@52@8integral_domain_one_zero?c@----򠠐 AA@@ BCA@@CCA@@!D#addA@@ )E#mulA@@(1F#subA@@09G#oppA@@8AH'ring_eqA@@@II"RoA@@HQJ"RrA@@PYKCA@@W`L5A@@^@----@@@@@A@@5@>integral_domain_minus_one_zeroT@--. .( AYA@@ BDA@@CDA@@!DD A@@(EDA@@&/FD A@@-6GD A@@4=HDA@@;DID A@@BKJDA@@IRKCA@@PYLXA@@W@Y--. .(@@@@ _.*.*.:.A@4trivial_#_#_4C69D5E83)dn@*h?@@ s.C.C.S.q@.C.C.Y.qAA@@ BDA@@ CDA@@DA@@EA@@&"FA@@-)GA@@40HA@@;7IA@@B>JA@@IEKDA@@PLL6vA@@W@.C.C.Y.q@@ .s.s..ec@.s.s..AFA@@ BDA@@CDA@@DDA@@EDA@@&FDA@@-#GDA@@4*HDA@@;1IDA@@B8JDA@@I?KDA@@PFLEA@@W@F.s.s..@@@AAAAAA@@@@@@Eg@=.(-F@@.Algebra_syntax+setoid_ring#Coq@@D78z@@8@D(@@@(addition;53@@9@,add_notation@@%@#one#ҍ@@9@,one_notation:2@@5@.multiplication+-@@9&@,mul_notation%[C@@E@E!#*@@95@E!S@@@@/Y/Y/n/t/Y/Y/n/t&DiscrR%Reals#Coq@@&discrR=@/Y/Y/x/}/Y/Y/x/}%Omega%omega#Coq@@(Q3H@@@ %could not prove discrimination result@@@@@@@@-nsatz_defaultF@@@@@ 0 0 00@@A@@F@F  6u@000$0,@@@@000-0.@@@@000/00@@@@"000102@@@@+000304@@@@4000506@@@@=000708@@@@F00090:@@@@O000;0<@@@@X000=0>@@@@a000?0@@@@@j000A0B@m000#0B@@@@ B@@@@}0E0E0\0d#0E0E0e0g@@@@0E0E0h0i@@@@0E0E0j0k@@@@0E0E0l0m@0E0E0[0m@DK0r0r0}00r0r0}0F@+3@000000000000F@ Y"}@B@@EEF@@DR*@B@0000@A@ @C@@@@@E(E'G@@E'7@B@0000@@@A@#0000Ȑ*0000@-0000@X@:0000ߐA0000@D0000@@@$_162(GT@.nsatz_5812FB83 yGz@@%nsatz@@U0000퓠Z0000Gh@x7@@$_163(Gn@ Pnsatz_with_radicalmax_:=_#_strategy_:=_#_parameters_:=_#_variables_:=_#_5812FB80&iT@@%nsatz$with*radicalmax":=x111"14?LFIQ(strategy":=16161G1S?LFIb*parameters":=1U1U1h1v?LFI )variables":=1w1w11?LFI:_@ 3:d@@@ R1111@@A@@@1111@@@@1111@@@@1111@@@@1111@@@@1111@@@@1111 @@@@1111Ġ@@@@ 1111Ơ@@@@1111Ƞ@@@@1111ʠ@@@@&1111̠@@@@/1111@21111@@@@ B@@@@A1111𠠐I1111󠠐@@@@R1111@@@@[1111@@@@d1111@g1111@u112 2z112 2@222!2J222!2J222!2.àf222/29n222:2>"222?2E;Y222F2J@@@>D2 Q@@A@$_166H@>O(7%3@A@@@@@@@@$_1672M접$_168'`o@@@@>02 Q@@J@$_169;9;<@$_1702M접;B@$_171'`o@;H@@@$_17246@>@@@;R$_173X@3typeclass_instances>(@@@ >>$G+@A>.G6@BF@C>3>1>/>->@>H@@@@;>k@@IE@4Coq.nsatz.Nsatz#<>#1 g8@>12 Q@@J@$_174;@A@@@@;@$_1752M접;@$_176'`o@;@@@$_17746@>@<,@v@;Ġ$_178X@u<@@@$>>G@A>G@BF@C>>>>?