"`ׄC%Zquot&ZArith#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@T)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI+Ring_theory+setoid_ring#Coq@0S.JvfI咠-ReflOmegaCore&romega#Coq@0r1]`@wAnݠ%Quote%quote#Coq@0J@ŹVz-,3%'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaPlugin%omega#Coq@0_rE"74#}j&ROmega&romega#Coq@0-4e:oЂ.K!(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/%Omega%omega#Coq@0t.J'6\ϨrK,Zcomplements&ZArith#Coq@0Р%Zquot&ZArith#Coq@A)Zquot_0_r @@@!a'BinNums'Numbers#Coq@@!Z7@%Logic$Init#Coq@@"eq @&BinInt&ZArith#Coq@!Z@$quot1\)BinIntDef&ZArith#Coq@!Z@  }A'BinNums'NumbersS@@!Z7@A A@@@@@AA@@"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@AA@A@(Zrem_0_r @@vAfeXi&BinInt&ZArith#Coq@M@#rem1P;L@#rem †ADAA@@@@@8(Zrem_0_l @@B*(^AAbA@@@@@U)Zquot_0_l @@CyAA}A@@@@@p*Z_rem_same @@Dũ`^AAA@@@@@*Z_rem_mult @@Eߛ'BinNums'Numbers@@7@!bူ@#mul1P]@ BAAA@@@@@+Zquot_opp_l @@!F2)@#opp1P@ {BA  BA@@@@@砠+Zquot_opp_r @@MG=<S.1&$B+A02BA@@@@@ *Zrem_opp_l @@sHcRyשWPBAV BA@@@@@3*Zrem_opp_r @@Iz}%#BwA-BA@@@@@U-Zquot_opp_opp @@JBABA@@@@@{,Zrem_opp_opp @@K©ŀmkBÀAȀ}BA@@@@@(Zrem_sgn @@ Lo@"le1P,A@#sgn1P@#sgn rBAB@@@@@ՠ)Zrem_sgn2 @@;M+*A0A=̀BAB@@@@@+Zrem_lt_pos @@[NKlc@@VAB@M@#notШUB.A%Logic$Init#Coq@@#andЖw@}DADCh@"lt1P-"  &@#abs1Pj@#abs @@@@@Q+Zrem_lt_neg @@OȀp@@BzA@\YAX@=MgRQڀoZYA@@@@@/Zrem_lt_pos_pos @@P@􀠜AB@sAA@@@@@Π/Zrem_lt_pos_neg @@4Q$ٶ:@*AB@͜À>Aրހȩ1̐@@@@@/Zrem_lt_neg_pos @@nR^t@dB,A@〠4A \OA@@@@@B/Zrem_lt_neg_neg @@S@BfA@AnA@(-G21O:9A@@@@@x)Remainder @Λ@@7@ !r%Logic$Init@"or @ @#andЖw@Ҡ $@"le1P,/AyA@"lt1P-@#abs1P@ -'1-@#opp1P@ {#5%,@*߶@MU唐A +k()G 7! 7 7 7!7!L 7!7! 7 7!L7!7! L7!7!7%'ࠑP`1|;T$Hj젒Xth@@@@@-Remainder_alt @pWR\Tnep@#mul1P]V@ f@k~AC? +k() 7!L7! 7 7 7!7%'РpnXHxdhx@@@@@;/Remainder_equiv @@TFgJ@#iffС)@$(=@X$@N@@@@@_5Zquot_mod_unique_full @@Uj!qͶq@@$(DCA@E@#add1P&@ ̀݀SRq@#andЖw@Ҁ_ŀFۀg &@@@@@1Zquot_unique_full @@ VӶH(@GDCA@ED /8U@@@@@֠0Zrem_unique_full @@b.