"`x * +OrdersLists*Structures#Coq@l-RelationPairs'Classes#Coq@$List%Lists#Coq@&Sorted'Sorting#Coq@&Basics'Program#Coq@*SetoidList%Lists#Coq@2Relation_Operators)Relations#Coq@4Operators_Properties)Relations#Coq@)Relations#Coq@)Morphisms'Classes#Coq@4Relation_Definitions)Relations#Coq@-SetoidTactics'Classes#Coq@&Setoid'Setoids#Coq@$Init'Classes#Coq@/RelationClasses'Classes#Coq@*Equalities*Structures#Coq@&Orders*Structures#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@/EqualitiesFacts*Structures#Coq@<)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI+Relations_1$Sets#Coq@0k<⪚(тc1&Sorted'Sorting#Coq@0bb1z٠0k窪ܸqS0CjN0)n,:5-|!N@|zRiEWH(CР+OrdersLists*Structures#Coq@A0OrderedTypeListsA@!O@!t @J %'A*Equalities*Structures#Coq@@@@@ %'@ @A@A@@@AA@@A@"eq @^@)@%]IJ@.@*]IJA@@@@@(eq_equiv @@/RelationClasses'Classes1@+Equivalence~@J@F]IJN@/].@@@FA݋X_A/RelationClasses'Classes#Coq@@A@@A"lt @h@g@!t]IJ@m@]IJA@@@@@AA@@A@+lt_strorder @@/RelationClasses'Classes#Coq@@+StrictOrder.[@@']IJ@5]̶@@@A݋X_A'Classes#Coq@@A@@,)lt_compat @@)Morphisms(@&ProperL@@L]IJ@@Q]IJK@*respectful%WO?@\]IJ@@a]IJ[@"eq].@l]IJf@ ].%Logic$InitZ@#iffС)@]̶@@@AviA)Morphisms'Classes#Coq@@A@@'compare @d@@]IJ@@]IJ)Datatypes-@*comparison;f@@@@@@,compare_spec @@!x@]IJ!y#@]IJ!@+CompareSpec!Q]@0@d].BA8@]̶=@]̶  C@OAG@@@@@Ԡ&eq_dec @@!xS@O]IJ!yZ@V]IJ&Specif$InitR@'sumbool7̂K@l@M].BA%Logic@#notШ~@_].@@@@@g@&Orders*Structures#Coq@+OrderedType@@@@AG@@AGd@@A@A]IJ@@]IJJ@@A@].@@{].^@@A@]̶@@A]̶h@@A@ABC@%In_eq @@@!l)Datatypes$Init#Coq@@$list]@@ҠѠ@@]IJ!x!y@%Logic$Init#Coq@@"eq @BA@*SetoidList%Lists#Coq@@#InA q9@Ś@"eq].CDњ E@@@Ai0A*SetoidList%ListsO@A1DH%Logic$Init#Coq@@AB@@AA@@A@)ListIn_In @@+Aq)Datatypes$Init#Coq@@$list]@g@$List%Lists#Coq@@"In$ABaVBS@@@;AJ@=AIPA$List%Lists+@EA al)Datatypes$Init#Coq@@ABC@@L&Inf_lt @@tB)Datatypes$Init#Coq@@$list]@ @@]̶BA@&Sorted'Sorting@@%HdRel%5p@+N1@@@A@ABA3@AB@@&Inf_eq @@CGI@ȀBA@8YD|ͩ>_J̐@@@A@A.