@>= J@@w<=:vI@4Coq.nsatz.Nsatz#<>#2 g9@<2 Q@@@@$_179<@A@@@@<@$_1802M접<%$_181'`o@#3 g:@=J2 Q@@@$_190J@=T-Yݠ@$_1912M접 @$_192'`o@CH%a@@==G=:@$_193&C@@@%arg_3@AA@@@$_19446@=O@$_195X@㒠=Z@A@4=V@I @A@I@BHk@C@@@@@@@l>={=z@CID@(META2134(META2135=| y@@=KE@4Coq.nsatz.Nsatz#<>#5 g<@=m2 Q@@A@$_196KS@=x8;4@A@@@@@$_1972M접 $_198'`o@@@@=K2 Q@@J@$_199<@A@@@@@$_2002M접 ,@*Rmult_comm8$_201'`o@@@@$_20246@1d@K/x/@#$_203X@=q@@(@󤐑@퐐I@A@I@BI"@C@@@@F@A#@>tL@@s=K@4Coq.nsatz.Nsatz#<>#6 g=@=2 Q@@J@$_204K@=(.`u@A@@@@2@$_2052M접 @$_206'`o@@@@$_20746@0@=+H@@$_208X@=@@@,ApAjJA@AAtJL@BI@CA|AzAxAvG(@AA2>񐑐=ꐠP@@s> Ld@4Coq.nsatz.Nsatz#<>#7 g>@=2 Q@@@$_210<~@$_2112M접 @$_212'`o@@@@$_21346@@$_214X@A@@@ =@=@AJ@AJ@C=@AJ@BJ!@CJ&@C=퐑=됑=鐑=琑=吠P@@l>%L@4Coq.nsatz.Nsatz#<>#8 g?@=2 Q@@J@$_215L@=(.`@A@@@@*@$_2162M접 @$_217'`o@@@@$_21846@ @$_219X@ @@@@$>Y@>Q@AK7@AJ@C>b@AKI@BJ@CJ@C>h>f>d>b>`=S@@q=MZ@4Coq.nsatz.Nsatz#<>#9 g@@=w2 Q@@A@$_223Mh@=@@A@@@@@$_2242M접 $_225'`o@@@@=2 Q@@J@$_226=P@A@@@@@$_2272M접 >@*Qmult_comm=퐠U@@w=M@5Coq.nsatz.Nsatz#<>#10<֏|@=2 Q@@J@$_231N @=(._ @A@@@@K@$_2322M접 @$_233'`o@@@@$_23446@,@$_235X@+?@@@,?@?@ALX@AK@C?@ALj@BK@CK@C?Đ?????o>n>CY@@<w>S=N@5Coq.nsatz.Nsatz#<>#11<֏}@>=2 Q@@A@$_236N@>HlV@A@@@@@$_2372M접 $_238'`o@@@@>L2 Q@@J@$_239>@A@@@@@$_2402M접 1)NZMulProp@(mul_comm $_241'`o@@@@$_24246@>֐@!$_243X@Ւ@@@(L@L@AM@BLS@CLLSKKI@M@>>D@@Ѡi>O@5Coq.nsatz.Nsatz#<>#12<֏~@>2 Q@@J@$_244O$@>(.k@A@@@@d@$_2452M접 @$_246'`o@@@@$_24746@2E@$_248X@D@@@@,Me@Mj@AMp@BL@CMLÐLfLdJL@M@??>㐠H@@Df>EO@5Coq.nsatz.Nsatz#<>#13<֏@@#_19:}9 @@>@A>@>@E>@ABC@>H@A>>@OA>@>3@ABC@$ ^*@8cring_almost_ring_theory4y{, $(5S\bhi*' (2@+cring_morphEyv/):@2cring_power_theory&ЛC@@0cring_div_theory W#z|nkC72@)<CC-SetoidTactics'Classes@0default_relation D @3equivalence_defaultúKH#HeqUG)Morphisms@=trans_co_eq_inv_impl_morphism&ni( ͩ/RelationClasses(@6Equivalence_TransitiveWשg(guy}a©@/eq_proper_proxy)f"ɵ"(%' &Ω@.ring_plus_comp+K@.)