-D3A@D4$BA>BCO@@@@@*Z_rem_plus @@nc^'BinNums'Numbers#Coq@@!Z7@@w>ACBAC}%#ǀ44/8@@@@@U+Z_quot_plus @@dMÛQU@AƀCπBAC@rĀ#oAˀdcc΀&kl@@@@@-Z_quot_plus_l @@ eF@ AG CBAA@Ā'A@Ѐ"3A)sL_||{c,@@@@@3Zquot_mult_cancel_r @@kf[s@ \ A5AdYWc@@@@@<3Zquot_mult_cancel_l @@g48ۛ<@A AlAN0R387@@@@@s1Zmult_rem_distr_l @@hܶ޶geހAC䀠ABꀠAzCB@@@@@1Zmult_rem_distr_r @@ i= CABACBA@@@@@Ѡ(Zrem_rem @@ 7j ' &!n ĩ€ƀBAÀBA@@@@@)Zmult_rem @@ [k Kla`& A驚瀠`CBA򀠩kCA BAA@@@@@ ))Zplus_rem @@ l Z@ NACB  + )̀6 1Հ 9$B ='FF@@@@@ c1Zplus_rem_idemp_l @@ m ڶζ /@ A΀CB  e c kVtUt o^]|@@@@@ 1Zplus_rem_idemp_r @@ n     e@ A CB   =  I@@@@@ Ϡ1Zmult_rem_idemp_l @@ 5o % $ ; :   é  : ɀCABA р JCBA@@@@@ 1Zmult_rem_idemp_r @@ dp T S j w/ ʩ J 򩚠  iB CAA  yBCA@@@@@ -+Zquot_Zquot @@ q      y n l pCBA wC BA@@@@@ W-Zquot_mult_le @@ r b df@ |AC@ A<@ƀ AD̀ ׀M    〠Y@@@@@ ,Zrem_divides @@ s  鶐  ^W ‰  BA A @"ex @ H   C BA@@@@@ Ƞ4Zquot2_odd_remainder @@ .t өaAB   @@@*@BР)Datatypes$Init#Coq@@$boolZ'@@@@@@@@@A [ @#odd1P !@#odd A IA A@@@@@ (Zrem_odd @@ xu h g Z  ABNBR@CK@@?@@@A Q >A A XA@@@@@ K)Zrem_even @@ v    ; 9ABB9CР@@yx@@@A қ V T@$even1[d @$even IA A ÀA@@@@@ )Zeven_rem @@ w ߛ  Ӏ.'A @#eqb1P @#eqb f AeBBC A@@@@@ (Zodd_rem @@ &x  7 耩ՀA)Datatypes$Init#Coq@@$negbE ɀABBC A@@@@@ 6Zquotrem_Zdiv_eucl_pos @@ fy V n@ ` 'AB@ ߀ 0A  c X V  󩚠 Z@#div1P Q@ y   s     j@&moduloNH/ a@1,ր  @@@@@ G.Zquot_Zdiv_pos @@ z  R  T@  jAB@  sA I    3 2? 7 6@@@@@ r-Zrem_Zmod_pos @@ {  }  @ ΀ AB@ M A t ̀ u s ^ ]Z b a@@@@@ .Zrem_Zmod_zero @@ |    @@   A Ap      A     A@@@@@ @@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA   @A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@T%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0̐0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8.-,@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ϐ0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaPlugin%omega#Coq@0_rE"74#}j4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%&ROmega&romega#Coq@0-4e:oЂ.K!