@AB@@+Sort_Inf_In @@D+qs!ax@\@Z1ĭ@kC@gs@͚}@@@A@Ab@AB@@*ListIn_Inf @@E_H@H@䀰AC*ة0@@@A(@AA@A@A@ABC@@&In_Inf @@EFtն@t@aVAC̀XȀ隠Ԁ ^@@@FAU@HA@AB@@G'Inf_alt @@oG@Bhgf@@#iffС)9X@]AG@@@A@A@AB@@*Sort_NoDup @@H68@=(A@&NoDupA @k@@@A@A@AB@@@@@@@A@@Ai@B@CD@@@.KeyOrderedTypeAA@Š @@ @3@@3@@@ @@3 @ۯ@@@̠ @@*@3@/@3@@@ @~:@3>@7@q@@f @ed@J@3@O@3\U@3@Z@3^@Wۯkd@3h@aۯVl@7@L@@@ @?@v@3@{@3=@4@@Ϡ2 @10@3.@3,@ۯ&@7+@7#@q'Ȁ5@"@@  @@k3@p3@\ۯ @cۯ@@@i@@@'@@'@A@A3@@3@A@ۯ@@qۯ@A@7@@67@A@ABC@#eqk @#elt"3B/EqualitiesFacts*Structures#Coq@@@-RelationPairs'Classes @*RelCompFun.L)Datatypes$Init@$prodt@@!t3A@3 @"eqۯ@#fst @3@CB@4Relation_Definitions)Relations#Coq@@(relation'Jj)Datatypes$Init#Coq@@=t@<@!t3A l+k77!77 77!7#'РaT;`\H@!Dy@U&*N@tX@P&*Vl@@@ @d@A@ 0KeyDecidableTypeqx@A@@@"3@@A@A@ %'A*Equalities*Structures#Coq@A%נB-RelationPairs'Classes#Coq@@AA&C @A ϲ6WYXW@@ABA ӳ2[@!A8ӠA4Relation_Definitions)Relations#Coq@@AA@ Գq\A вuX@ABA @A@A @A@ABCDE@@AA@@A@$eqke @"/F@@@'RelProd0@3Ě@ۯ%Logic@ @@!@@3A P+k7 7 77#'1xpd,X@@"/@G@A@A@A4 Q@AA~@Au@AQA5 ǠR@UAm@WA|@ABCD@@f)eqk_equiv @C"HA@@;@6RelCompFun_Equivalence)6؀'ҀI@+fst_measure %; @(eq_equiv7۠@e#@/RelationClasses'Classes#Coq@@+Equivalence~@#S@3A_@HA +k6 77! 77!7777!7#'5hX@yhMt `Tx`LCT@@"@b@A@A@A.K@AA8!U @A9!àV@ABA@sA/ML@AvA @xA@zA@ABCD@@젠*eqke_equiv @ɔ"+J@@@3RelProd_Equivalence4y/RelationClasses@.eq_equivalence()'XQ@┑@}⠚@3A@냀A h+k7 7 7 777#'ࠒ/PH|p5Xd@@"+@K@A@A@}A@#|]u@AAk@TA݋X_AG'Classes#Coq@@A\AA#^@`Aa@bAK@ABCD@@Z(eqke_eqk @@@9"L8@@@+subrelation0s?"@3A.@y냀A5@`HA@@"@#@A@A@A@A'A@)Aa@+A@ABC@@(eqke_def @q"Po@@!k("k'+!eC"e'DAA@#andЖw@AEBm @-@*|@@3-@F30C/D%Logic$Init#Coq@@"eq @8@냀EvA@l3EDBA@x3ECA/@VЖw@@"eqۯDC?EBA (+k()G'xq@@"@@A@A@jAU@AA=@A'@A1DHUTS@@ABC@@=)eqke_def' @"T@@!pӷ!q ٠=@#snd  @>%@"!@3A*,@3B<@냀CBAC@ۯ)Datatypes$Init#Coq@@#fst V@3CB`@$3CAڀC#@#sndr@63CB |@@3CA (+k()G'(!@@"@@A@A@A@AA@A@AA@A@A@ABCD@@젠&eqke_1 @A:@?A˔"X@@[@q3^@w3aC`D@@냀EA@3EDBA@3ECA@ۯr@@"@?@A@A@sA^@CAG@EA1@ABC@@@&eqke_2 @@B"^@@@3@3CD@@d냀EA@3EDBA*@3ECAFĐ@@"@>@A@A@A@ABA@DA@FA]@ABC@@'eqk_def @r"đdp@@'(@@`@$3f@*3CD䀰٩{@HENA@D3EDBZA@P3ECA@ۯDCɐ@9@@"đ@W@A@A@1A@[A@]A@ABC@@(eqk_def' @SL@QCݔ"ōh@@ĩ@3A̩@3BG<@ HCBA@ۯ@3CB@3CA@@"ō@D@A@A@Av@AAq@JA`@LAd@NA*@ABCD@@[%eqk_1 @@D:"Ɖl9@@ʚ@3͚"@3АCϐD@4@_HEA9@3EDBAE@ 3ECAM@ۯ@@"Ɖ@?