"`"„"H,Fourier_util'fourier#Coq@&BinNat&NArith#Coq@%Zeven&ZArith#Coq@'Zminmax&ZArith#Coq@$Zmin&ZArith#Coq@'BinNums'Numbers#Coq@)BinPosDef&PArith#Coq@&BinPos&PArith#Coq@$Pnat&PArith#Coq@&BinInt&ZArith#Coq@(Zcompare&ZArith#Coq@&Zorder&ZArith#Coq@$Zmax&ZArith#Coq@$Zabs&ZArith#Coq@$Znat&ZArith#Coq@(PeanoNat%Arith#Coq@"Gt%Arith#Coq@$Plus%Arith#Coq@%Minus%Arith#Coq@"Le%Arith#Coq@"Lt%Arith#Coq@$Mult%Arith#Coq@'Between%Arith#Coq@)Peano_dec%Arith#Coq@)Factorial%Arith#Coq@%EqNat%Arith#Coq@&Wf_nat%Arith#Coq@*Arith_base%Arith#Coq@+Compare_dec%Arith#Coq@)auxiliary&ZArith#Coq@*ZArith_dec&ZArith#Coq@%Zbool&ZArith#Coq@%Zmisc&ZArith#Coq@$Wf_Z&ZArith#Coq@&Zhints&ZArith#Coq@+ZArith_base&ZArith#Coq@,Rdefinitions%Reals#Coq@'Raxioms%Reals#Coq@*ZArithRing+setoid_ring#Coq@+Ring_theory+setoid_ring#Coq@)Ring_base+setoid_ring#Coq@+InitialRing+setoid_ring#Coq@+ListTactics%Lists#Coq@(Ring_tac+setoid_ring#Coq@$Ring+setoid_ring#Coq@,Field_theory+setoid_ring#Coq@)Field_tac+setoid_ring#Coq@%Field+setoid_ring#Coq@)RealField+setoid_ring#Coq@%RIneq%Reals#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@&DiscrR%Reals#Coq@%Rbase%Reals#Coq@p)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.0Jܡ\ c6{F!6guJFàР,Fourier_util'fourier#Coq@A+Rfourier_lt @@@"x1,Rdefinitions%Reals#Coq@@!RӀ"y1!a@,Rdefinitions%Reals#Coq@@#Rlt=CB@,Rdefinitions%RealsE@@#IZR/r'BinNums'NumbersS@@!Z7@AB04@%Rmult׀CE D@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@+Rfourier_le @@Awv@u@#Rle=AM@}lk\@i/rhZ @Y׀XWZT@@@@@S.Rfourier_lt_lt @@B"x2"y2ƀʀ@ED@@€ʀ@%Rplus+1HF G@@@@@.Rfourier_lt_le @@C ON@ED@Ӷ@ܩMJ뀠IUH@@@@@頠.Rfourier_le_lt @@_DONDRVZK^@ՀED@Q@VE<#^2):16@@@@@0.Rfourier_le_le @@Eݚܚ@ED@#[a@j0ۀةypש〠֩x}@@@@@w2Rlt_zero_pos_plus1 @@F!x݀@ɀAҀ @@7@AӀ@BРϠ!