(~-թ-@6reflexive_proper_proxy55*@5Equivalence_ReflexiveL5NPKMHFL=$NRVc"x0D"y0%R(MO@>Reflexive_partial_app_morphism 2R,@ʩ@*respectful%WO?_ĩc( @jx|ȩ  @+reflexivity(ϓ/#CuuwvҩC#@J&LLC/@&ProperL@@1W յTPN=qLC(F;JIH,JC B@.ring_mult_comp<:@>6SR(UJ =:X#CP5532CT1z0C.)'ɷƷyd(B\D( DC@-ring_opp_comp04"&Y ZSC Cq""CKPO$CA5320/-(&#!!񐑷PNB@?=<:530.+.)'" "P'[@$PolZ(6S!P Ґ@'Padd_ok,` "@@$Rset(7$"@$Rext(7̀h@(Rth_ARth'\, $(5S (@'Rtheory q0-! +InitialRingR@A!/37b @.gen_phiZ_morph0ZC1,@$Pphi 0BF@$PaddsO@"H ;MQ# =OS%CUSMT+KJEX@$PhiR(63 IW[__@'PolZaddņa Tbfj Vdhlʷsz}{Rr7@'Pmul_okpɀoC|[{zu0 t֩@'PolZmulř5٩ '')+ݷַѷѷʷ÷@,power_theory=X@A ^K&BinNat&NArith@&to_nat`)BinNatDef@*9G/Integral_domain@#pow> P!rǷ@(eq_ind_r!2# gb#!WөϠB( !"$(+/:@&of_natK4@)j2_B֩$NnatC%N2Nat@"id#*C3BIA, (17=>E][OMLJIGB@=;8;64/- Ґ "pe@#PEZ(.[G@-norm_aux_spec3wl)GPMN,  -KT, "/MV\bce$! $1X}{k &@.R_power_theorycw\tx~|{yxvqoljgjec^\OMDB2<13ZQ?@&PolZeq4ˀਗ਼@&Peq_ok"I`6DHLYq7:2;PMA2-(# :HL],<JNR_w*vtki6V"la+V@(list_indj]  "lp8r@t@%Cond0(a00esw{z#guyɩq٩' ky@&mult_l98 0 v4"xکPNL6M@4<(E@*8J۩,8Lߩ˵@@<;:4'  Qɵ@lWW|NNBx?ZwNC<:@"CѩV ED/N뷐!aUS$IHlaLJ@H0XSRfZUT Uҩj W^YXC鵷WUS0\c^]ȩq^e`_A@B@B@@@@@Dd̩b0'nkrmlש)pmto&.- 0-tqxrqo(@#P0Z(.Y!p{yb@$norm(: <s!BB>00)@<  "! WQ /@%W$V)`]8   ҩ{smj Rh8  yslvXXm@<zwtqnk"jzieX:xS(-15,"048E:7+ cC/ )j^Y?з80.<CSGРd@#andЖw@BBB@@@@D@Mvu x]s0zI^|aUVL$X  Zcߠ}Bb= h:0h   tj s%lemmaosr% urw ũȩ q1 ~ 3  &$X{$*'.#( .+2-@  0;٩'"L < N > }x*@/PolZadd_correct @>c`gb) ''9@?4;*((%@/PolZmul_correct?D8*'nkrmlUеbͩv$POKeR>ZTT;=V@V74{xz!,X@YYY{\\[[d^^'=W'Za`!)'H<JJ#HHE9zj$hgc}jVQ,lknZpgjqp1ZXLXXU-DOŶ¶@<"ߠ$$&)`](+.. 