@A@A@A@CA@EA~@ABC@@,InA_eqke_eqk @@E"Ġq@@ur@63A!m3@$list]@T@J3B@*SetoidList%Lists#Coq@@#InA q9@@a3C@냀CBA@u3X@H^bI@@"@T@A@A@MAi0A*SetoidList%Lists#Coq@@AVAA@XA alC@ABA-@A0@AjA@mA4@AnA @pA@rA!@ABCDE@@0,InA_eqk_eqke @~@F"v@@à@3AЀ@3B@|ޠ@3C@EHCBA@"ex @&@3ͷ..@3թw=@hH6_B@3թM@냀F@@"@d@A@A@A@AA\@A@ABA@~A@AA@sA@ABtA@wA@AxA@zA@|A1DH%Logic$Init#Coq@@ABCDE@@à'InA_eqk @@G"y|@@V@J3A_@S3Bl@b3C@@HDCB@"@x3G@HMaL2@3@Hqu@@"y@S@A@A@`A@AaAL@cA @ABA6@^A@A_A:@aA@cA@eA@ABCDE@@7&MapsTo @"B@@@3*SetoidList%Lists@#InA q9@@3@^냀 A@3@C0@К"@3АB@)Datatypes$Initk@$list]@V9@3䔐A l+k() : 7 77!7&'k@-tZLXXD@@"@m@A@A@A@AA@A@AuA@wA@yA@ABCD@@"In @".G@@(y@x3@$list]@@3@q @;><@2>B)@Ô+@P@f3/~@3>A |+k() + 7%' 7#',|w@9E"db[@@".@R@A@A@TA?@AVA'@XA@ZA1@D@ABC@@$&In_alt @yr@wH"J@@@3!lr€@3Bl@#iffС) @CBA퀠C栚@3D "@MHDA'@3DCAB@@"@S@A@A@Au@AA3@AH@ABA@Aq@AbA@bA@ABCcAviA)Morphisms'Classes#Coq@@oAB@ApAO@rA@ABsA@wAy@AxA@zA@AB{A@~Ar@AA@A@A~@ABCDEF@@'In_alt' @ @ I"ϤQ@@M@C3A4@J34C @*DBCp@d3D @HDA@u3DBAC@@"Ϥ@K@A@A@LA@AMA@OA:@ABPA@A%@AXA@ZA(@ABC[A@^A@A_AR@aA^@cA@eA@ABCDE@@*'In_alt2 @x@}J #۠Z @@@3wǀ@3B @CBA$List%Lists#Coq@@&Exists0DA@@ #t@ "@3C. +@3  0@mۯC :@3DAA@@#@_@A@A@A/Ǡʠ$List%Lists#Coq@@AA@A@ABA@A@AA@vA@ABCwA@{A@A|A@~AA.Morphisms_Prop'Classes#Coq@@ABA@A@A@A @ABCDE@@Ơ&In_nil @  @ K # _ @@5 @ K3 @(BAA n @ d3B%Logic$Init#Coq@@%Falsee@@@# @4@A@A@ DA /@A EA *@ GA@AB@A@A@ dA @A eA P@ gA@ABFA@IA =@AJA@MA )@ANA A@PA@RA@ABCDE@@ =%In_eq @  @ P #"At @@ Ԁ @ 3Aa @ 3` @ 3@ @ VۯBA@ (@   ʩ .@  @@#"A@8@A@A@ A <@A A @ Aj@AB@A @CAn@ADA _@FA @HA@JA7@ABCDE@@ &In_inv @  @ Q u#){ t@@  W@ 3  ]@ !3 C{쀐 < n@ 23D@ {@ EDzB S@ @ J3E ^A @ T3ECBA @ ۯ 1 E @;s 7 6@@#)@Z@A@A@ :A %@A ;A@aA @ABbA@eA @AfA k@hAE@jA@ABCD@@ (In_inv_2 @ d ]@ bR #1 @@ ~ @ 3  @ 3 C Dh  @ 3E@d Ơ @ 3F@ -HF A @ 3FEC B @ @ 3F A "@ 3FDBA@ @#notШ 3@ pۯ  ǩ  >@ 3HJ@ uH A N@ 3  @@#1@@A@A@ A@A A @ A@AB A @A@AA @A@A @A @ABCDE@@ (In_inv_3 @  @ S #<ާ @@Щ  ~@ B3A"x' X @ N3B @ [3C@  @ g3D@ 냀DCB/ @ {3DBA@@ H X l p= 젚 @ 3 @ %냀  h @@#<ާ@f@A@A@ kA@A lA W@ nA@AB )A A@qA%@ArA E@uA@AvA@xA 3@zA I@ABCDE@@ D#ltk @#elt@:^@@-RelationPairs'Classes@*RelCompFun.L)Datatypes$Init@$prodt@A%@3`@"lt7@#fst @32@4Relation_Definitions)Relations#Coq@@(relation'Jj@@0t@J@!t3A l+k77!77 77!7#'РTT9lB@tX9`UH@@@:@k@A@A@%A%נB-RelationPairs'Classes#Coq@@A.A&C @2A ϲ6W@AB5A ӳ2[@;A8ӠA4Relation_Definitions)Relations#Coq@@AA@ Գq\A вuX@ABA@A@A @A@ABCDE@@P,ltk_strorder @A6b@@@6RelCompFun_StrictOrder?z<~@+fst_measure %;@+lt_strorder0@”@/RelationClasses'Classes#Coq@@+StrictOrder.[@A@SA +k6 77! 77!7777!7#'/hL`Tx`@ސh:TIt@@A6@S@A@A@A.K@AA8!U@A9!àV@ABA@dA/ML@AgA @iA~@kA@ABCD@@Ǡ*ltk_compat @@I B2f%@@)Morphisms'Classes#Coq@@&ProperL@A@A)Morphisms'Classes#Coq@@*respectful%WO? A@AT@HA*A%AX@С)A@@B2@O@A@A@(A@#|]@A+AA#^@/A@AB[A@^A@A_A~@aA@A@ABCD@@7+ltk_compat' @@_JC.j@@p@A@fdA@àAq@냀AvѠϐAAZꀐA@@C.@7@A@A@AN@AA@AB?A@AA@CA @AB@ABCD@@+pair_compat @@K┑Cm@@€@޶@j@At@ۯAAA]A)Datatypes$Init#Coq@@t@A΀A@@C@?@A@A@AviA@@AA@A@ABLA @OA@APA@RAv@xA@ABCD@@ꠠ+ltk_not_eqk @@LCD*nG@@!p8!q;0̶@WX@_S'%LogicE@#notШ@#eqkH78@@@ %'A#sAviAKi@AAۀߠK@ A%נBr@ABA@#|]u@AA#^z@AA ϲ6Wp@A ӳ2[t@ABCIA@LA вuXz@AOA Գq\}@TA@AUA@WA"3B/EqualitiesFacts@]A"H@ABCDE@@U,ltk_not_eqke @@}Mkeca@_Wa@$eqke냀O@@@7@A-@&@AB%@{A-@}A"/F&@A"+J*@ABCD@@y @@N穛@]@ƶ"x'ˠ@~_@"'Sorting@ %5p@ܠoאF@@@Ai0A*SetoidList%Lists@AABA @@ABA al@ A@AA@A @ABC@A @A@A@A@z@A@ABCDE@@Π @@O&UTMٶLJ@HG@@@(@A@ @AB@@@@ABCD@@䠠' @@ P<kj`@[@{1ĭ@3(@g@O@#InA q9@`]#G&@@@_@AX@@ABP@Q@AO@@ABC@@AL@@@L@ABCDE@@.Sort_Inf_NotIn @@AQr/!kU!eF@:@jAaGON(2@"InWP@@@@AA݋X_A/RelationClasses@@AB@@A@@AUA"Ġq@YA".G@]A1@DF@ABCDE@@U+Sort_NoDupA @@}Rkܶ@pc`/g@&NoDupA @ݩX9@@d@@p.Sort_In_cons_1 @@S|@BO@sS@@@@A@Y@AB@@A@S@AK@I@@ABCDE@@.Sort_In_cons_2 @@T@&@q'ĩ@"or @((@@@@A@@AB@@A@@ABC@|@Ay@v@As@n@@ABCDE@@.Sort_In_cons_3 @@U׶@JI϶@31T5`@2А @"eqۯ;@@@0@A@-@AB(@'@A@%@@@ABCDE@@@@@@:@AA6F@B2@AC.