-ReflOmegaCore&romega#Coq@0r1]`@wAnݠ/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03*Ndiv_Zquot9D{(@@$Znat&ZArith#Coq@#N2Z@(inj_quot7GŐB)Nmod_Zrem9D{(@@@'inj_rem2 -Z_quot_rem_eq9D{(@@T@)quot_rem')q'Zrem_lt9D{(@@_@-rem_bound_abswa",Zquot_unique9D{(@@j@+quot_uniqueB@+Zrem_unique9D{(@@v@*rem_uniquen+@(Zrem_1_r9D{(@@@'rem_1_rnj@)Zquot_1_r9D{(@@@(quot_1_r=S@(Zrem_1_l9D{(@@@'rem_1_lnj@)Zquot_1_l9D{(@@@(quot_1_l=M@+Z_quot_same9D{(@@@)quot_same)m@+Z_quot_mult9D{(@@@(quot_mul=s+Zquot_small9D{(@@@*quot_small$@*Zrem_small9D{(@@@)rem_small5@+Zquot2_quot9D{(@@%Zeven&ZArith#Coq@@+Zquot2_quot f_@d2 Q@@A@"_7s@o.v@A@@@@@@@@"_82M접"_9'`o@A'Z_scope@@%2 Q@@A@#_10@0(@A@@@@'@#_112M접 #_12'`o@A%@@!2 Q@@A@#_13@,(@A@@@@K@#_142M접 #_15'`o@AI@@(2 Q@@A@#_16@3.p@A@@@@o@#_172M접 #_18'`o@Am@@#_19X@&zarith@@@@@A(META1232@Ah@@@@'@@8@5Coq.ZArith.Zquot#<>#1ޠ!@@@8@Ǡ(META1233 @A@@6U[\4k@5Coq.ZArith.Zquot#<>#2ߠT@@@k@F;@A(META1234C@A@@lⰛs⠜k@5Coq.ZArith.Zquot#<>#3ࠠ@@@@}(META1235u@Az@AV@@ě©Ȝ@5Coq.ZArith.Zquot#<>#4ᠠ%Logic$Init@@"eq @@@'BinNums'Numbers@7@ (META1236@@7@B @(positive*@C@@񠐰!a@G@;@@$quot1\&B.@C0?@5Coq.ZArith.Zquot#<>#5⠠f@@@^@Π(META1237X@BS@Cc@Ao@@EsTSPMJ@#rem1P;oIGdAN@5Coq.ZArith.Zquot#<>#6@+zero_or_notF@@@@@@@@'@,eq_decidableO@9./theories/ZArith/Zquot.vJ sJ s  J sJ s  mA@J sJ s  @J sJ s  @@@A!J sJ s  @@(J sJ s  @@+J sJ s  @@@@@A@@P@;K K   @@A@@@FK K   @@A@@/@QK K   @@A@@@\K K   @@@@@@ cL L   ?@3auto_#_#_#_4C69D5ED.JE?_@)dn@*h?&zarith@@@@[2 Q@@A@#_200@fXt{@A@@@@@#_212M접 #_22'`o@A@9@f2 Q@@A@#_26T@qW@A@@@@@#_272M접 #_28'`o@Bߠ@@]2 Q@@@@#_29}@h[@A@@@@ @#_302M접 #_31'`o@B @@Z2 Q@@@@#_32@e[%@A@@@@3@#_332M접 #_34'`o@B13@@]2 Q@@@@#_35@hL@A@@@@\@#_362M접 #_37'`o@BZ\@@`2 Q@@@@#_38@kL@A@@@@@#_392M접 #_40'`o@B@(@g2 Q@@@@#_41!