@@(positive*@Cΐ@@@@@0Rlt_mult_inv_pos @@1GD !y%@B@ #QA񩚠2@$Rinv8@@@@@*Rlt_zero_1 @@mHC2qA9fBeC@@@@@2Rle_zero_pos_plus1 @@I}@􀠩XOAaXiBe@*@C^@@@@@K0Rle_mult_inv_pos @@JԚ@+B@=}@@@@@*Rle_zero_1 @@KWOOBP@@@@@*Rle_not_lt @@ L!n!d@wۀҩBǀA%Logic$Init#Coq@@#notШ 򩚠@$Ropp΀䩚퀐@@@@@ᠠ(Rnot_lt0 @@WMjF35$cA /nAA@@@@@ 3Rlt_not_le_frac_opp @@Nuots@_NE3B:AsdALlMV]@@@@@J*Rnot_lt_lt @@OӚ@"@=((@&Rminus&HA|@@@@@u*Rnot_le_le @@Pڀހ@̀M@Y=+Հ "@@@@@1Rfourier_gt_to_lt @@ Qۚ@@#Rgt=<Béǐ@@@@@1Rfourier_ge_to_le @@*R=@ @#Rge=-AB@@@@@Ԡ3Rfourier_eqLR_to_le @@JS]9=@,@"eq @BA@@@@@3Rfourier_eqRL_to_le @@kT~Z:^@!ABۀ%@@@@@2Rfourier_not_ge_lt @@UwW{@@_BA%Logic$Init#Coq@@%Falsee@{DP@@@@@=2Rfourier_not_gt_le @@Vƚ@@BA+&dp@@@@@]2Rfourier_not_le_gt @@W暠€ƀ@@>BAKЀ@@@@@}2Rfourier_not_lt_ge @@X‶š怶@@ӀBAkҀ@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@p%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8432@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 70B~uYٮ٠-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{J0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03"_6&Ű@A'R_scope2 Q@@A@"_7@SD@A@@@@@@@@"_82M접"_9'`o@E'R_scope@@@۠ޠ᠐̠@q2 Q@@A@#_10@|S5@A@@@@9@#_112M접 #_12'`o@E79;@@@@p2 Q@@A@#_138@{K`@A@@@@o@#_142M접 #_15'`o@Hmoqsu@@@@LORUXCFI@e2 Q@@A@#_16|@pK`@A@@@@@#_172M접 #_18'`o@H@@@@@b2 Q@@A@#_19@mI@A@@@@@#_202M접 #_21'`o@H@@@@ԠנڠݠࠐVΠ@_2 Q@@A@#_22@jI@A@@@@;@#_232M접 #_24'`o@H9;=?A@@@@!$@\2 Q@@A@#_25H@g-@A@@@@@#_262M접 #_27'`o@B}@@R=@@2 Q@@A@#_28p@K8ş@A@@@@@#_292M접 #_30'`o@D@@@}kn@52 Q@@A@#_31@@&@A@@@@@#_322M접 #_33'`o@@@@32 Q@@A@#_34@>:QX@A@@@@@#_352M접 #_36'`o@B@@ʠ@@(2 Q@@A@#_37@3 @A@@@@@#_382M접 #_39'`o@D@@@n@$2 Q@@A@#_40@/R@A@@@@P@#_412M접 #_42'`o@@@@.2 Q@@A@#_438@9g@A@@@@o@#_442M접 #_45'`o@Cmo@@DG@2 Q@@A@#_46e@!@A@@@@@#_472M접 #_48'`o@A@n@ 2 Q@@A@#_49@>v@A@@@@@#_502M접 #_51'`o@C@@@2 Q@@A@#_52@;E@A@@@@@#_532M접 #_54'`o@C렐@@ Š@2 Q@@A@#_55@;@A@@@@@#_562M접 #_57'`o@C@@򠐑@2 Q@@A@#_58@v@A@@@@G@#_592M접 #_60'`o@CEG@@@2 Q@@A@#_61=@1 4@A@@@@t@#_622M접 #_63'`o@Crt@@IL.@!2 Q@@A@#_64j@,*5@A@@@@@#_652M접 #_66'`o@C@@vy;@-2 Q@@A@#_67@8n$@A@@@@@#_682M접 #_69'`o@C̠Π@@h@=2 Q@@A@#_70@H#M@A@@@@@#_712M접 #_72'`o@C.function_scope@ҠՠA@@2 Q@@A@#_73@K#߽@A@@@@)@#_742M접 #_75'`o@C').