|@C#@D*@@A@ABCD"3@"/C@"@AB"+W@"@A"l@"@ABCE"c@"@A"đ @"ō P@AB"Ɖ @" @A" @"y @ABCF" @". @A" "@"Ϥ @AB# @# @A#@#z@ABC#@#@A#"A*@#)@#1@#<ާ@ABCDEG@i@A@@Ae@B@@ACD@@Ae@BE@@A@@AB %@@ACF@ @A@BC@@A@@n@ABCDGk@p@An@@@ABC@@A@B@CD@@A@\@Z@ABCY@Y@A~@~@A@@ABCDE@SA@ATA@@AB@@A@BC@@@@ABC@]A@@ABDE@@A@B@@ACFG@@A@B@@A@@ABC@@A@q@ABo@p@A@B@@@ABCDEH@ @A@B@@A|@Bz@z@A@BCD@ @A @ @A h@B f@ @A @BCD @ @A @ i@AB h g e@ e@A c@ @ABCDEFIJ @ @A @B @ o@AC m@ o@A @B @ @ @ABC  DE     }@ }@A {@ @ @ABCDEF   @ @A @ @ @ABCD  E z@ |@A z@B x@ /@A ,@BC +@ ,@A *@@@ABC@@@AB @@ACDEFG B@@@@ABCDE|@}@A{@By@&@A#@BCD"" @ @A@@@ABCD@@A@B@]@AC\[Y@Y@AW@@ABCD@@A@B@1@AC0/DEFGHIK"@@@@8!@@A@A9!@@A@@#|@@A@A#@@A@ABC ӳ2@@A@ Գq@@A@A@:@A62@ABB2@C.h@AC@D*@ABCD"3@"/0@A"@"+D@AB"@"Y@A"@"P@ABC"@"đ@A"ō<@"Ɖ @AB" |@" @A"y k@" @ABCD". w@" @A"Ϥ @# @AB#  @# @A#f@#@AB#p@#"A@A#)@#1@#<ާm@ABCDEFG@NA8ӠA4Relation_Definitions)Relations#Coq@@AA @A @q@ABCzDE@@@ABC DF@@%@@ABCDEG[J K@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@<&Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1s0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua*Equalities*Structures#Coq@0όe얟)H.Ƞs0)n,:5-|!N@Ƞ+Equivalence'Classes#Coq@07;ꮹ-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+~}@0>I`0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏%Minus%Arith#Coq@0LFtR"0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG'Prelude$Init#Coq@0JqTttֱ/RelationClasses'Classes#Coq@0Gz rA6ՠ@0CjN@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0c@0k窪ܸqS-SetoidTactics'Classes#Coq@0S_`nOU$0bb1z٠&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03irHȠg@Š2 Q@@A@"_8w@HA@@@@@@ҐE@AD@A@A@@@@@"_92M접!##_10'`o@)E*list_scope@@@@@ࠐ@2 Q@@A@#_11@w_A@@@@@@C@A@A@@@@#_122M접#_13'`o@"CC@@@Ơ@2 Q@@A@#_14@!yA@@@@@@VE@AAD@AD@A@@@@@#_152M접!##_16'`o@)E@@@@@Ġ@2 Q@@A@#_17D@ A@@@@@@E@AD@A@A@@@@@#_182M접!##_19'`o@)E͠@@@@@ KI@2 Q@@A@#_20@4 aA@@@@@@萐D@AӐF@AÐE@A@@@@@@#_212M접#%#_22'`o@+F@@@@@@U\堐D@ˠ2 Q@@A@#_23@A@@@@@@7C@A"@A@@@@#_242M접#_25'`o@"C^@.function_scope@㠐A@ڠ2 Q@@A@#_26@FA@@@@@@rC@A]@A@@@@#_272M접#_28'`o@"C@;@ؠA@2 Q@@A@#_29Q@/tA@@@@@@C@A@@@@@#_302M접#_31'`o@CϠ@@@  @2 Q@@A@#_32@9&A@@@@@@␐B@A@@@@#_332M접#_34'`o@B@@=@#_35X@$core@A@ћ(META1112(META1111 @@@@@VR@ 0Coq.Structures.OrdersLists.OrderedTypeLists#<>#1 ?