@r @A@@@@@#_422M접 #_43'`o@B@NQ@j2 Q@@@@#_44J@u+@A@@@@@#_452M접 #_46'`o@Bՠ@wz@i2 Q@@@@#_47s@t(@A@@@@@#_482M접 #_49'`o@B@~@b2 Q@@@@#_50@m'%>@A@@@@)@#_512M접 #_52'`o@B')@@k2 Q@@@@#_53@v =@A@@@@R@#_542M접 #_55'`o@DPR@@@۠@@2 Q@@@@#_56@K 9@A@@@@@#_572M접 #_58'`o@D@@@%\ @*2 Q@@@@#_59'@5 q/ @A@@@@@#_602M접 #_61'`o@D@@@VY=@%2 Q@@@@#_62X@0 q+p@A@@@@@#_632M접 #_64'`o@D㠐@@@n@2 Q@@@@#_65@'CŰ@A@@@@@#_662M접 #_67'`o@D@@@@2 Q@@@@#_68@C@A@@@@G@#_692M접 #_70'`o@DEG@@@預점РI@2 Q@@@@#_710v@#_722M접 @#_73'`o@Csuw@@2 Q@@@@#_74@$@N\@#_752M접 ,#_76'`o@C@BEH@2 Q@@A@#_77A@( K@A@@@@@#_782M접 #_79'`o@C̠Π@psv@2 Q@@@@#_80o@%@A@@@@@#_812M접 #_82'`o@F@@@Ϡ@2 Q@@@@#_83@)@A@@@@7@#_842M접 #_85'`o@F579;@@@ݠࠐ㠐栐 @2 Q@@@@#_86@~|Ȑ!dZ@,eq_decidableOO)Decidablen@)decidable rx[ZРy@"or @BAAAA@@@@@D@Bn@#notШ ^Cz{!H@(eq_ind_r!2#o 5t%Zquot@(Zrem_0_l(ɀ ,@(rem_same3܀( $Coq_ZArith_Zquot_Z_rem_mult_subproofȰ⩚@#mul1P]@ 귐!bqoi\@QذDFFEVC÷E˩M#CөD@(Zrem_0_r(π a۷_m@'rem_mul@$i㐷@+dec_not_notHɀCCrH+OmegaLemmas%omega(@1fast_Zred_factor5(!x7@@#Zne>o= &@%Falsee@&Omega0)auxiliary%@(Zne_left0߀s \Zp[ʷ@F`;=@#opp1P7@ {aFw5˩p8qYsNu@Ty|Dg}eH\KMpnP&)M)g@)Zquot_0_r.vn3]5`򩚠s@*quot_opp_l$ &$@GBt w,=~:3*)@*quot_opp_r$ EC=0@%Ʃufex)ϩѩ^pԩuةx['ȰmZߩީSR75C@)rem_opp_l.'@֐wuob@WްQ0 GXEŷN-K *P   ԩϠ )()(\ַZh@)rem_opp_r.'F-@|v蠷m~k#9$ &r*+-w/02@,quot_opp_opp  ><R=@(B%| G]H0J$yv'@+rem_opp_oppa9WUkVŷ@4@"le1P,(~=@#sgn1P7@ rb3ɩn6o9wbxB X@-square_nonneg"+€M PrT@xA\=`8KF=j"H0oOrȠ0JG@'le_refl/(ԠV&dݠD$)@+rem_sign_nz,ͷRPJ=@2x #4!ک ܩ(h53A@,rem_sign_mulԐ>ORO/Ȑ$HeqzƩmȐ"H1@(abs_spec倐dj@#andЖw@!@#abs1P@ w@"lt1P-Ω &Ȑ"z0+Ȑ"H2,&ڠ7"-$>Ȑ"z1-HE"H3@5OI@K"H4@D^J'A_-ReflOmegaCore&romegab&ZOmega@(do_omega.m,@&e_step((D@A)Datatypesa@#nat@B A@$list]@A7@)direction0M?@/B!6CK@'t_omega,>@DЩWrC.T-A2NG0!52#K4T96';8)Q:$!AC^I@1EB3KD d]_aJ;QL=eN?WPBLMBXB?8a8_A:a:g4Og`Qg[\AgQNGpGnAA"t &é( X* ,  .L@+proposition!!ER@K C@$term_@AXF.@!N7@A"FB`-(% Bp?IDA3">NJSUME4/AMcCQY;jL0@hD 6SPJt@$Truey@A@2@0interp_list_goal"މ9@,omega_tactic4n62bCRjC@X@JQcCC@@u@UxWz@@ F$@*rem_nonnegqҩ@-rem_bound_abswaؐзѷy}1.