@A@M2 Q@@A@#_76@X#>@A@@@@V@#_772M접 #_78'`o@CTV[@,/A@Z2 Q@@A@#_79L@e#г@A@@@@@#_802M접 #_81'`o@C@Y\A@@@ϳ> 4`*r0@拟]wOTxh脕@)-8E-Z@? d"H16A TKLoJ $>B%RIneq@)f_equal_R!']"^\C@X@Y0g2h"x2"y2Nw6)@/Rplus_lt_compat":ȀHGOG,Fourier_util'fourier@+Rfourier_ltSDTӷԷ'շ%ַ׷q#X"@zʠexgΠ@%Rplus+1Ix, /|w֠"H2< 7 58޷@(eq_ind_r!2#V!Jɩ&!L,"Q!r3 ة7-2  ߩ<7@1Rplus_lt_compat_l ]߀9>hE@;@*Rplus_commqCCp񐑷86*789*:(Է@ݠ-۰Fc*S@.Rfourier_lt_leK` c @&Rlt_le A:9b[Y\ZEwU=uq$HGx"ig[hij[kY1N@&T~ x@.Rfourier_le_ltI؀ ?>=bC93@#sȩ!ʩBvM"H3  -],à KikC# &ƷiРu+SVACy !xɷΩB@(positive*@CM@/Rle_lt_0_plus_17$耠ɵbȩCʩѩ+!yշuȐ(hyp_list)Datatypes@$list]@A @$prodt@,Ring_polynom+setoid_ring@%PExprk@"Ȑ'fv_list)B).+ @2RField_ring_lemma1!7𚠐(Ring_tac"@0ring_subst_niter!-G$2D)n7C. @$Truey@AW@$boolZ'@A@ Ȑ#lmpR@.mk_monpol_list(M?&BinInt&ZArithj>@#add1P&)BinIntDefD@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ|{@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0QA;5/'x0SC=71)zwbSIo@&eq_ind JǩRʩWR@$Rinv8 ;F@0Rinv_0_lt_compatDN@'Rlt_0_14C"ש @Ω #Եq  7@2Rlt_zero_pos_plus1-CC?#:ʠ?E̵@ni0Lk0NƩ"R=Td&V'= \ð. ^i@*Rlt_zero_1&րC 򐑷p7E8&N@٠)װB!Ϡo) İ6 N+ @0Rlt_mult_inv_pos8ş8CX5Y8ѰK?AfCnlIFDjA?>9*O'1R).$@٩X0ZL C4 C,75R!n~!do8aiFkui@$Ropp΀yǐz@@#Rgt=<~,bS@#notШiZ@)False_induُa@%Falsee@wCWHB@htr;(K#0o_YSME%0qa[UOGqܩNP TVMЩ,ө.@\IlD0'ztnf ?moܩ?h©vxH<IO ڰVOSϵ@ql0O n0Q]ɩ%Zkn0r*!5<DA?  N@հ'0)sVܰG$JI&6J٠Jh@4Ropp_gt_lt_contravar!Y砩 -=CǠ@Cɠhא j%a%D%%K@*Rgt_not_le3SCʐ搑sa|zWTRx[OMzW}Zj~ڐ@*Rlt_irreflnQeE yw %lqspigfaRwOJC@,C86~W@1y_,izkc\@E\QO(YJ'B+޷#}-@4Ropp_lt_gt_contravarY%ʷ˷@@&Rminus&H$©G@.Rplus_lt_reg_l5=Ӏ9_@R?b:0vpjd\<0xrlf^ 54, zݩ۰ݰةũ=FB@vc$^0Aԩ0שHXڷZ$۩8VCX- @}Vb)7*@_{߷@Ϡ~˰6!'԰?(f*MJH%"C`۰F)H̷5I4 f~@ZWU2/-Sש/U,*RW^YݷFZE@w;+Ұ%$ec"dfC(&pnKHF?>9*O'eR..$@٩X0ZL C4 64Cwx@ՐOא3pnhCCC@t@&Rge_le 6/R@&Req_le 3v @*Req_le_sym b@*Rnot_ge_lt.@*Rnot_gt_le.?ˀ@*Rnot_le_lt.J%@*Rnot_lt_ge.0v@_DI