1 4~7Щyqkh;`= ?Bv9!VCS@I [$ZJ(%M8 ʠ   "  eCh_ {"8$   G @<ѩfvCԩ>ѩ͠ש @}{9$$I0&xuiZUPKC"xoifc`]Zmqpg(spb],vsj0sd_ZU^W^POK'{`Cy}| qyC}{uC@Ʃ%$7 '$+&%ũа ᐑ߷طӷӷ̷ŷx#llamDBF=;@990IDC񩚠@,compute_listz%HF. CJH@0F0QPA   \%IHllaVT@ R0[b]\[Y  ΩNW Anm pmton  ef0rovqp $@.mult_l_correct ^@ʀ<yv}xw   # + / /Co0{xzyCwu@ s0|~}:( - . 5 9 M K ? = < : 9 7 2 0 - + ( + & $      #lpe"qe&certif+a,BBB@@@@D) @.%8B  @@@@@, fxv"lqࠩ3 c qv o$List%Lists @#map$D mζ@0  . 2 6 C&6@'PEevalRC( ' 5 9 = J w } 1ԩ , + 9 = A u  'ැ"H2d[ ] ̠  *  d թ0 @ N R VF ( B P T X  Y@.PolZeq_correct(< J X \ ` mr   ? #!y    \ک    V      X   dé<,     ^ l         $u wh(    h vH,    j  (     @,norm_correctvQ4$! ( # " x     © : *' . (  ש ةq US ũ3$"D 41 3   ܩ{ _]    <=: A < ;      @4compute_list_correct+mW<DA H C B      HM3>0JG N I H ~(LI P K J   B0 NK R M LC us <G0 SP W R Q  (UR Y T S     CL0XU \ W V c }b%IHlpeKV0b_ f a `( da h c b  Z0"fc j eϩx$!e T_0'$kh o jũ()&mj q l ϩ   !@ QN,S41xu |  #:n0U63zw ~ԩ(W85|y   ) ˩ ]; x0_ @=a ?   3 >  0hIF(jKH  : ̩ $pQN,rSP  ; tU @2subrelation_properJ74!A 7!B : : <@ = = .@#iffС) D DĚ.Morphisms_Prop@0and_iff_morphism Ƴ N P P&Basics'Program @$flip$ \ \ \ @$impl7o s@$unitUe@A@6subrelation_respectful>6z  o822@0subrelation_reflv  v94(  x x;; ;(@9iff_flip_impl_subrelation2VA G'& )&oMr # K+*#,-*sQNv  '@,PER_morphism q$4 V65@/Equivalence_PER/;= W(?<c` @(symmetry0xjF@5Equivalence_Symmetric. U!% FFNI 0QNur~'SPw Z p@-iff_Reflexive/h 4Z~ !  %  ũ ^ d` _0c *<e +E ީ C#0  / , 3A  1 t X V ڰ    Cu=@  @%check(;:    H@:0 J E D      z( L G F          Gĩ~, I P K J       ېI@+Equivalence~@AК,Rdefinitions%Reals @ &Ӏ     C_@)ReflexiveW    ѩ  % ) '  ! % .# , ' 0Cs@)SymmetricFgq + ,!z/  2 6 ; ,5 7 6 8 E :1: > ; = A ? J > FC@*Transitive++-.%RIneqF@'IZR_neq%    /    ܩ 1@&eq_ind J  !e  @@AA@AA@@@@@@D:  R t E@%Falsee@@ ) r@  v 7   Q@)False_induُ Cʐ, #Coq_nsatz_Nsatz_Q_one_zero_subproof ;3 ?7$Bool @/diff_false_true . @.absurd_eq_true! nB IC#C퐩 ~  H+QArith_base&QArith @$Qnum4O@!Q4+@A y t y@$Qden4   j" C(@#Qeq4?# &Omega0&Omega1 vj)auxiliary @*Zegal_left;6t   CqH yuG