ܵ@@,yr[L{t]-}b_PdaRzcne!gXniZk\xm^x `|![XE}]VV_X4XaZZB4oq205e7栩ED HةJˠ ޠɩY_Ġ@52`0%C@j@?. kCC@@@Щ@J9 7@*rem_nonposumge{fuũJvljéΠd;©[uKĩjYAa{Qfgu}T@(K@ސnP}1T;Jpߩ/(#  ϩ) + 5  "  &ϩ,ѩ *(ɩ*װXܰ<ްn#%"ppm ^]_Πǩw[Y@R1*MW"8C@jߠ/Р1RCC@@@A9꠩g۠i5@+Zrem_lt_pos = Seꩵ  (u$w!{}TLZJL|w~~xR7V;96|' ^v`kb㠩3p@;JVC@ͩBc1CC@aG]6[[YoZ_J`7@ 1@[Jީ4 (Ұ԰~ܩ ܰްЩ̩nGm/JWmM.O C@e0d|@ 4kC@@NqCC@@R@XOX!{@+Zrem_lt_neg 9Ő WVHĵdf(ZE<\U>/C@`EBbMD5IF7O9a)[WǠUhѠ~Ӡn|[^@WjR%=C@䠩ӠU4LCC@J頩ؠfGE!rA@gة@#abs1P@  {̠E3@ ֠O*E,G02!ߐq>+@&or_ind"+3@'and_ind14ۀH7HPM<8&|^bWrFpWKi\̩aP :rƷǷJXکi̩y]n;%H3V堩{UpܩRtPyH4=`: =Ag?{RF$:# #%Щ"  )+ʩ+!ذ Yݰm߰qhevswXzLJ@C!>1<CCC`@1mul_nonneg_nonneg#"~5>CeA۠ʠ;9㠩ҠIЩؠX|rp`$zk|mo0q<s<nmffohhqjeslLi)FvH- H'lKөOР kh"ߩ[@: K?CgCgCƩ(@&eq_ind JHf 7MAqDNrSC859v<ϵ@ưX P &R\aQ @ϰa n䩚?@+mul_opp_opp7U333AKH:Lo/r*%lemmaa@#iffС)(K*M)Morphisms'Classes@9iff_flip_impl_subrelation2VA8[1#%^q@*sgn_nonneg2%)e5y@'sgn_mulLЀ/Kn ~4Tw͠ bY|ҠT U'k̩&d.ư'bΩu|yt@(sgn_spec<OAנNͰ04HޠӰհ8Tٰ<BSUZ\ة `Hܩ U  1rtKxz)Q~yg C(  *Ou   1;>R7  5?2V 7 rנ' )"r-/%fzh頩9ĵ@.F PCI .MP0SB< *CCàY  0N^Ma 8eT <Cՠkm \ Dm2r&ud"  N,C E Cj{ 04 W 5Cߩ: ]5 =㵵qQ      sX   u   P l `      aM  m Ȑ%Heqz1ҩ    szϩ 2Ƞ   2̠  Ȑ"z2 ޵Ȑ"z3/ Ȑ"H5 %Pos2Z@&is_pos)Ѡ  ,  0wls w *rwtevg}bi}*k6|k~oq Hsu6wBrohh0}F.~{tt}vvpJ/ V O4ԩQ6  4U:  8 B5Y : [ <] >_ @ c D Ne F6栩6/8<>3u;88C=j6%$1" ( Y^T a[:kP)<HoERhI4S@fWK=)>  C < _jf{WDrIhCC N qT W  z eC a Sͩ  j   T C *| v  u ʩ:ɠˠ   C  ;ѐ ~j    5    F9VU B A@1   .   ĩ ,"  M # 0zk4|mojg`[ibb\y:*> PH   \Pf&0"nS 7 Q^rWtY7w\y^ B \ fY$}C@B%'X1bGe#6E<>)H@7L@*w3  CCCCC 砩}9 3 V * qw  >  aC   c cC     # @)Remainder$(  @-Remainder_alt$@N    !q     #@  ˩ hp @   * @#add1P& @ ̀  > Ơ   ө     !BBB@@@@D@ؠdڠvɠ 8@ Ұ  >$  R 䠩 ٰ  U g ܰ  j  Dw V ݠ   8 C $Zdiv @/Zdiv_mod_unique+ao>өt7B}N +<۵@Ұ+%ͰE s  C C C Ð S m ) 5, o  Z p X r ;  ' Q, &- S@)quot_rem')qp   J @ y" { j r S (   q  Q  2L      W v f N    N   @ \ b      g t    \ M b   Q d      w Y  p      y  Ķ@@ m '@ o  r  |  | .