@A@ǐ(META1114x@@1g@hhfb@ 0Coq.Structures.OrdersLists.OrderedTypeLists#<>#2 @C@(META1117(META11166@@cϩΐѶÚӶÚ϶@à@ޚRWPN@ 0Coq.Structures.OrdersLists.OrderedTypeLists#<>#3 @#_36X@vA@{@7u(META1133(META1131@@ʩȐRT@Y=@^c@ 0Coq.Structures.OrdersLists.OrderedTypeLists#<>#4  A@@5#(META1137(META1136}@@ޠJIL>N>J@>v4@9Y/|ͩ.^.6@ 0Coq.Structures.OrdersLists.OrderedTypeLists#<>#5 @@ rHȠ@#tӡ/EqualitiesFacts*Structures#Coq@@  @A@@@'@VM@A@A3@UK@A@ۯ@TI@A@7@SG@A@ABC@A 02 Q@@@@#_38 XA@@@@@@ #1m@ ݠ2 Q@@J@#_43@  W@@@@@#_442M접@#_45'`o@AH@@@#_46tA@ @AA@@@#_4746@@ .[@@@@#_48X@3typeclass_instances @@@ @ (META1156 >@@ڠa )@ .Coq.Structures.OrdersLists.KeyOrderedType#<>#2n@ Ԡ2 Q@@J@#_49@ ;SA@@@@@@B@A!xD@A!y@A@"x0G@A"y0@A@@@@#_502M접02#_51'`o@8A@@@#_52CAG@A@AA@@@@@@@@@#_5346@ @ L@#_54X@ 3@@@0@((META1158@=@5 @ ?N@F@Z@R* F1 bq@iA4 ]H Q ␛R@@р @ .Coq.Structures.OrdersLists.KeyOrderedType#<>#3o@ B2 Q@@J@#_55@ MA@@@@@@ߐB@AޑD@Aݑ@A@ܑG@Aۑ@A@@@@#_562M접,.#_57'`o@4A@@@#_58?=G@@AA@@@@@@@@@#_5946@m@#_60X@l @@@@V(META1160@@c פ$@s@0@)󤐑 08G@@  ِG'Q@@ɀ @ .Coq.Structures.OrdersLists.KeyOrderedType#<>#4p@ Ơ2 Q@@J@#_61@ NDA@@@@@@E@AD@A@A@G@A@A@@@@#_622M접,.#_63'`o@4A@@@#_64?=G@@AA@@@@@@@@@#_6546@C@#_66X@B@@@@(META1162@3 @@I"@,@^7!B@?FN@AR@@`ŀ!m@ .Coq.Structures.OrdersLists.KeyOrderedType#<>#5q@72 Q@@A@#_74{@B=ddA@@@@@@B@ACD@AF@A@@@@@#_752M접@c=dd#_76'`o@@m=ddDU@@@@@e@2 Q@@A@#_77@3A@@@@@@ϐB@AD@A@A@@@@@#_782M접@@3#_79'`o@@J3D@@@@@堐蠐@!2 Q@@A@#_80 @!)cA@@@@@@B@A"2F@A"E@AL @A@@@@@#_812M접 2@!Pc#_82'`o@ <@!ZcF렐f@@@@@@w9<q@!2 Q@@A@#_83 b@!cwA@@@@@@nB@A"F@A"tE@A @A@@@@@#_842M접 @!cw#_85'`o@ @!cwFB@@@@@@ΠX@!2 Q@@A@#_88 @!1A@@@@@@ŐB@A"E@AG@AF@A@@@@@@#_892M접 @!1#_90'`o@ @!1G@@@@@@@(ꠐĠ"@2 Q@@A@#_91!@߲A@@@@@@"B@A#=E@AF@A@A@@@@@@#_922M접!>@߲#_93'`o@!H@߲Fr@@@@@@9@{@2 Q@@A@#_94!l@2FA@@@@@@xB@A#C@A@@@@#_952M접!@2F#_96'`o@!@2FC@@@@ɠ_@2 Q@@A@#_97!@zQA@@@@@@B@A#ҐE@Ay@A{F@A@@@@@#_982M접!@zQ#_99'`o@!