@@ Ƞ | ש ?@@ ð ݩ &@  ֠ ˰ "  ! а /  ࠩ հ    $ ڰ   ) @  z  @7@@+@6@  : c ?$    @F@@:@E@    0&  ķ  @P@@D@O@   :0     ٶ@ ɠ i@   )    Ҡ  ܠ+    ۶@ ( ܠ   @@ # =VV 2 ' A=  ܩ , F  ,   ۩  v       ©  | t ]   Ʃ   f    ʩ   ̩   Ω    B p ðB            B/   ܩ   ` ϰ   Ѱ      W   ϩ װ   ٰ      c }    |   .   ^V   (  [   ٩    z 8S 9 6  R x7 u  V  e X B  ^ ?  < M ` } l ` :  x   5 ϰ o 4  X : g d  7 d   E      M O w  { | g K I@ B^X =MH + ;  4 C@@ Р Ű   }^ ɰ   C C@@@  ݠ   3  РV@@ 砩    ؠ |@@  99  E} aթ        ǩ ! ֩EU @-opp_add_distr; 3  ٩ @)mul_opp_r WXU = }l}&~   kp Ԡ 㩚 `@*Zrem_opp_lL g@+Zquot_opp_l[ 婚@.opp_involutive4r ?= S>?B@  *D B| R Ȑ"a0 @5Zquot_mod_unique_full%  N Z   E:T ^/ =W  }@h" [ 0h a_ u`adb  "@s0 i >v3 $Coq_ZArith_Zquot_Z_quot_pos_subproof q f s ͩ U wu v          @ ޠ  ˩ &I-J  ͩ M  { .Qd G  2 VBWi T   Y ߷  ݩl@(quot_pos=w[      c     -{@,lt_decidablè 4 {6 @"ge1P, @1fast_Zred_factor0#  @ a ~&Omega2 g    * ɶ@  &Omega1    7 " @7fast_Zopp_eq_mult_neg_1=Ҁ . ݶ@ q  @/fast_Zplus_comm11 < 2 @   '  O,  @ 3  Lȩ @,fast_OMEGA16N  N Nʠ@(  Yԩ   O7  c㩷&Omega4!YA  r @,fast_OMEGA15M$  y y t  ۩fN z !  ꩚ @'OMEGA17 PЩrZ   <@&OMEGA8.$J%~f  H꩚ @(Zge_lefts  ]@(Zle_left*x퀰"Xd&Zorder5@*Znot_lt_ge>π-o. #Coq_ZArith_Zquot_Z_quot_lt_subproofl ʩ  #9 R ͷust  ө  өS@'quot_lt\߀ک~ g   ܩ[@ 8[ˠ^1 IWʩ >aѠ k@ Hk۠ nf Š d Qt @,fast_OMEGA13K    ˵  B@*comparison;f@C@)False_induُC@+@'compare3x@]=C@ @&OMEGA2.$DR M 3 8F :H> ?A )Coq_ZArith_Zquot_Z_quot_monotone_subproof!cHL ^  q@  [Ҡ  UU շ[   n`^޷  6 %  h@,quot_le_mono>; u ! #/t.'t  )   }.x&Omega3s miga \WRPNJ0,␑A?U@ Oũ@   = jX)  O  UkV K "x%7 ' ©b*Mc X / ̩ j6o ~=  ̩P@+mul_quot_le>DEzE @?@> y-</>RS  V 8 9:;]_ A 5C7f G4I6l $2n @+mul_quot_ge>D142,@9ՠN/DKɩOf۷ҩXhF @mð@ ( +, *TS/-;@*quot_exact$ހΐ !Coq_ZArith_Zquot_Zrem_le_subproof}< N uyx`@wZX  BB·Y u ]JT VY ̩[W  U@&rem_le xu(d^4s@@ xĠ)@3quot_le_upper_bound  C@(mul_comm9+؀20F12|45@ D@ E@h;@3quot_lt_upper_boundHF\GHJ45K@ٶ@M[,@3quot_le_lower_bound$20\ZMF\r]'}@O_0~i\Uk5<C?XƷ;C'J$cR.ҩ(HC4W1p_3ߩ5UCf@ o*oCOrȠʠL!zP#qw&BinNat&NArith @,pos_div_eucl})BinNatDef @&`Ȁ lS@$prodt@  BBB@@@@Dm@#fst !BBB@@@@@++K' (1A@$of_N1\Y@ >jVVҐ!n9"n0< @@A@A@@@@DE9;nn|CʠCEǐ*yy鵩H@)is_nonneg2oC۠TVؐ;sC^`␩_HHLChj쐩iRR-@'quotrem\'@/ŀC$z|= C - ߷&,.:zzD zKywu}/R,.q젵C:]79r[YpCEhBDlCNqǠɠKȰ3CX{ѠӠUҰi $Y Cdݠߠa Cm栩  55Щwt^8C04!# ÐL( )oGLȐ-.1ϩ%'}SXfiCש-/z[`еCߩ57wchC ;=<%%(mrC̠EGɐF//ݠBy~CؠQSՐ CZ\ SVyo{gi됩hQQc\ WYWWV NLJR'}DC /B*(?C79C=}}(C$G!5%C0S-l C9\  $Coq_ZArith_Zquot_Z_rem_plus_subproofڠOrȠ2ml@kbf fߠiȩw ))зv 7T8 ة, ܩİ)3ʰ(ߐ;JD@'rem_add VC ۰YzYVYV^@&ex_ind 5{!y (D,з%Zvar0F >@ߠQHܩ:Ux멚@0fast_Zplus_assoc Da~$!򩚠@1fast_Zred_factor3&+u.@i^ @1fast_Zred_factor6)5;@vf @z9O *E@'new_var&/wSlWUkV^W4@(quot_add=aT^j)ecydle 077ƷpK@*quot_add_l$ी{yz{ȩ@h]1NѩQrgjZ[~|_`i\se udg멚z@1quot_mul_cancel_r4/A T{d6:9!@8 Ee P3 1. R9 T%ʩ ̩Ω ^@1quot_mul_cancel_l4  D4(ݷ޷ca[N@Cʰ 79X8I6װW[AũLʩ <TηR`P   ֩+s ]@u;p=ɠ  .:_砷}Ej"8# %ԠE6Gڠw/ 02PV~6!79t; 54 2 )A_ -C+E e$@/mul_rem_distr_l>N b)k*k +Coq_ZArith_Zquot_Zmult_rem_distr_r_subproof[YoZB\z H'b`vaib! ѷ@Mg v5ép8qYs"@(|g}eH0NomK ~9#T%W|zC_ @L^jmWɠvˠ#x˷}JΩd ηnߠ%9'@/mul_rem_distr_r>. ٩ِзѩyTy30~ڷ۩ð޷!P@1<0C)7@ %@6fast_Zopp_mult_distr_r0A<SŰ 4ʩ[̷4.!RS   z@oIaI۠`q^޷ ȠGGe9g)  ">=Ѡ@Bus@'rem_rem20F1'2@7 i砩XtA 7B*D XfvL |7M5OowUs{sBX@Z l#\ZG]E_ q}*cmNdLf x*h ߩ2_ 6c 9˩L@'mul_rem5`|z{q|ɩ$G>=@<j3 6 TWxA ^D ϠH !chN ٠"k Tr  y/! &z2/7hl9;@'add_rem䍹Ր˷̷ͷQR=@ө  S6.#ܩİީ IDP, eϰW5Oְ (;mM=64r;UO@/add_rem_idemp_l  Ps@  C V G c٠og\ܷ Ơ Q}ʠ Uqi! Y!$ &ՠ r*+- ex0!135&(,*0G@/add_rem_idemp_r COG Y{LJ`KAL@7Qq_Y!OZB\ |^)bnOeMg0 {1kiVlTnp  :g=ϩP@/mul_rem_idemp_l (?~u@k4Mة8TWxA_EWahN`i޷jto\w(`{~@/mul_rem_idemp_r (E F1@ǩ{"Щҩxީ8a ٩۩f@ܩ(ɰcqcq1</аo s rZ@ qְ̠ER??ՠ ũנSHȷ̩ޠ#ҩP z y 5ҩ} 7 շjYW ! !v驚@)quot_quot)m@PO'N 'Coq_ZArith_Zquot_Zquot_mult_le_subproof)" (Coq_ZArith_Zquot_Zquot_mult_le_subproof0=( -+A,4-z0@ޠW HA WB7꠩c"$i P;Q. WBXxw$ 7&ѐ;*,m8ਗ਼?