@zQF @@@@@@٠ܠ@2 Q@@A@$_100"@zRA@@@@@@B@A$)E@AА@AҐF@A@@@@@$_1012M접")@DzR$_102'`o@"3@NzRF⠐ ]@@@@@@n03 @>2 Q@@A@$_103"Y@IzSA@@@@@@eC@A$eGH@A$F@A@A @A@@@@@@$_1042M접"@wzS$_105'`o@"@zSG@@ @@@@@@Р@j)@$_106X@ǒ]A@\(META1164(META1165(META1166"@=dd@@ȠƠ#ˠ$^@$$b# $$$h%"@ .Coq.Structures.OrdersLists.KeyOrderedType#<>#6rA@F(META1168(META1169(META1170#@d3@@϶ɩ#P˩$@˰$$#YƐp$$$%V##@ .Coq.Structures.OrdersLists.KeyOrderedType#<>#7s@$_107X@?JA@O@&@(META1180(META1182(META1181#T@$rc@@M^ND#SI$XN%=@ %@$#@dZ%A*%D$%Knd4%U%N%#@ .Coq.Structures.OrdersLists.KeyOrderedType#<>#8t@$_108X@@C@@(META1192V(META1194(META1193#@%cw@@}者$%H%@%%Q$@Ơ%%%\%Р%%&#@ .Coq.Structures.OrdersLists.KeyOrderedType#<>#9u@$_109X@ C@y(META1204(META1206(META1205$ @߲@@ ӶED$W%@Ⱙ%א%%@H%%&&%&ᐩI& &&q$>@ /Coq.Structures.OrdersLists.KeyOrderedType#<>#10@@@@ X@u#@VXEF[퍁ӄ@wy=_~tW@ (*ZO<kG`X!l)Datatypes$Init#Coq@@$list]@@!O+OrdersLists*Structures@!t]IJ!x!y!H%Logic$@"eq @ BA"H0*SetoidList%Lists4@#InA q9@22@].CD"@&eq_ind J?0@B!F" #@&In_InAS:LL@(eq_equiv/Bf-@(InfA_ltAoZZ@"lt]̶_@+lt_strorderD! @@(InfA_eqAWm;!m@)lt_compat,N@.SortA_InfA_InAf{I/!W@'In_InfA+]Aˀ*`@(InA_InfA=7[A3i@(InfA_altq@,SortA_NoDupA D##eltB2f@@-RelationPairs'Classes@1RelCompFun_compat6:Ew𩛠@$prodt@A@3@i7@#fst @ۯ@#iffС)@i-qC)Morphisms1@&ProperL@0@1+ȔA@*respectful%WO?<@= .KeyOrderedType@#eqkH۩I - @#ltkS gC.j@@3@2subrelation_properJ70*"@*ltk_compat;S0g+*@$eqke냀'8o<S3@$unitUe@AQ@6subrelation_respectful>6z }A@@@(eqke_eqk"_s=<  RHii`@0subrelation_reflv YpCmC@@@+pair_compat0<WD*nT@@!p!q{"LTf0FE"EQx56LV@)False_induُ]@%Falsee@/RelationClasses@7StrictOrder_IrreflexiveπЩΠȐE@,ltk_strorder X%lemma]^4Vթ̚&Basics'Program@$impl7o@@ܩթ  w  @4iff_impl_subrelation55@6reflexive_proper_proxy5+@*RelCompFun.L2 0O@5Equivalence_Reflexive: ,@EhyC>#@U&u+(/P&#2,B!&4.)(Y((NN)*@6ݩO[/=Aݐk>u:J;9@,+=CCCCC@@@@@@@@@@D@M>T@a@"or @^q eqFdTjHf©ַs:ȷvvbΩϷF̷c ҷO@9é ʰH°Ұ֩QB`  ^C!<?4` w2UU,OGE=4 @שT= 8?ĩ%۩7)쩜ALJ @.Sort_In_cons_1zQ'l  .@kO)ZSXڷVҰP[JOз/@z@ ^i&2O\*6 _>ju>g֩r}KF"e0T["@@$%өڠ"'MW~',YR2> !lg[H*ev*|wJ*zM,..tS_<s\#T`>@@fqunzé<@jϩ}z߶Kgekѩʐנ}٩wu^vxz㐩~ͩn %@.Sort_Inf_NotIn߲V@%In_eqT췀C6?@ðdY$ݣĨ:{2Wl