@+quot_mul_le"W'iw6odE˩U  ӷ, ͩ. ˩ v H        H  ;   v r q&Omega5 i c J( > 7 5 .njg@,le_decidableHƀngskr@"gt1P,u@8fast_Zplus_assoc_reverse 'l | aʩ @nChoCipCjqPe@(Zgt_leftE ]@*Znot_le_gt>/jFD>1@&K=@"ex @ϷЩЩ"3 ٩_ݷީưBʩ*iUаL@7@'&><PR/A LJ%NQ˷O]}@÷ &&@=trans_co_eq_inv_impl_morphism&ni$/RelationClasses@.iff_Transitive*z]V ' ""@/eq_proper_proxy)f- @*rem_divide'0@,@m.mBBB@@@@D@w@+A)C`|E MF.H QJ"Hc XO WP8RpUsZX@Z#xC@&eq_sym Xc>/2@Lb3 sl"MxoZpXr.ͩtwu]w@˩{&T&E .Coq_ZArith_Zquot_Zquot2_odd_remainder_subproofd  /Coq_ZArith_Zquot_Zquot2_odd_remainder_subproof0 /Coq_ZArith_Zquot_Zquot2_odd_remainder_subproof1n ֩ /Coq_ZArith_Zquot_Zquot2_odd_remainder_subproof29\ /Coq_ZArith_Zquot_Zquot2_odd_remainder_subproof3z b /Coq_ZArith_Zquot_Zquot2_odd_remainder_subproof4 /Coq_ZArith_Zquot_Zquot2_odd_remainder_subproof5 /Coq_ZArith_Zquot_Zquot2_odd_remainder_subproof6 t <Р1@$boolZ'@@@@@@@@@A˛ @#odd1P@ _D2Aoq `ĠwƠs }Ϡ o : <CCB t8/,.%ޠcᠩE<9giՠ(꠩ݠ( @AA@AA@@@@@@@DѰƵ שcCĠtkhY㵩(ѠАURC%'۠ p>,.@.C709VX.  BIL#|&@U ,YH 2k*( 5,*od<i䵷ĩ`    cB@@@@@D~ ȷ@m ˩ %TU@u  PXy ש 1&` ֩  \  ʠ=2l!e  @@@@@@@@@@@D  wp"r% zr t|S CB)#fqCFK]gmd3q    .U @  t1O:Ű # } "Cΰ , & / Ld .?D $C*ZD NC.頩ؠ#MDA3ũǵpxrSCt5_VS֩ؐaoe֩à wCܩ|  j Q  eC Ȑyst ~    -"  -   = 2Ω ηҩ ԩ  $ b`b- @0Zrem_unique_fulltܩ   @(quot_rem=yi*2$Bool@/diff_false_true . @.absurd_eq_true!EBUECJ+F\U@,Z_div_mod_eq7{Ma'_`fTMTV@өCUηAةH0ca\c @^۷թU  $nnii7![m ;  IC  sC  [C  Pͩ@&OMEGA6.$HЩlr~t~@*Zegal_left;6tG@(Zlt_left,ڀ [Fܩ+ @'dec_Zgt(6PƩT<`lbQ# ]~) w , . 0~   67n8˩3:|@*Znot_gt_le>ـBC6|aېPװ2Y@6Yɠ\T P=`Р   C@}`C@a 8ڠ mn6qr"Ha"Hb!@D m )FDO ;@4iff_impl_subrelation5թ( @+lt_eq_cases0㜀`#a"ˠH$ЩİCBǰE?E@̰'D'B!@6Zquotrem_Zdiv_eucl_pos?  s>8ڰ Y ?é_ǩEb|@(Zdiv_0_r&I6 ͐ [YXuIp[<<r\7ߐ/#ht␑2j  $]&.')3GR$0e. 4j@,Zrem_divides ~ ʩ#= @>trans_sym_co_inv_impl_morphism'\|Iʩ2@/Equivalence_PER/;Pњ8@/iff_equivalenceZ%O@,Zmod_divides)v_\C]@<=*}gWݸϾ